1
|
Jiang Z, Wang C, Du M, Cong R, Li A, Wang W, Zhang G, Li L. The Molecular Mechanism of Clock in Thermal Adaptation of Two Congeneric Oyster Species. Int J Mol Sci 2025; 26:1109. [PMID: 39940877 PMCID: PMC11817431 DOI: 10.3390/ijms26031109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Clock genes regulate physiological and metabolic processes by responding to changes in environmental light and temperature, and genetic variations in these genes may facilitate environmental adaptation, offering opportunities for resilience to climate change. However, the genetic and molecular mechanisms remain unclear in marine organisms. In this study, we investigated the role of a key clock gene, the circadian locomotor output cycles kaput (Clock), in thermal adaptation using DNA affinity purification sequencing (DAP-Seq) and RNA interference (RNAi)-based transcriptome analysis. In cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata, Clock was subject to environmental selection and exhibited contrasting expression patterns. The transcriptome analysis revealed 2054 differentially expressed genes (DEGs) following the knockdown of the Clock expression, while DAP-Seq identified 150,807 genes regulated by Clock, including 5273 genes located in promoter regions. The combined analyses identified 201 overlapping genes between the two datasets, of which 98 were annotated in public databases. These 98 genes displayed distinct expression patterns in C. gigas and C. angulata under heat stress, which were potentially regulated by Clock, indicating its role in a molecular regulatory network that responds to heat stress. Notably, a heat-shock protein 70 family gene (Hsp12b) and a tripartite motif-containing protein (Trim3) were significantly upregulated in C. angulata but showed no significant changes in C. gigas, further highlighting their critical roles in thermal adaptation. This study preliminarily constructs a thermal regulatory network involving Clock, providing insights into the molecular mechanisms of clock genes in thermal adaptation.
Collapse
Affiliation(s)
- Zhuxiang Jiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Mingyang Du
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Rihao Cong
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Ao Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.J.); (A.L.); (G.Z.)
- University of Chinese Academy of Sciences, Beijing 101408, China;
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (C.W.); (R.C.); (W.W.)
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
- Oyster Industrial Technology Institute of Zhanjiang, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524031, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
2
|
Lin Z, Green EW, Webster SG, Hastings MH, Wilcockson DC, Kyriacou CP. The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach). PLoS Genet 2023; 19:e1011011. [PMID: 37856540 PMCID: PMC10617734 DOI: 10.1371/journal.pgen.1011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/31/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Edward W. Green
- German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
| | - Simon G. Webster
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | | | - David C. Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | |
Collapse
|
3
|
Kwiatkowski ER, Schnytzer Y, Rosenthal JJC, Emery P. Behavioral circatidal rhythms require Bmal1 in Parhyale hawaiensis. Curr Biol 2023; 33:1867-1882.e5. [PMID: 36977416 PMCID: PMC10205697 DOI: 10.1016/j.cub.2023.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Organisms living in the intertidal zone are exposed to a particularly challenging environment. In addition to daily changes in light intensity and seasonal changes in photoperiod and weather patterns, they experience dramatic oscillations in environmental conditions due to the tides. To anticipate tides, and thus optimize their behavior and physiology, animals occupying intertidal ecological niches have acquired circatidal clocks. Although the existence of these clocks has long been known, their underlying molecular components have proven difficult to identify, in large part because of the lack of an intertidal model organism amenable to genetic manipulation. In particular, the relationship between the circatidal and circadian molecular clocks, and the possibility of shared genetic components, has been a long-standing question. Here, we introduce the genetically tractable crustacean Parhyale hawaiensis as a system for the study of circatidal rhythms. First, we show that P. hawaiensis exhibits robust 12.4-h rhythms of locomotion that can be entrained to an artificial tidal regimen and are temperature compensated. Using CRISPR-Cas9 genome editing, we then demonstrate that the core circadian clock gene Bmal1 is required for circatidal rhythms. Our results thus demonstrate that Bmal1 is a molecular link between circatidal and circadian clocks and establish P. hawaiensis as a powerful system to study the molecular mechanisms underlying circatidal rhythms and their entrainment.
Collapse
Affiliation(s)
- Erica R Kwiatkowski
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yisrael Schnytzer
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Girard F, Litvin SY, Sherman A, McGill P, Gannon A, Lovera C, DeVogelaere A, Burton E, Graves D, Schnittger A, Barry J. Phenology in the deep sea: seasonal and tidal feeding rhythms in a keystone octocoral. Proc Biol Sci 2022; 289:20221033. [PMID: 36259212 PMCID: PMC9579760 DOI: 10.1098/rspb.2022.1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biological rhythms are widely known in terrestrial and marine systems, where the behaviour or function of organisms may be tuned to environmental variation over periods from minutes to seasons or longer. Although well characterized in coastal environments, phenology remains poorly understood in the deep sea. Here we characterized intra-annual dynamics of feeding activity for the deep-sea octocoral Paragorgia arborea. Hourly changes in polyp activity were quantified using a time-lapse camera deployed for a year on Sur Ridge (1230 m depth; Northeast Pacific). The relationship between feeding and environmental variables, including surface primary production, temperature, acoustic backscatter, current speed and direction, was evaluated. Feeding activity was highly seasonal, with a dormancy period identified between January and early April, reflecting seasonal changes in food availability as suggested by primary production and acoustic backscatter data. Moreover, feeding varied with tides, which likely affected food delivery through cyclic oscillation in current speed and direction. This study provides the first evidence of behavioural rhythms in a coral species at depth greater than 1 km. Information on the feeding biology of this cosmopolitan deep-sea octocoral will contribute to a better understanding of how future environmental change may affect deep-sea coral communities and the ecosystem services they provide.
Collapse
Affiliation(s)
- Fanny Girard
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Steven Y Litvin
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Alana Sherman
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Paul McGill
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Amanda Gannon
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Christopher Lovera
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Erica Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA 93940, USA
| | - Dale Graves
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Aaron Schnittger
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Jim Barry
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
5
|
Rock A, Wilcockson D, Last KS. Towards an Understanding of Circatidal Clocks. Front Physiol 2022; 13:830107. [PMID: 35283768 PMCID: PMC8914038 DOI: 10.3389/fphys.2022.830107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022] Open
Abstract
Circadian clocks are an intrinsic element of life that orchestrate appropriately timed daily physiological and behavioural rhythms entrained to the solar cycle, thereby conferring increased fitness. However, it is thought that the first archaic ‘proto-clocks’ evolved in ancient cyanobacteria in a marine environment, where the dominant time cues (zeitgebers) probably would have been lunar-driven and included tidal cycles. To date, non-circadian ‘marine clocks’ have been described with circatidal (~12.4 h), circasemilunar (~14.8 days), and circalunar (~29.5 days) periodicity, mostly studied in accessible but temporally complex intertidal habitats. In contrast to the well-described circadian clock, their molecular machinery is poorly understood, and fundamental mechanisms remain unclear. We propose that a multi-species approach is the most apposite strategy to resolve the divergence that arose from non-circadian clockwork forged in an evolutionary environment with multiple zeitgebers. We review circatidal clock models with a focus on intertidal organisms, for which robust behavioural, physiological, or genetic underpinnings have been explicated, and discuss their relative experimental merits. Developing a comprehensive mechanistic understanding of circatidal clocks should be a priority because it will ultimately contribute to a more holistic understanding of the origins and evolution of chronobiology itself.
Collapse
Affiliation(s)
- Alberto Rock
- Department of Science, Scottish Association for Marine Science, Oban, United Kingdom
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- *Correspondence: David Wilcockson,
| | - Kim S. Last
- Department of Science, Scottish Association for Marine Science, Oban, United Kingdom
| |
Collapse
|
6
|
Timmermans MJTN, Arbea JI, Campbell G, King MC, Prins A, Kett S. Mitochondrial genome divergence supports an ancient origin of circatidal behaviour in the Anurida maritima (Collembola: Neanuridae) species group. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kappeler PM. Orientation in Time and Space. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Mat AM, Sarrazin J, Markov GV, Apremont V, Dubreuil C, Eché C, Fabioux C, Klopp C, Sarradin PM, Tanguy A, Huvet A, Matabos M. Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus. Nat Commun 2020; 11:3454. [PMID: 32651383 PMCID: PMC7351958 DOI: 10.1038/s41467-020-17284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Biological rhythms are a fundamental property of life. The deep ocean covers 66% of our planet surface and is one of the largest biomes. The deep sea has long been considered as an arrhythmic environment because sunlight is totally absent below 1,000 m depth. In the present study, we have sequenced the temporal transcriptomes of a deep-sea species, the ecosystem-structuring vent mussel Bathymodiolus azoricus. We reveal that tidal cycles predominate in the transcriptome and physiology of mussels fixed directly at hydrothermal vents at 1,688 m depth at the Mid-Atlantic Ridge, whereas daily cycles prevail in mussels sampled after laboratory acclimation. We identify B. azoricus canonical circadian clock genes, and show that oscillations observed in deep-sea mussels could be either a direct response to environmental stimulus, or be driven endogenously by one or more biological clocks. This work generates in situ insights into temporal organisation in a deep-sea organism. Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.
Collapse
Affiliation(s)
- Audrey M Mat
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France. .,Ifremer, EEP, F-29280, Plouzané, France.
| | | | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Vincent Apremont
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France.,Ifremer, EEP, F-29280, Plouzané, France
| | | | - Camille Eché
- GeT-PlaGe, Genotoul, INRA Auzeville, Auzeville, France
| | - Caroline Fabioux
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | | | | - Arnaud Tanguy
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, Team ABICE, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | | |
Collapse
|
9
|
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol 2020; 60:55-66. [DOI: 10.1016/j.conb.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
|
10
|
Tran D, Perrigault M, Ciret P, Payton L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc Biol Sci 2020; 287:20192440. [PMID: 31910786 DOI: 10.1098/rspb.2019.2440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Marine coastal habitats are complex cyclic environments as a result of sun and moon interactions. In contrast with the well-known circadian orchestration of the terrestrial animal rhythmicity (approx. 24 h), the mechanism responsible for the circatidal rhythm (approx. 12.4 h) remains largely elusive in marine organisms. We revealed in subtidal field conditions that the oyster Crassostrea gigas exhibits tidal rhythmicity of circadian clock genes and clock-associated genes. A free-running (FR) experiment showed an endogenous circatidal rhythm. In parallel, we showed in the field that oysters' valve behaviour exhibited a strong tidal rhythm combined with a daily rhythm. In the FR experiment, all behavioural rhythms were circatidal, and half of them were also circadian. Our results fuel the debate on endogenous circatidal mechanisms. In contrast with the current hypothesis on the existence of an independent tidal clock, we suggest that a single 'circadian/circatidal' clock in bivalves is sufficient to entrain behavioural patterns at tidal and daily frequencies.
Collapse
Affiliation(s)
- Damien Tran
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Mickael Perrigault
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Pierre Ciret
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| | - Laura Payton
- EPOC, University of Bordeaux, UMR 5805, 33120 Arcachon, France.,EPOC, CNRS, UMR 5805, 33120 Arcachon, France
| |
Collapse
|
11
|
Bulla M, Oudman T, Bijleveld AI, Piersma T, Kyriacou CP. Marine biorhythms: bridging chronobiology and ecology. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0253. [PMID: 28993497 PMCID: PMC5647280 DOI: 10.1098/rstb.2016.0253] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Marine organisms adapt to complex temporal environments that include daily, tidal, semi-lunar, lunar and seasonal cycles. However, our understanding of marine biological rhythms and their underlying molecular basis is mainly confined to a few model organisms in rather simplistic laboratory settings. Here, we use new empirical data and recent examples of marine biorhythms to highlight how field ecologists and laboratory chronobiologists can complement each other's efforts. First, with continuous tracking of intertidal shorebirds in the field, we reveal individual differences in tidal and circadian foraging rhythms. Second, we demonstrate that shorebird species that spend 8–10 months in tidal environments rarely maintain such tidal or circadian rhythms during breeding, likely because of other, more pertinent, temporally structured, local ecological pressures such as predation or social environment. Finally, we use examples of initial findings from invertebrates (arthropods and polychaete worms) that are being developed as model species to study the molecular bases of lunar-related rhythms. These examples indicate that canonical circadian clock genes (i.e. the homologous clock genes identified in many higher organisms) may not be involved in lunar/tidal phenotypes. Together, our results and the examples we describe emphasize that linking field and laboratory studies is likely to generate a better ecological appreciation of lunar-related rhythms in the wild. This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.
Collapse
Affiliation(s)
- Martin Bulla
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.,Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic.,Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str., 82319 Seewiesen, Germany
| | - Thomas Oudman
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | | |
Collapse
|
12
|
Mat AM, Dunster GP, Sbragaglia V, Aguzzi J, de la Iglesia HO. Influence of temperature on daily locomotor activity in the crab Uca pugilator. PLoS One 2017; 12:e0175403. [PMID: 28445533 PMCID: PMC5405956 DOI: 10.1371/journal.pone.0175403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022] Open
Abstract
Animals living in the intertidal zone are exposed to prominent temperature changes. To cope with the energetic demands of environmental thermal challenges, ectotherms rely mainly on behavioral responses, which may change depending on the time of the day and seasonally. Here, we analyze how temperature shapes crabs’ behavior at 2 different times of the year and show that a transition from constant cold (13.5°C) to constant warm (17.5°C) water temperature leads to increased locomotor activity levels throughout the day in fiddler crabs (Uca pugilator) collected during the summer. In contrast, the same transition in environmental temperature leads to a decrease in the amplitude of the daily locomotor activity rhythm in crabs collected during the winter. In other words, colder temperatures during the cold season favor a more prominent diurnal behavior. We interpret this winter-summer difference in the response of daily locomotor activity to temperature changes within the framework of the circadian thermoenergetics hypothesis, which predicts that a less favorable energetic balance would promote a more diurnal activity pattern. During the winter, when the energetic balance is likely less favorable, crabs would save energy by being more active during the expected high-temperature phase of the day—light phase—and less during the expected low-temperature phase of the day—dark phase. Our results suggest that endogenous rhythms in intertidal ectotherms generate adaptive behavioral programs to cope with thermoregulatory demands of the intertidal habitat.
Collapse
Affiliation(s)
- Audrey M. Mat
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AMM); (HOD)
| | - Gideon P. Dunster
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | | | - Jacopo Aguzzi
- Marine Science Institute, (ICM-CSIC), Barcelona, Spain
| | - Horacio O. de la Iglesia
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AMM); (HOD)
| |
Collapse
|