1
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2025; 41:23-32. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Walker LM, Sherpa RN, Ivaturi S, Brock DA, Larsen TJ, Walker JR, Strassmann JE, Queller DC. Parallel evolution of the G protein-coupled receptor GrlG and the loss of fruiting body formation in the social amoeba Dictyostelium discoideum evolved under low relatedness. G3 (BETHESDA, MD.) 2023; 14:jkad235. [PMID: 37832511 PMCID: PMC10755179 DOI: 10.1093/g3journal/jkad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5' half of grlG-the region encoding the signal peptide and the extracellular binding domain-were significantly associated with the loss of fruiting body formation; the association was not significant in the 3' half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5' half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something-likely cheating-during the multicellular stage.
Collapse
Affiliation(s)
- Laura M Walker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rintsen N Sherpa
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sindhuri Ivaturi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tyler J Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Larsen TJ, Jahan I, Brock DA, Strassmann JE, Queller DC. Reduced social function in experimentally evolved Dictyostelium discoideum implies selection for social conflict in nature. Proc Biol Sci 2023; 290:20231722. [PMID: 38113942 PMCID: PMC10730294 DOI: 10.1098/rspb.2023.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Many microbes interact with one another, but the difficulty of directly observing these interactions in nature makes interpreting their adaptive value complicated. The social amoeba Dictyostelium discoideum forms aggregates wherein some cells are sacrificed for the benefit of others. Within chimaeric aggregates containing multiple unrelated lineages, cheaters can gain an advantage by undercontributing, but the extent to which wild D. discoideum has adapted to cheat is not fully clear. In this study, we experimentally evolved D. discoideum in an environment where there were no selective pressures to cheat or resist cheating in chimaeras. Dictyostelium discoideum lines grown in this environment evolved reduced competitiveness within chimaeric aggregates and reduced ability to migrate during the slug stage. By contrast, we did not observe a reduction in cell number, a trait for which selection was not relaxed. The observed loss of traits that our laboratory conditions had made irrelevant suggests that these traits were adaptations driven and maintained by selective pressures D. discoideum faces in its natural environment. Our results suggest that D. discoideum faces social conflict in nature, and illustrate a general approach that could be applied to searching for social or non-social adaptations in other microbes.
Collapse
Affiliation(s)
- Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Israt Jahan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Grochau-Wright ZI, Nedelcu AM, Michod RE. The Genetics of Fitness Reorganization during the Transition to Multicellularity: The Volvocine regA-like Family as a Model. Genes (Basel) 2023; 14:genes14040941. [PMID: 37107699 PMCID: PMC10137558 DOI: 10.3390/genes14040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The evolutionary transition from single-celled to multicellular individuality requires organismal fitness to shift from the cell level to a cell group. This reorganization of fitness occurs by re-allocating the two components of fitness, survival and reproduction, between two specialized cell types in the multicellular group: soma and germ, respectively. How does the genetic basis for such fitness reorganization evolve? One possible mechanism is the co-option of life history genes present in the unicellular ancestors of a multicellular lineage. For instance, single-celled organisms must regulate their investment in survival and reproduction in response to environmental changes, particularly decreasing reproduction to ensure survival under stress. Such stress response life history genes can provide the genetic basis for the evolution of cellular differentiation in multicellular lineages. The regA-like gene family in the volvocine green algal lineage provides an excellent model system to study how this co-option can occur. We discuss the origin and evolution of the volvocine regA-like gene family, including regA-the gene that controls somatic cell development in the model organism Volvox carteri. We hypothesize that the co-option of life history trade-off genes is a general mechanism involved in the transition to multicellular individuality, making volvocine algae and the regA-like family a useful template for similar investigations in other lineages.
Collapse
Affiliation(s)
| | - Aurora M Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Richard E Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Belcher LJ, Madgwick PG, Kuwana S, Stewart B, Thompson CRL, Wolf JB. Developmental constraints enforce altruism and avert the tragedy of the commons in a social microbe. Proc Natl Acad Sci U S A 2022; 119:e2111233119. [PMID: 35858311 PMCID: PMC9303850 DOI: 10.1073/pnas.2111233119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Organisms often cooperate through the production of freely available public goods. This can greatly benefit the group but is vulnerable to the "tragedy of the commons" if individuals lack the motivation to make the necessary investment into public goods production. Relatedness to groupmates can motivate individual investment because group success ultimately benefits their genes' own self-interests. However, systems often lack mechanisms that can reliably ensure that relatedness is high enough to promote cooperation. Consequently, groups face a persistent threat from the tragedy unless they have a mechanism to enforce investment when relatedness fails to provide adequate motivation. To understand the real threat posed by the tragedy and whether groups can avert its impact, we determine how the social amoeba Dictyostelium discoideum responds as relatedness decreases to levels that should induce the tragedy. We find that, while investment in public goods declines as overall within-group relatedness declines, groups avert the expected catastrophic collapse of the commons by continuing to invest, even when relatedness should be too low to incentivize any contribution. We show that this is due to a developmental buffering system that generates enforcement because insufficient cooperation perturbs the balance of a negative feedback system controlling multicellular development. This developmental constraint enforces investment under the conditions expected to be most tragic, allowing groups to avert a collapse in cooperation. These results help explain how mechanisms that suppress selfishness and enforce cooperation can arise inadvertently as a by-product of constraints imposed by selection on different traits.
Collapse
Affiliation(s)
- Laurence J. Belcher
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Philip G. Madgwick
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Satoshi Kuwana
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Balint Stewart
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Christopher R. L. Thompson
- Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Jason B. Wolf
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Cameron-Pack ME, König SG, Reyes-Guevara A, Reyes-Prieto A, Nedelcu AM. A personal cost of cheating can stabilize reproductive altruism during the early evolution of clonal multicellularity. Biol Lett 2022; 18:20220059. [PMID: 35728616 PMCID: PMC9213111 DOI: 10.1098/rsbl.2022.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Understanding how cooperation evolved and is maintained remains an important and often controversial topic because cheaters that reap the benefits of cooperation without paying the costs can threaten the evolutionary stability of cooperative traits. Cooperation-and especially reproductive altruism-is particularly relevant to the evolution of multicellularity, as somatic cells give up their reproductive potential in order to contribute to the fitness of the newly emerged multicellular individual. Here, we investigated cheating in a simple multicellular species-the green alga Volvox carteri, in the context of the mechanisms that can stabilize reproductive altruism during the early evolution of clonal multicellularity. We found that the benefits cheater mutants can gain in terms of their own reproduction are pre-empted by a cost in survival due to increased sensitivity to stress. This personal cost of cheating reflects the antagonistic pleiotropic effects that the gene coding for reproductive altruism-regA-has at the cell level. Specifically, the expression of regA in somatic cells results in the suppression of their reproduction potential but also confers them with increased resistance to stress. Since regA evolved from a life-history trade-off gene, we suggest that co-opting trade-off genes into cooperative traits can provide a built-in safety system against cheaters in other clonal multicellular lineages.
Collapse
Affiliation(s)
- Marybelle E. Cameron-Pack
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Stephan G. König
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Anajose Reyes-Guevara
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, PO Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
7
|
Gruenheit N, Baldwin A, Stewart B, Jaques S, Keller T, Parkinson K, Salvidge W, Baines R, Brimson C, Wolf JB, Chisholm R, Harwood AJ, Thompson CRL. Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol 2021; 19:172. [PMID: 34429112 PMCID: PMC8386026 DOI: 10.1186/s12915-021-01108-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background Genomes can be sequenced with relative ease, but ascribing gene function remains a major challenge. Genetically tractable model systems are crucial to meet this challenge. One powerful model is the social amoeba Dictyostelium discoideum, a eukaryotic microbe widely used to study diverse questions in the cell, developmental and evolutionary biology. Results We describe REMI-seq, an adaptation of Tn-seq, which allows high throughput, en masse, and quantitative identification of the genomic site of insertion of a drug resistance marker after restriction enzyme-mediated integration. We use REMI-seq to develop tools which greatly enhance the efficiency with which the sequence, transcriptome or proteome variation can be linked to phenotype in D. discoideum. These comprise (1) a near genome-wide resource of individual mutants and (2) a defined pool of ‘barcoded’ mutants to allow large-scale parallel phenotypic analyses. These resources are freely available and easily accessible through the REMI-seq website that also provides comprehensive guidance and pipelines for data analysis. We demonstrate that integrating these resources allows novel regulators of cell migration, phagocytosis and macropinocytosis to be rapidly identified. Conclusions We present methods and resources, generated using REMI-seq, for high throughput gene function analysis in a key model system. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01108-y.
Collapse
Affiliation(s)
- Nicole Gruenheit
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amy Baldwin
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Balint Stewart
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Jaques
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Thomas Keller
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Katie Parkinson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - William Salvidge
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Chris Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rex Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Adrian J Harwood
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Benler S, Koonin EV. Phage lysis‐lysogeny switches and programmed cell death: Danse macabre. Bioessays 2020; 42:e2000114. [DOI: 10.1002/bies.202000114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
9
|
Abstract
Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| |
Collapse
|
10
|
Abstract
Loners—individuals out of sync with a coordinated majority—occur frequently in nature. Are loners incidental byproducts of large-scale coordination attempts, or are they part of a mosaic of life-history strategies? Here, we provide empirical evidence of naturally occurring heritable variation in loner behavior in the model social amoeba Dictyostelium discoideum. We propose that Dictyostelium loners—cells that do not join the multicellular life stage—arise from a dynamic population-partitioning process, the result of each cell making a stochastic, signal-based decision. We find evidence that this imperfectly synchronized multicellular development is affected by both abiotic (environmental porosity) and biotic (signaling) factors. Finally, we predict theoretically that when a pair of strains differing in their partitioning behavior coaggregate, cross-signaling impacts slime-mold diversity across spatiotemporal scales. Our findings suggest that loners could be critical to understanding collective and social behaviors, multicellular development, and ecological dynamics in D. discoideum. More broadly, across taxa, imperfect coordination of collective behaviors might be adaptive by enabling diversification of life-history strategies. Loners (individuals out of sync with a coordinated majority) occur frequently in nature and are generally assumed to be incidental by-products of imperfect coordination attempts. Experimental and theoretical work on the slime mold Dictyostelium discoideum suggests that "lonerism" might actually be an alternative life-history strategy.
Collapse
|
11
|
Noh S, Christopher L, Strassmann JE, Queller DC. Wild Dictyostelium discoideum social amoebae show plastic responses to the presence of nonrelatives during multicellular development. Ecol Evol 2020; 10:1119-1134. [PMID: 32076502 PMCID: PMC7029077 DOI: 10.1002/ece3.5924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/11/2022] Open
Abstract
When multiple strains of microbes form social groups, such as the multicellular fruiting bodies of Dictyostelium discoideum, conflict can arise regarding cell fate. Both fixed and plastic differences among strains can contribute to cell fate, and plastic responses may be particularly important if social environments frequently change. We used RNA-sequencing and photographic time series analysis to detect possible conflict-induced plastic differences between wild D. discoideum aggregates formed by single strains compared with mixed pairs of strains (chimeras). We found one hundred and two differentially expressed genes that were enriched for biological processes including cytoskeleton organization and cyclic AMP response (up-regulated in chimeras), and DNA replication and cell cycle (down-regulated in chimeras). In addition, our data indicate that in reference to a time series of multicellular development in the laboratory strain AX4, chimeras may be slightly behind clonal aggregates in their development. Finally, phenotypic analysis supported slower splitting of aggregates and a nonsignificant trend for larger group sizes in chimeras. The transcriptomic comparison and phenotypic analyses support discoordination among aggregate group members due to social conflict. These results are consistent with previously observed factors that affect cell fate decision in D. discoideum and provide evidence for plasticity in cAMP signaling and phenotypic coordination during development in response to social conflict in D. discoideum and similar microbial social groups.
Collapse
Affiliation(s)
- Suegene Noh
- Department of BiologyColby CollegeWatervilleMEUSA
| | | | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| |
Collapse
|
12
|
Conditional expression explains molecular evolution of social genes in a microbe. Nat Commun 2019; 10:3284. [PMID: 31337766 PMCID: PMC6650454 DOI: 10.1038/s41467-019-11237-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/25/2019] [Indexed: 12/30/2022] Open
Abstract
Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.
Collapse
|
13
|
Paschke P, Knecht DA, Williams TD, Thomason PA, Insall RH, Chubb JR, Kay RR, Veltman DM. Genetic Engineering of Dictyostelium discoideum Cells Based on Selection and Growth on Bacteria. J Vis Exp 2019:58981. [PMID: 30735174 PMCID: PMC7039707 DOI: 10.3791/58981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dictyostelium discoideum is an intriguing model organism for the study of cell differentiation processes during development, cell signaling, and other important cellular biology questions. The technologies available to genetically manipulate Dictyostelium cells are well-developed. Transfections can be performed using different selectable markers and marker re-cycling, including homologous recombination and insertional mutagenesis. This is supported by a well-annotated genome. However, these approaches are optimized for axenic cell lines growing in liquid cultures and are difficult to apply to non-axenic wild-type cells, which feed only on bacteria. The mutations that are present in axenic strains disturb Ras signaling, causing excessive macropinocytosis required for feeding, and impair cell migration, which confounds the interpretation of signal transduction and chemotaxis experiments in those strains. Earlier attempts to genetically manipulate non-axenic cells have lacked efficiency and required complex experimental procedures. We have developed a simple transfection protocol that, for the first time, overcomes these limitations. Those series of large improvements to Dictyostelium molecular genetics allow wild-type cells to be manipulated as easily as standard laboratory strains. In addition to the advantages for studying uncorrupted signaling and motility processes, mutants that disrupt macropinocytosis-based growth can now be readily isolated. Furthermore, the entire transfection workflow is greatly accelerated, with recombinant cells that can be generated in days rather than weeks. Another advantage is that molecular genetics can further be performed with freshly isolated wild-type Dictyostelium samples from the environment. This can help to extend the scope of approaches used in these research areas.
Collapse
Affiliation(s)
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut
| | | | | | | | - Jonathan R Chubb
- MRC Laboratory for Molecular Cell Biology, University College London; Department of Cell and Developmental Biology, University College London
| | | | | |
Collapse
|
14
|
Kundert P, Shaulsky G. Cellular allorecognition and its roles in Dictyostelium development and social evolution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:383-393. [PMID: 31840777 PMCID: PMC6919275 DOI: 10.1387/ijdb.190239gs] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The social amoeba Dictyostelium discoideum is a tractable model organism to study cellular allorecognition, which is the ability of a cell to distinguish itself and its genetically similar relatives from more distantly related organisms. Cellular allorecognition is ubiquitous across the tree of life and affects many biological processes. Depending on the biological context, these versatile systems operate both within and between individual organisms, and both promote and constrain functional heterogeneity. Some of the most notable allorecognition systems mediate neural self-avoidance in flies and adaptive immunity in vertebrates. D. discoideum's allorecognition system shares several structures and functions with other allorecognition systems. Structurally, its key regulators reside at a single genomic locus that encodes two highly polymorphic proteins, a transmembrane ligand called TgrC1 and its receptor TgrB1. These proteins exhibit isoform-specific, heterophilic binding across cells. Functionally, this interaction determines the extent to which co-developing D. discoideum strains co-aggregate or segregate during the aggregation phase of multicellular development. The allorecognition system thus affects both development and social evolution, as available evidence suggests that the threat of developmental cheating represents a primary selective force acting on it. Other significant characteristics that may inform the study of allorecognition in general include that D. discoideum's allorecognition system is a continuous and inclusive trait, it is pleiotropic, and it is temporally regulated.
Collapse
Affiliation(s)
- Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
15
|
|
16
|
A single mutation in rapP induces cheating to prevent cheating in Bacillus subtilis by minimizing public good production. Commun Biol 2018; 1:133. [PMID: 30272012 PMCID: PMC6123732 DOI: 10.1038/s42003-018-0136-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Cooperation is beneficial to group behaviors like multicellularity, but is vulnerable to exploitation by cheaters. Here we analyze mechanisms that protect against exploitation of extracellular surfactin in swarms of Bacillus subtilis. Unexpectedly, the reference strain NCIB 3610 displays inherent resistance to surfactin-non-producing cheaters, while a different wild isolate is susceptible. We trace this interstrain difference down to a single amino acid change in the plasmid-borne regulator RapP, which is necessary and sufficient for cheater mitigation. This allele, prevalent in many Bacillus species, optimizes transcription of the surfactin operon to the minimum needed for full cooperation. When combined with a strain lacking rapP, NCIB 3610 acts as a cheater itself—except it does not harm the population at high proportions since it still produces enough surfactin. This strategy of minimal production is thus a doubly advantageous mechanism to limit exploitation of public goods, and is readily evolved from existing regulatory networks. Lyons and Kolter describe a single-point mutation in the plasmid-borne gene rapP of Bacillus subtilis that optimizes surfactin transcription to express the minimum required for cooperation. The decrease in the production of this public good significantly prevented the exploitation of cooperative traits by cheaters.
Collapse
|
17
|
Paschke P, Knecht DA, Silale A, Traynor D, Williams TD, Thomason PA, Insall RH, Chubb JR, Kay RR, Veltman DM. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One 2018; 13:e0196809. [PMID: 29847546 PMCID: PMC5976153 DOI: 10.1371/journal.pone.0196809] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/15/2018] [Indexed: 02/03/2023] Open
Abstract
Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a 'safe haven' for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media.
Collapse
Affiliation(s)
- Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - David A. Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | | | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Peter A. Thomason
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Robert H. Insall
- Cancer Research UK Beatson Institute Glasgow, Glasgow, United Kingdom
| | - Jonathan R. Chubb
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
18
|
Strategic investment explains patterns of cooperation and cheating in a microbe. Proc Natl Acad Sci U S A 2018; 115:E4823-E4832. [PMID: 29735672 DOI: 10.1073/pnas.1716087115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Contributing to cooperation is typically costly, while its rewards are often available to all members of a social group. So why should individuals be willing to pay these costs, especially if they could cheat by exploiting the investments of others? Kin selection theory broadly predicts that individuals should invest more into cooperation if their relatedness to group members is high (assuming they can discriminate kin from nonkin). To better understand how relatedness affects cooperation, we derived the ‟Collective Investment" game, which provides quantitative predictions for patterns of strategic investment depending on the level of relatedness. We then tested these predictions by experimentally manipulating relatedness (genotype frequencies) in mixed cooperative aggregations of the social amoeba Dictyostelium discoideum, which builds a stalk to facilitate spore dispersal. Measurements of stalk investment by natural strains correspond to the predicted patterns of relatedness-dependent strategic investment, wherein investment by a strain increases with its relatedness to the group. Furthermore, if overall group relatedness is relatively low (i.e., no strain is at high frequency in a group) strains face a scenario akin to the "Prisoner's Dilemma" and suffer from insufficient collective investment. We find that strains employ relatedness-dependent segregation to avoid these pernicious conditions. These findings demonstrate that simple organisms like D. discoideum are not restricted to being ‟cheaters" or ‟cooperators" but instead measure their relatedness to their group and strategically modulate their investment into cooperation accordingly. Consequently, all individuals will sometimes appear to cooperate and sometimes cheat due to the dynamics of strategic investing.
Collapse
|
19
|
Genetic signatures of microbial altruism and cheating in social amoebas in the wild. Proc Natl Acad Sci U S A 2018; 115:3096-3101. [PMID: 29507206 DOI: 10.1073/pnas.1720324115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many microbes engage in social interactions. Some of these have come to play an important role in the study of cooperation and conflict, largely because, unlike most animals, they can be genetically manipulated and experimentally evolved. However, whereas animal social behavior can be observed and assessed in natural environments, microbes usually cannot, so we know little about microbial social adaptations in nature. This has led to some difficult-to-resolve controversies about social adaptation even for well-studied traits such as bacterial quorum sensing, siderophore production, and biofilms. Here we use molecular signatures of population genetics and molecular evolution to address controversies over the existence of altruism and cheating in social amoebas. First, we find signatures of rapid adaptive molecular evolution that are consistent with social conflict being a significant force in nature. Second, we find population-genetic signatures of purifying selection to support the hypothesis that the cells that form the sterile stalk evolve primarily through altruistic kin selection rather than through selfish direct reproduction. Our results show how molecular signatures can provide insight into social adaptations that cannot be observed in their natural context, and they support the hypotheses that social amoebas in the wild are both altruists and cheaters.
Collapse
|
20
|
Chimeric Synergy in Natural Social Groups of a Cooperative Microbe. Curr Biol 2018; 28:262-267.e3. [PMID: 29337077 DOI: 10.1016/j.cub.2017.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Many cooperative species form internally diverse social groups in which individual fitness depends significantly on group-level productivity from cooperation [1-4]. For such species, selection is expected to often disfavor within-group diversity that reduces cooperative productivity [5, 6]. While diversity within social groups is known to enhance productivity in some animals [7-9], diversity within natural groups of social microbes is largely unexamined in this regard. Cells of the soil bacterium Myxococcus xanthus respond to starvation by constructing multicellular fruiting bodies within each of which a subpopulation of cells transforms into stress-resistant spores [10]. Fruiting bodies isolated from soil often harbor substantial endemic diversity [11] that is, nonetheless, lower than between-group diversity, which increases with distance from millimeter to global scales [12-14]. We show that M. xanthus clones isolated from the same fruiting body often collectively produce more viable spores in chimeric groups than expected from sporulation in genetically homogeneous groups. In contrast, chimerism among clones derived from different fruiting bodies tends to reduce group productivity, and it does so increasingly as a function of spatial distance between fruiting-body sample sites. For one fruiting body examined in detail, chimeric synergy-a positive quantitative effect of chimerism on group productivity-is distributed broadly across an interaction network rather than limited to a few interactions. We propose that these results strengthen the plausibility of the hypothesis that selection may operate not only within Myxococcus groups, but also between kin groups to disfavor within-group variation that reduces productivity while allowing some forms of diversity that generate chimeric synergy to persist.
Collapse
|
21
|
Votaw HR, Ostrowski EA. Stalk size and altruism investment within and among populations of the social amoeba. J Evol Biol 2017; 30:2017-2030. [DOI: 10.1111/jeb.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/13/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Affiliation(s)
- H. R. Votaw
- Department of Biology and Biochemistry University of Houston Houston TX USA
| | - E. A. Ostrowski
- Department of Biology and Biochemistry University of Houston Houston TX USA
| |
Collapse
|
22
|
Saucedo-Mora MA, Castañeda-Tamez P, Cazares A, Pérez-Velázquez J, Hense BA, Cazares D, Figueroa W, Carballo M, Guarneros G, Pérez-Eretza B, Cruz N, Nishiyama Y, Maeda T, Belmont-Díaz JA, Wood TK, García-Contreras R. Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa. Front Microbiol 2017; 8:1669. [PMID: 28912771 PMCID: PMC5583629 DOI: 10.3389/fmicb.2017.01669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.
Collapse
Affiliation(s)
- Miguel A Saucedo-Mora
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Paulina Castañeda-Tamez
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Judith Pérez-Velázquez
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany.,Mathematical Modeling of Biological Systems, Zentrum Mathematik, Technical University of MunichGarching, Germany
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany
| | - Daniel Cazares
- Centro de Ciencias Genomicas, National Autonomous University of MexicoCuernavaca, Mexico
| | - Wendy Figueroa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Marco Carballo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Berenice Pérez-Eretza
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Nelby Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | | | - Thomas K Wood
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkPA, United States
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| |
Collapse
|
23
|
Martínez-García R, Tarnita CE. Seasonality can induce coexistence of multiple bet-hedging strategies in Dictyostelium discoideum via storage effect. J Theor Biol 2017; 426:104-116. [PMID: 28536035 DOI: 10.1016/j.jtbi.2017.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
The social amoeba Dictyostelium discoideum has been recently suggested as an example of bet-hedging in microbes. In the presence of resources, amoebae reproduce as unicellular organisms. Resource depletion, however, leads to a starvation phase in which the population splits between aggregators, which form a fruiting body made of a stalk and resistant spores, and non-aggregators, which remain as vegetative cells. Spores are favored when starvation periods are long, but vegetative cells can exploit resources in environments where food replenishes quickly. The investment in aggregators versus non-aggregators can therefore be understood as a bet-hedging strategy that evolves in response to stochastic starvation times. A genotype (or strategy) is defined by the balance between each type of cells. In this framework, if the ecological conditions on a patch are defined in terms of the mean starvation time (i.e. time between the onset of starvation and the arrival of a new food pulse), a single genotype dominates each environment, which is inconsistent with the huge genetic diversity observed in nature. Here we investigate whether seasonality, represented by a periodic, wet-dry alternation in the mean starvation times, allows the coexistence of several strategies in a single patch. We study this question in a non-spatial (well-mixed) setting in which different strains compete for a common pool of resources over a sequence of growth-starvation cycles. We find that seasonality induces a temporal storage effect that can promote the stable coexistence of multiple genotypes. Two conditions need to be met in our model. First, there has to be a temporal niche partitioning (two well-differentiated habitats within the year), which requires not only different mean starvation times between seasons but also low variance within each season. Second, each season's well-adapted strain has to grow and create a large enough population that permits its survival during the subsequent unfavorable season, which requires the number of growth-starvation cycles within each season to be sufficiently large. These conditions allow the coexistence of two bet-hedging strategies. Additional tradeoffs among life-history traits can expand the range of coexistence and increase the number of coexisting strategies, contributing toward explaining the genetic diversity observed in D. discoideum. Although focused on this cellular slime mold, our results are general and may be easily extended to other microbes.
Collapse
Affiliation(s)
- Ricardo Martínez-García
- Department of Ecology and Evolutionary Biology, Princeton University. Princeton NJ 08544, USA
| | - Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University. Princeton NJ 08544, USA.
| |
Collapse
|
24
|
Gruenheit N, Parkinson K, Stewart B, Howie JA, Wolf JB, Thompson CRL. A polychromatic 'greenbeard' locus determines patterns of cooperation in a social amoeba. Nat Commun 2017; 8:14171. [PMID: 28120827 PMCID: PMC5288501 DOI: 10.1038/ncomms14171] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/06/2016] [Indexed: 12/30/2022] Open
Abstract
Cheaters disrupt cooperation by reaping the benefits without paying their fair share of associated costs. Cheater impact can be diminished if cooperators display a tag (‘greenbeard') and recognise and preferentially direct cooperation towards other tag carriers. Despite its popular appeal, the feasibility of such greenbeards has been questioned because the complex patterns of partner-specific cooperative behaviours seen in nature require greenbeards to come in different colours. Here we show that a locus (‘Tgr') of a social amoeba represents a polychromatic greenbeard. Patterns of natural Tgr locus sequence polymorphisms predict partner-specific patterns of cooperation by underlying variation in partner-specific protein–protein binding strength and recognition specificity. Finally, Tgr locus polymorphisms increase fitness because they help avoid potential costs of cooperating with incompatible partners. These results suggest that a polychromatic greenbeard can provide a key mechanism for the evolutionary maintenance of cooperation. Cooperation can be stabilized against exploitation if cooperators can reliably recognize each other. Here, Gruenheit and colleagues show that different alleles of the Tgr locus of the social amoeba Dictyostelium discoideum underlie the ability of different strains to recognize and cooperate with socially compatible individuals.
Collapse
Affiliation(s)
- Nicole Gruenheit
- Faculty of Biology, Medicine and Health, Department of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Faculty of Biology, Medicine and Health, Department of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Balint Stewart
- Faculty of Biology, Medicine and Health, Department of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jennifer A Howie
- Faculty of Biology, Medicine and Health, Department of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Christopher R L Thompson
- Faculty of Biology, Medicine and Health, Department of Developmental Biology and Medicine, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Abstract
ABSTRACT
Cooperation has been studied extensively across the tree of life, from eusociality in insects to social behavior in humans, but it is only recently that a social dimension has been recognized and extensively explored for microbes. Research into microbial cooperation has accelerated dramatically and microbes have become a favorite system because of their fast evolution, their convenience as lab study systems and the opportunity for molecular investigations. However, the study of microbes also poses significant challenges, such as a lack of knowledge and an inaccessibility of the ecological context (used here to include both the abiotic and the biotic environment) under which the trait deemed cooperative has evolved and is maintained. I review the experimental and theoretical evidence in support of the limitations of the study of social behavior in microbes in the absence of an ecological context. I discuss both the need and the opportunities for experimental investigations that can inform a theoretical framework able to reframe the general questions of social behavior in a clear ecological context and to account for eco-evolutionary feedback.
Collapse
Affiliation(s)
- Corina E. Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
26
|
Zhang Z, Claessen D, Rozen DE. Understanding Microbial Divisions of Labor. Front Microbiol 2016; 7:2070. [PMID: 28066387 PMCID: PMC5174093 DOI: 10.3389/fmicb.2016.02070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems.
Collapse
Affiliation(s)
- Zheren Zhang
- Institute of Biology, Leiden University Leiden, Netherlands
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University Leiden, Netherlands
| |
Collapse
|
27
|
Martínez-García R, Tarnita CE. Lack of Ecological and Life History Context Can Create the Illusion of Social Interactions in Dictyostelium discoideum. PLoS Comput Biol 2016; 12:e1005246. [PMID: 27977666 PMCID: PMC5157950 DOI: 10.1371/journal.pcbi.1005246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Studies of social microbes often focus on one fitness component (reproductive success within the social complex), with little information about or attention to other stages of the life cycle or the ecological context. This can lead to paradoxical results. The life cycle of the social amoeba Dictyostelium discoideum includes a multicellular stage in which not necessarily clonal amoebae aggregate upon starvation to form a possibly chimeric (genetically heterogeneous) fruiting body made of dead stalk cells and spores. The lab-measured reproductive skew in the spores of chimeras indicates strong social antagonism that should result in low genotypic diversity, which is inconsistent with observations from nature. Two studies have suggested that this inconsistency stems from the one-dimensional assessment of fitness (spore production) and that the solution lies in tradeoffs between multiple life-history traits, e.g.: spore size versus viability; and spore-formation (via aggregation) versus staying vegetative (as non-aggregated cells). We develop an ecologically-grounded, socially-neutral model (i.e. no social interactions between genotypes) for the life cycle of social amoebae in which we theoretically explore multiple non-social life-history traits, tradeoffs and tradeoff-implementing mechanisms. We find that spore production comes at the expense of time to complete aggregation, and, depending on the experimental setup, spore size and viability. Furthermore, experimental results regarding apparent social interactions within chimeric mixes can be qualitatively recapitulated under this neutral hypothesis, without needing to invoke social interactions. This allows for simple potential resolutions to the previously paradoxical results. We conclude that the complexities of life histories, including social behavior and multicellularity, can only be understood in the appropriate multidimensional ecological context, when considering all stages of the life cycle. Fitness in social microbes is often measured in terms of reproductive success in the social stage, with little regard to other stages of the life cycle (e.g. solitary) or to the ecological context. This approach can lead to seemingly paradoxical results that point to complex social interactions (e.g., social cheating) among individuals in the population. However, recent experimental studies in Dictyostelium discoideum, one of the most studied social microbes, have highlighted various tradeoffs among previously ignored non-social traits that should affect fitness. We develop an ecologically-motivated socially-neutral model for the life cycle of D. discoideum that combines these proposed traits and tradeoffs and proposes new ones to determine whether existing observations can be explained without the need to invoke social interactions. We confirm this expectation and conclude that the complexities of social behavior can only be understood in the appropriate ecological context, when considering a complete description of the life cycle.
Collapse
Affiliation(s)
- Ricardo Martínez-García
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ, United States of America
| | - Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton NJ, United States of America
| |
Collapse
|
28
|
|
29
|
Leimar O, Dall SRX, Hammerstein P, McNamara JM. Genes as Cues of Relatedness and Social Evolution in Heterogeneous Environments. PLoS Comput Biol 2016; 12:e1005006. [PMID: 27341199 PMCID: PMC4920369 DOI: 10.1371/journal.pcbi.1005006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/27/2016] [Indexed: 12/23/2022] Open
Abstract
There are many situations where relatives interact while at the same time there is genetic polymorphism in traits influencing survival and reproduction. Examples include cheater-cooperator polymorphism and polymorphic microbial pathogens. Environmental heterogeneity, favoring different traits in nearby habitats, with dispersal between them, is one general reason to expect polymorphism. Currently, there is no formal framework of social evolution that encompasses genetic polymorphism. We develop such a framework, thus integrating theories of social evolution into the evolutionary ecology of heterogeneous environments. We allow for adaptively maintained genetic polymorphism by applying the concept of genetic cues. We analyze a model of social evolution in a two-habitat situation with limited dispersal between habitats, in which the average relatedness at the time of helping and other benefits of helping can differ between habitats. An important result from the analysis is that alleles at a polymorphic locus play the role of genetic cues, in the sense that the presence of a cue allele contains statistical information for an organism about its current environment, including information about relatedness. We show that epistatic modifiers of the cue polymorphism can evolve to make optimal use of the information in the genetic cue, in analogy with a Bayesian decision maker. Another important result is that the genetic linkage between a cue locus and modifier loci influences the evolutionary interest of modifiers, with tighter linkage leading to greater divergence between social traits induced by different cue alleles, and this can be understood in terms of genetic conflict. The theory of kin selection explains the evolution of helping when relatives interact. It can be used when individuals in a social group have different sexes, ages or phenotypic qualities, but the theory has not been worked out for situations where there is genetic polymorphism in helping. That kind of polymorphism, for instance cheater-cooperator polymorphism in microbes, has attracted much interest. We include these phenomena into a general framework of social evolution. Our framework is built on the idea of genetic cues, which means that an individual uses its genotype at a polymorphic locus as a statistical predictor of the current social conditions, including the expected relatedness in a social group. We allow for multilocus determination of the phenotype, in the form of modifiers of the effects of the alleles at a cue locus, and we find that there can be genetic conflicts between modifier loci that are tightly linked versus unlinked to the cue locus.
Collapse
Affiliation(s)
- Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Sasha R. X. Dall
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University Berlin, Berlin, Germany
| | - John M. McNamara
- School of Mathematics, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Abstract
Variation in the routes to social success has led to the designation of 'cheats' and 'cooperators', but new work shows that selection on non-social traits can give the illusion of social cheating in the social amoeba Dictyostelium discoideum.
Collapse
Affiliation(s)
- Siobhan O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK; Department of Biology, University of York, York, YO10 5DD, UK
| | | |
Collapse
|