1
|
Mendoza H, Jash E, Davis MB, Haines RA, VanDiepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. G3 (BETHESDA, MD.) 2025; 15:jkaf057. [PMID: 40087923 PMCID: PMC12060244 DOI: 10.1093/g3journal/jkaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
RNA interference (RNAi) is a conserved silencing mechanism that depends on the generation of small RNA molecules that leads to the degradation of the targeted messenger RNAs (mRNAs). Nuclear RNAi is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation (DC), a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during DC but the consequences on the transcriptional output of X-linked genes are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their mRNA targets through different relationships to H3K9 methylation.
Collapse
Affiliation(s)
- Hector Mendoza
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah VanDiepenbos
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Li Y, Wang C, Fu X, Wu D, He C, Dai W, Yue X, Luo Z, Yang J, Wan QL. Transgenerational inheritance of mitochondrial hormetic oxidative stress mediated by histone H3K4me3 and H3K27me3 modifications. Redox Biol 2025; 82:103598. [PMID: 40112613 PMCID: PMC11979432 DOI: 10.1016/j.redox.2025.103598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Mitochondrial hormetic oxidative stress (mtHOS) is crucial in physiology and disease; however, its effects on epigenetic inheritance and organism fitness across generations remains elusive. Utilizing the C. elegans as a model, we elucidate that parental exposure to mtHOS not only elicits a lifespan extension in the exposed individuals but also confers this longevity advantage to the progeny through the transgenerational epigenetic inheritance (TEI) mechanism. This transgenerational transmission of lifespan prolongation depends on the activation of the UPRmt and the synergistic action of the transcription factors DAF-16/FOXO and SKN-1/Nrf2. Additionally, the H3K4me3 and H3K27me3 serve as epigenetic mediators, selectively marking and regulating the expression of genes associated with oxidative stress response and longevity determination. Our findings illuminate the mechanisms underlying the implementation and transmission of mtHOS, revealing a sophisticated interplay among oxidative stress response genes and chromatin remodeling that collectively enhances the progeny's adaptive resilience to future challenges.
Collapse
Affiliation(s)
- Yimin Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoxia Fu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Dan Wu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenyang He
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The First Affiliated Hospital, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoyang Yue
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The First Affiliated Hospital, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
3
|
Jin Q, Feng X, Hong M, Wang K, Chen X, Cheng J, Kuang Y, Si X, Xu M, Huang X, Guang S, Zhu C. Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA. LIFE SCIENCES 2025; 68:895-911. [PMID: 39825209 DOI: 10.1007/s11427-024-2818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C. elegans are unclear. Here, using the nuclear RNAi Argonaute protein NRDE-3 as a reporter, we observed potential peri-centrosome localized small interfering (si)RNAs in C. elegans. NRDE-3 was previously shown to associate with pre-mRNAs and pre-rRNAs via a process involving the presence of complementary siRNAs. We generated a GFP-NRDE-3 knock-in transgene through CRISPR/Cas9 technology and observed that NRDE-3 formed peri-centrosomal foci neighboring the tubulin protein TBB-2, other centriole proteins and pericentriolar material (PCM) components in C. elegans embryos. The peri-centrosomal accumulation of NRDE-3 depends on RNA-dependent RNA polymerase (RdRP)-synthesized 22G siRNAs and the PAZ domain of NRDE-3, which is essential for siRNA binding. Mutation of eri-1, ergo-1, or drh-3 significantly increased the percentage of pericentrosome-enriched NRDE-3. At the metaphase of the cell cycle, NRDE-3 was enriched in both the peri-centrosomal region and the spindle. Moreover, the integrity of centriole proteins and pericentriolar material (PCM) components is also required for the peri-centrosomal accumulation of NRDE-3. Therefore, we concluded that siRNAs could accumulate in the pericentrosomal region in C. elegans and suggested that the peri-centrosomal region may also be a platform for RNAi-mediated gene regulation.
Collapse
Affiliation(s)
- Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Jiewei Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Yan Kuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaoyue Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
4
|
Chen S, Phillips CM. Nuclear Argonaute protein NRDE-3 switches small RNA partners during embryogenesis to mediate temporal-specific gene regulatory activity. eLife 2025; 13:RP102226. [PMID: 40080062 PMCID: PMC11906161 DOI: 10.7554/elife.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
| | - Carolyn Marie Phillips
- Department of Biological Sciences, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
5
|
Zhebrun A, Ni JZ, Corveleyn L, Ghosh Roy S, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. Genetics 2025; 229:iyae206. [PMID: 39661453 PMCID: PMC11796467 DOI: 10.1093/genetics/iyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Nuclear RNAi in Caenorhabditis elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively as germline nuclear RNAi factors and promote the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Julie Z Ni
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent 9000, Belgium
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sam G Gu
- Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
| |
Collapse
|
6
|
Chen S, Phillips CM. Nuclear Argonaute protein NRDE-3 switches small RNA partners during embryogenesis to mediate temporal-specific gene regulatory activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.29.605686. [PMID: 39131395 PMCID: PMC11312606 DOI: 10.1101/2024.07.29.605686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA interference (RNAi) is a conserved gene regulation mechanism that utilizes the Argonaute protein and their associated small RNAs to exert regulatory function on complementary transcripts. While the majority of germline-expressed RNAi pathway components reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here we find that the small RNA biogenesis machinery is spatially and temporally organized during embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. We also observe that many other RNAi factors form foci in embryonic cells distinct from "SIMR granules", including the Argonaute protein CSR-1, underscoring a potential role for cytoplasmic concentrates of RNAi factors to promote gene regulation in embryos. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. Prior work has shown that NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
Collapse
Affiliation(s)
- Shihui Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
7
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 PMCID: PMC11802346 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefei230032China
| | - Shouhong Guang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of USTCThe USTC RNA InstituteMinistry of Education Key Laboratory for Membraneless Organelles & Cellular DynamicsHefei National Research Center for Physical Sciences at the MicroscaleCenter for Advanced Interdisciplinary Science and Biomedicine of IHMSchool of Life SciencesDivision of Life Sciences and MedicineBiomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
8
|
Zhebrun A, Ni JZ, Corveleyn L, Roy SG, Sidoli S, Gu SG. Two H3K23 histone methyltransferases, SET-32 and SET-21, function synergistically to promote nuclear RNAi-mediated transgenerational epigenetic inheritance in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622152. [PMID: 39574755 PMCID: PMC11580914 DOI: 10.1101/2024.11.05.622152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively to ensure the robustness of germline nuclear RNAi and promotes the germline immortality under the heat stress.
Collapse
Affiliation(s)
- Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Julie Z. Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Gent, Belgium, 9000
| | - Siddharth Ghosh Roy
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| | - Simone Sidoli
- Department of Chemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA10461
| | - Sam G. Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, 604 Allison Road, Piscataway, NJ, USA, 08854
| |
Collapse
|
9
|
Mendoza H, Jash E, Davis MB, Haines RA, Van Diepenbos S, Csankovszki G. Distinct regulatory mechanisms by the nuclear Argonautes HRDE-1 and NRDE-3 in the soma of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615038. [PMID: 39386440 PMCID: PMC11463658 DOI: 10.1101/2024.09.25.615038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA interference is a conserved silencing mechanism that depends on the generation of small RNA molecules that disrupt synthesis of their corresponding transcripts. Nuclear RNA interference is a unique process that triggers regulation through epigenetic alterations to the genome. This pathway has been extensively characterized in Caenorhabditis elegans and involves the nuclear recruitment of H3K9 histone methyltransferases by the Argonautes HRDE-1 and NRDE-3. The coordinate regulation of genetic targets by H3K9 methylation and the nuclear Argonautes is highly complex and has been mainly described based on the small RNA populations that are involved. Recent studies have also linked the nuclear RNAi pathway to the compaction of the hermaphrodite X chromosomes during dosage compensation, a mechanism that balances genetic differences between the biological sexes by repressing X chromosomes in hermaphrodites. This chromosome-wide process provides an excellent opportunity to further investigate the relationship between H3K9 methylation and the nuclear Argonautes from the perspective of the transcriptome. Our work suggests that the nuclear RNAi and the H3K9 methylation pathways each contribute to the condensation of the X chromosomes during dosage compensation but the consequences on their transcriptional output are minimal. Instead, nuclear RNAi mutants exhibit global transcriptional differences, in which HRDE-1 and NRDE-3 affect expression of their native targets through different modes of regulation and different relationships to H3K9 methylation. ARTICLE SUMMARY This study examines the transcriptional consequences during the disruption of the nuclear RNAi silencing mechanism in C. elegans . Through microscopy and bioinformatic work, we demonstrate that although nuclear RNAi mutants exhibit significantly decondensed X chromosomes, chromosome-wide transcriptional de-repression is not detectable. Downstream analyses further explore the global influence of the nuclear RNAi pathway, indicating that the nuclear Argonautes HRDE-1 and NRDE-3 function through two distinct mechanisms.
Collapse
|
10
|
Kulikova DA, Bespalova AV, Zelentsova ES, Evgen'ev MB, Funikov SY. Epigenetic Phenomenon of Paramutation in Plants and Animals. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1429-1450. [PMID: 39245454 DOI: 10.1134/s0006297924080054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 09/10/2024]
Abstract
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Collapse
Affiliation(s)
- Dina A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alina V Bespalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena S Zelentsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Mikhail B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
11
|
Chen S, Liu W, Xiong L, Tao Z, Zhao D. Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in Caenorhabditis elegans. RNA Biol 2024; 21:1-10. [PMID: 38531838 PMCID: PMC10978027 DOI: 10.1080/15476286.2024.2332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transgene silencing is a common phenomenon observed in Caenorhabditis elegans, particularly in the germline, but the precise mechanisms underlying this process remain elusive. Through an analysis of the transcription factors profile of C. elegans, we discovered that the expression of several transgenic reporter lines exhibited tissue-specific silencing, specifically in the intestine of C. elegans. Notably, this silencing could be reversed in mutants defective in endogenous RNA interference (RNAi). Further investigation using knock-in strains revealed that these intestine-silent genes were indeed expressed in vivo, indicating that the organism itself regulates the intestine-specific silencing. This tissue-specific silencing appears to be mediated through the endo-RNAi pathway, with the main factors of this pathway, mut-2 and mut-16, are significantly enriched in the intestine. Additionally, histone modification factors, such as met-2, are involved in this silencing mechanism. Given the crucial role of the intestine in reproduction alongside the germline, the transgene silencing observed in the intestine reflects the self-protective mechanisms employed by the organisms. In summary, our study proposed that compared to other tissues, the transgenic silencing of intestine is specifically regulated by the endo-RNAi pathway.
Collapse
Affiliation(s)
- Siyu Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Weihong Liu
- Intelligent Perception Lab, Hanwang Technology Co. Ltd, Beijing, China
| | - Lei Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhiju Tao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Di Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise & Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
12
|
Frézal L, Saglio M, Zhang G, Noble L, Richaud A, Félix MA. Genome-wide association and environmental suppression of the mortal germline phenotype of wild C. elegans. EMBO Rep 2023; 24:e58116. [PMID: 37983674 PMCID: PMC10702804 DOI: 10.15252/embr.202358116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023] Open
Abstract
The animal germline lineage needs to be maintained along generations. However, some Caenorhabditis elegans wild isolates display a mortal germline phenotype, leading to sterility after several generations at 25°C. Using a genome-wide association approach, we detect a significant peak on chromosome III around 5 Mb, confirmed by introgressions. Thus, a seemingly deleterious genotype is maintained at intermediate frequency in the species. Environmental rescue is a likely explanation, and indeed associated bacteria and microsporidia suppress the phenotype of wild isolates as well as mutants in small RNA inheritance (nrde-2) and histone modifications (set-2). Escherichia coli strains of the K-12 lineage suppress the phenotype compared to B strains. By shifting a wild strain from E. coli K-12 to E. coli B, we find that memory of the suppressing condition is maintained over several generations. Thus, the mortal germline phenotype of wild C. elegans is in part revealed by laboratory conditions and may represent variation in epigenetic inheritance and environmental interactions. This study also points to the importance of non-genetic memory in the face of environmental variation.
Collapse
Affiliation(s)
- Lise Frézal
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie Saglio
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Gaotian Zhang
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Luke Noble
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Aurélien Richaud
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| | - Marie-Anne Félix
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS, Inserm, Paris, France
| |
Collapse
|
13
|
Rieger I, Weintraub G, Lev I, Goldstein K, Bar-Zvi D, Anava S, Gingold H, Shaham S, Rechavi O. Nucleus-independent transgenerational small RNA inheritance in Caenorhabditis elegans. SCIENCE ADVANCES 2023; 9:eadj8618. [PMID: 37878696 PMCID: PMC10599617 DOI: 10.1126/sciadv.adj8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
In Caenorhabditis elegans worms, epigenetic information transmits transgenerationally. Still, it is unknown whether the effects transfer to the next generation inside or outside of the nucleus. Here, we use the tractability of gene-specific double-stranded RNA-induced silencing to demonstrate that RNA interference can be inherited independently of any nuclear factors via mothers that are genetically engineered to transmit only their ooplasm but not the oocytes' nuclei to the next generation. We characterize the mechanisms and, using RNA sequencing, chimeric worms, and sequence polymorphism between different isolates, identify endogenous small RNAs which, similarly to exogenous siRNAs, are inherited in a nucleus-independent manner. From a historical perspective, these results might be regarded as partial vindication of discredited cytoplasmic inheritance theories from the 19th century, such as Darwin's "pangenesis" theory.
Collapse
Affiliation(s)
- Itai Rieger
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Kesem Goldstein
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Dana Bar-Zvi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Liu L, Wang X, Zhao W, Li Q, Li J, Chen H, Shan G. Systematic characterization of small RNAs associated with C. elegans Argonautes. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2304-8. [PMID: 37154856 DOI: 10.1007/s11427-022-2304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 05/10/2023]
Abstract
Argonaute proteins generally play regulatory roles by forming complexes with the corresponding small RNAs (sRNAs). An expanded Argonaute family with 20 potentially functional members has been identified in Caenorhabditis elegans. Canonical sRNAs in C. elegans are miRNAs, small interfering RNAs including 22G-RNAs and 26G-RNAs, and 21U-RNAs, which are C. elegans piRNAs. Previous studies have only covered some of these Argonautes for their sRNA partners, and thus, a systematic study is needed to reveal the comprehensive regulatory networks formed by C. elegans Argonautes and their associated sRNAs. We obtained in situ knockin (KI) strains of all C. elegans Argonautes with fusion tags by CRISPR/Cas9 technology. RNA immunoprecipitation against these endogenously expressed Argonautes and high-throughput sequencing acquired the sRNA profiles of individual Argonautes. The sRNA partners for each Argonaute were then analyzed. We found that there were 10 Argonautes enriched miRNAs, 17 Argonautes bound to 22G-RNAs, 8 Argonautes bound to 26G-RNAs, and 1 Argonaute PRG-1 bound to piRNAs. Uridylated 22G-RNAs were bound by four Argonautes HRDE-1, WAGO-4, CSR-1, and PPW-2. We found that all four Argonautes played a role in transgenerational epigenetic inheritance. Regulatory roles of the corresponding Argonaute-sRNA complex in managing levels of long transcripts and interspecies regulation were also demonstrated. In this study, we portrayed the sRNAs bound to each functional Argonaute in C. elegans. Bioinformatics analyses together with experimental investigations provided perceptions in the overall view of the regulatory network formed by C. elegans Argonautes and sRNAs. The sRNA profiles bound to individual Argonautes reported here will be valuable resources for further studies.
Collapse
Affiliation(s)
- Lei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaolin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenfang Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Qiqi Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jingxin Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - He Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Ge Shan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Hou X, Xu M, Zhu C, Gao J, Li M, Chen X, Sun C, Nashan B, Zang J, Zhou Y, Guang S, Feng X. Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nat Commun 2023; 14:1254. [PMID: 36878913 PMCID: PMC9988841 DOI: 10.1038/s41467-023-36898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
The chromatin organization modifier domain (chromodomain) is an evolutionally conserved motif across eukaryotic species. The chromodomain mainly functions as a histone methyl-lysine reader to modulate gene expression, chromatin spatial conformation and genome stability. Mutations or aberrant expression of chromodomain proteins can result in cancer and other human diseases. Here, we systematically tag chromodomain proteins with green fluorescent protein (GFP) using CRISPR/Cas9 technology in C. elegans. By combining ChIP-seq analysis and imaging, we delineate a comprehensive expression and functional map of chromodomain proteins. We then conduct a candidate-based RNAi screening and identify factors that regulate the expression and subcellular localization of the chromodomain proteins. Specifically, we reveal an H3K9me1/2 reader, CEC-5, both by in vitro biochemistry and in vivo ChIP assays. MET-2, an H3K9me1/2 writer, is required for CEC-5 association with heterochromatin. Both MET-2 and CEC-5 are required for the normal lifespan of C. elegans. Furthermore, a forward genetic screening identifies a conserved Arginine124 of CEC-5's chromodomain, which is essential for CEC-5's association with chromatin and life span regulation. Thus, our work will serve as a reference to explore chromodomain functions and regulation in C. elegans and allow potential applications in aging-related human diseases.
Collapse
Affiliation(s)
- Xinhao Hou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Mingjing Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianing Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Meili Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Cheng Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Björn Nashan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Jianye Zang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 230027, Hefei, Anhui, P. R. China.
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, 230027, Hefei, Anhui, China.
| |
Collapse
|
16
|
Liontis T, Verma K, Grishok A. DOT-1.1 (DOT1L) deficiency in C. elegans leads to small RNA-dependent gene activation. BBA ADVANCES 2023; 3:100080. [PMID: 37082252 PMCID: PMC10074844 DOI: 10.1016/j.bbadva.2023.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Methylation of histone H3 at lysine 79 (H3K79) is conserved from yeast to humans and is accomplished by Dot1 (disruptor of telomeric silencing-1) methyltransferases. The C. elegans enzyme DOT-1.1 and its interacting partners are similar to the mammalian DOT1L (Dot1-like) complex. The C. elegans DOT-1.1 complex has been functionally connected to RNA interference. Specifically, we have previously shown that embryonic and larval lethality of dot-1.1 mutant worms deficient in H3K79 methylation was suppressed by mutations in the RNAi pathway genes responsible for generation (rde-4) and function (rde-1) of primary small interfering RNAs (siRNAs). This suggests that dot-1.1 mutant lethality is dependent on the enhanced production of some siRNAs. We have also found that this lethality is suppressed by a loss-of-function of CED-3, a conserved apoptotic protease. Here, we describe a comparison of gene expression and primary siRNA production changes between control and dot-1.1 deletion mutant embryos. We found that elevated antisense siRNA production occurred more often at upregulated than downregulated genes. Importantly, gene expression changes were dependent on RDE-4 in both instances. Moreover, the upregulated group, which is potentially activated by ectopic siRNAs, was enriched in protease-coding genes. Our findings are consistent with a model where in the absence of H3K79 methylation there is a small RNA-dependent activation of protease genes, which leads to embryonic and larval lethality. DOT1 enzymes' conservation suggests that the interplay between H3K79 methylation and small RNA pathways may exist in higher organisms.
Collapse
|
17
|
Gleason RJ, Chen X. Epigenetic dynamics during germline development: insights from Drosophila and C. elegans. Curr Opin Genet Dev 2023; 78:102017. [PMID: 36549194 PMCID: PMC10100592 DOI: 10.1016/j.gde.2022.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Gametogenesis produces the only cell type within a metazoan that contributes both genetic and epigenetic information to the offspring. Extensive epigenetic dynamics are required to express or repress gene expression in a precise spatiotemporal manner. On the other hand, early embryos must be extensively reprogrammed as they begin a new life cycle, involving intergenerational epigenetic inheritance. Seminal work in both Drosophila and C. elegans has elucidated the role of various regulators of epigenetic inheritance, including (1) histones, (2) histone-modifying enzymes, and (3) small RNA-dependent epigenetic regulation in the maintenance of germline identity. This review highlights recent discoveries of epigenetic regulation during the stepwise changes of transcription and chromatin structure that takes place during germline stem cell self-renewal, maintenance of germline identity, and intergenerational epigenetic inheritance. Findings from these two species provide precedence and opportunity to extend relevant studies to vertebrates.
Collapse
Affiliation(s)
- Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xin Chen
- HHMI, Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Wang SY, Kim K, O'Brown ZK, Levan A, Dodson AE, Kennedy SG, Chernoff C, Greer EL. Hypoxia induces transgenerational epigenetic inheritance of small RNAs. Cell Rep 2022; 41:111800. [PMID: 36516753 PMCID: PMC9847139 DOI: 10.1016/j.celrep.2022.111800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/23/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Animals sense and adapt to decreased oxygen availability, but whether and how hypoxia exposure in ancestors can elicit phenotypic consequences in normoxia-reared descendants are unclear. We show that hypoxia educes an intergenerational reduction in lipids and a transgenerational reduction in fertility in the nematode Caenorhabditis elegans. The transmission of these epigenetic phenotypes is dependent on repressive histone-modifying enzymes and the argonaute HRDE-1. Feeding naive C. elegans small RNAs extracted from hypoxia-treated worms is sufficient to induce a fertility defect. Furthermore, the endogenous small interfering RNA F44E5.4/5 is upregulated intergenerationally in response to hypoxia, and soaking naive normoxia-reared C. elegans with F44E5.4/5 double-stranded RNA (dsRNA) is sufficient to induce an intergenerational fertility defect. Finally, we demonstrate that labeled F44E5.4/5 dsRNA is itself transmitted from parents to children. Our results suggest that small RNAs respond to the environment and are sufficient to transmit non-genetic information from parents to their naive children.
Collapse
Affiliation(s)
- Simon Yuan Wang
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Kathleen Kim
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zach Klapholz O'Brown
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Aileen Levan
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anne Elizabeth Dodson
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Scott G Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Chaim Chernoff
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Huang M, Hong M, Hou X, Zhu C, Chen D, Chen X, Guang S, Feng X. H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife 2022; 11:74812. [PMID: 36125117 PMCID: PMC9514849 DOI: 10.7554/elife.74812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Histone methylation plays crucial roles in the development, gene regulation, and maintenance of stem cell pluripotency in mammals. Recent work shows that histone methylation is associated with aging, yet the underlying mechanism remains unclear. In this work, we identified a class of putative histone 3 lysine 9 mono/dimethyltransferase genes (met-2, set-6, set-19, set-20, set-21, set-32, and set-33), mutations in which induce synergistic lifespan extension in the long-lived DAF-2 (insulin growth factor 1 [IGF-1] receptor) mutant in Caenorhabditis elegans. These putative histone methyltransferase plus daf-2 double mutants not only exhibited an average lifespan nearly three times that of wild-type animals and a maximal lifespan of approximately 100 days, but also significantly increased resistance to oxidative and heat stress. Synergistic lifespan extension depends on the transcription factor DAF-16 (FOXO). mRNA-seq experiments revealed that the mRNA levels of DAF-16 Class I genes, which are activated by DAF-16, were further elevated in the daf-2;set double mutants. Among these genes, tts-1, F35E8.7, ins-35, nhr-62, sod-3, asm-2, and Y39G8B.7 are required for the lifespan extension of the daf-2;set-21 double mutant. In addition, treating daf-2 animals with the H3K9me1/2 methyltransferase G9a inhibitor also extends lifespan and increases stress resistance. Therefore, investigation of DAF-2 and H3K9me1/2 deficiency-mediated synergistic longevity will contribute to a better understanding of the molecular mechanisms of aging and therapeutic applications.
Collapse
Affiliation(s)
- Meng Huang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xinhao Hou
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Feng S, Manley JL. Beyond rRNA: nucleolar transcription generates a complex network of RNAs with multiple roles in maintaining cellular homeostasis. Genes Dev 2022; 36:876-886. [PMID: 36207140 PMCID: PMC9575697 DOI: 10.1101/gad.349969.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Nucleoli are the major cellular compartments for the synthesis of rRNA and assembly of ribosomes, the macromolecular complexes responsible for protein synthesis. Given the abundance of ribosomes, there is a huge demand for rRNA, which indeed constitutes ∼80% of the mass of RNA in the cell. Thus, nucleoli are characterized by extensive transcription of multiple rDNA loci by the dedicated polymerase, RNA polymerase (Pol) I. However, in addition to producing rRNAs, there is considerable additional transcription in nucleoli by RNA Pol II as well as Pol I, producing multiple noncoding (nc) and, in one instance, coding RNAs. In this review, we discuss important features of these transcripts, which often appear species-specific and reflect transcription antisense to pre-rRNA by Pol II and within the intergenic spacer regions on both strands by both Pol I and Pol II. We discuss how expression of these RNAs is regulated, their propensity to form cotranscriptional R loops, and how they modulate rRNA transcription, nucleolar structure, and cellular homeostasis more generally.
Collapse
|
21
|
Legüe M, Caneo M, Aguila B, Pollak B, Calixto A. Interspecies effectors of a transgenerational memory of bacterial infection in Caenorhabditis elegans. iScience 2022; 25:104627. [PMID: 35800768 PMCID: PMC9254006 DOI: 10.1016/j.isci.2022.104627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/16/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
The inheritance of memory is an adaptive trait. Microbes challenge the immunity of organisms and trigger behavioral adaptations that can be inherited, but how bacteria produce inheritance of a trait is unknown. We use Caenorhabditis elegans and its bacteria to study the transgenerational RNA dynamics of interspecies crosstalk leading to a heritable behavior. A heritable response of C. elegans to microbes is the pathogen-induced diapause (PIDF), a state of suspended animation to evade infection. We identify RsmY, a small RNA involved in quorum sensing in Pseudomonas aeruginosa as a trigger of PIDF. The histone methyltransferase (HMT) SET-18/SMYD3 and the argonaute HRDE-1, which promotes multi-generational silencing in the germline, are also needed for PIDF initiation. The HMT SET-25/EHMT2 is necessary for memory maintenance in the transgenerational lineage. Our work is a starting point to understanding microbiome-induced inheritance of acquired traits, and the transgenerational influence of microbes in health and disease.
Collapse
Affiliation(s)
- Marcela Legüe
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Mauricio Caneo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| | - Blanca Aguila
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
- Programa de Doctorado en Microbiología, Universidad de Chile, Santiago de Chile, Chile
| | | | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile
| |
Collapse
|
22
|
Ouyang JPT, Zhang WL, Seydoux G. The conserved helicase ZNFX-1 memorializes silenced RNAs in perinuclear condensates. Nat Cell Biol 2022; 24:1129-1140. [PMID: 35739318 PMCID: PMC9276528 DOI: 10.1038/s41556-022-00940-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023]
Abstract
RNA-mediated interference (RNAi) is a conserved mechanism that uses small RNAs (sRNAs) to silence gene expression. In the Caenorhabditis elegans germline, transcripts targeted by sRNAs are used as templates for sRNA amplification to propagate silencing into the next generation. Here we show that RNAi leads to heritable changes in the distribution of nascent and mature transcripts that correlate with two parallel sRNA amplification loops. The first loop, dependent on the nuclear Argonaute HRDE-1, targets nascent transcripts and reduces but does not eliminate productive transcription at the locus. The second loop, dependent on the conserved helicase ZNFX-1, targets mature transcripts and concentrates them in perinuclear condensates. ZNFX-1 interacts with sRNA-targeted transcripts that have acquired poly(UG) tails and is required to sustain pUGylation and robust sRNA amplification in the inheriting generation. By maintaining a pool of transcripts for amplification, ZNFX-1 prevents premature extinction of the RNAi response and extends silencing into the next generation.
Collapse
Affiliation(s)
- John Paul Tsu Ouyang
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenyan Lucy Zhang
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Liu J, Yang T, Huang Z, Chen H, Bai Y. Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 2022; 50:92. [PMID: 35593304 DOI: 10.3892/ijmm.2022.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
Collapse
Affiliation(s)
- Junjie Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Tianhao Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Zishen Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Huifang Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
| |
Collapse
|
24
|
Davis MB, Jash E, Chawla B, Haines RA, Tushman LE, Troll R, Csankovszki G. Dual roles for nuclear RNAi Argonautes in Caenorhabditis elegans dosage compensation. Genetics 2022; 221:iyac033. [PMID: 35234908 PMCID: PMC9071528 DOI: 10.1093/genetics/iyac033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the dosage compensation complex which binds to both hermaphrodite X chromosomes and reduces transcriptional output by half. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probes and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3, as well as mutants for the piRNA Argonaute prg-1, exhibit derepression of xol-1 transcripts, they also affect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and found that hrde-1 and nrde-3 contribute to healthy dosage compensation both upstream and downstream of xol-1.
Collapse
Affiliation(s)
- Michael B Davis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eshna Jash
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca A Haines
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lillian E Tushman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan Troll
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Quarato P, Singh M, Bourdon L, Cecere G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022; 44:e2100284. [PMID: 35338497 DOI: 10.1002/bies.202100284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Heritable traits are predominantly encoded within genomic DNA, but it is now appreciated that epigenetic information is also inherited through DNA methylation, histone modifications, and small RNAs. Several examples of transgenerational epigenetic inheritance of traits have been documented in plants and animals. These include even the inheritance of traits acquired through the soma during the life of an organism, implicating the transfer of epigenetic information via the germline to the next generation. Small RNAs appear to play a significant role in carrying epigenetic information across generations. This review focuses on how epigenetic information in the form of small RNAs is transmitted from the germline to the embryos through the gametes. We also consider how inherited epigenetic information is maintained across generations in a small RNA-dependent and independent manner. Finally, we discuss how epigenetic traits acquired from the soma can be inherited through small RNAs.
Collapse
Affiliation(s)
- Piergiuseppe Quarato
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Meetali Singh
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Loan Bourdon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| | - Germano Cecere
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris, CNRS UMR3738, Mechanisms of Epigenetic Inheritance, Paris, France
| |
Collapse
|
26
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
27
|
Membrane-associated cytoplasmic granules carrying the Argonaute protein WAGO-3 enable paternal epigenetic inheritance in Caenorhabditis elegans. Nat Cell Biol 2022; 24:217-229. [PMID: 35132225 PMCID: PMC9973253 DOI: 10.1038/s41556-021-00827-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Epigenetic inheritance describes the transmission of gene regulatory information across generations without altering DNA sequences, enabling offspring to adapt to environmental conditions. Small RNAs have been implicated in this, through both the oocyte and the sperm. However, as much of the cellular content is extruded during spermatogenesis, it is unclear whether cytoplasmic small RNAs can contribute to epigenetic inheritance through sperm. Here we identify a sperm-specific germ granule, termed the paternal epigenetic inheritance (PEI) granule, that mediates paternal epigenetic inheritance by retaining the cytoplasmic Argonaute protein WAGO-3 during spermatogenesis in Caenorhabditis elegans. We identify the PEI granule proteins PEI-1 and PEI-2, which have distinct functions in this process: granule formation, Argonaute selectivity and subcellular localization. We show that PEI granule segregation is coupled to the transport of sperm-specific secretory vesicles through PEI-2 in an S-palmitoylation-dependent manner. PEI-like proteins are found in humans, suggesting that the identified mechanism may be conserved.
Collapse
|
28
|
Abstract
Increasing evidence indicates that non-DNA sequence-based epigenetic information can be inherited across several generations in organisms ranging from yeast to plants to humans. This raises the possibility of heritable 'epimutations' contributing to heritable phenotypic variation and thus to evolution. Recent work has shed light on both the signals that underpin these epimutations, including DNA methylation, histone modifications and non-coding RNAs, and the mechanisms by which they are transmitted across generations at the molecular level. These mechanisms can vary greatly among species and have a more limited effect in mammals than in plants and other animal species. Nevertheless, common principles are emerging, with transmission occurring either via direct replicative mechanisms or indirect reconstruction of the signal in subsequent generations. As these processes become clearer we continue to improve our understanding of the distinctive features and relative contribution of DNA sequence and epigenetic variation to heritable differences in phenotype.
Collapse
|
29
|
Seroussi U, Li C, Sundby AE, Lee TL, Claycomb JM, Saltzman AL. Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Semin Cell Dev Biol 2021; 127:142-154. [PMID: 34876343 DOI: 10.1016/j.semcdb.2021.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a highly conserved gene regulatory phenomenon whereby Argonaute/small RNA (AGO/sRNA) complexes target transcripts by antisense complementarity to modulate gene expression. While initially appreciated as a cytoplasmic process, RNAi can also occur in the nucleus where AGO/sRNA complexes are recruited to nascent transcripts. Nuclear AGO/sRNA complexes recruit co-factors that regulate transcription by inhibiting RNA Polymerase II, modifying histones, compacting chromatin and, in some organisms, methylating DNA. C. elegans has a longstanding history in unveiling the mechanisms of RNAi and has become an outstanding model to delineate the mechanisms underlying nuclear RNAi. In this review we highlight recent discoveries in the field of nuclear RNAi in C. elegans and the roles of nuclear RNAi in the regulation of gene expression, chromatin organization, genome stability, and transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Arneet L Saltzman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Özdemir I, Steiner FA. Transmission of chromatin states across generations in C. elegans. Semin Cell Dev Biol 2021; 127:133-141. [PMID: 34823984 DOI: 10.1016/j.semcdb.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.
Collapse
Affiliation(s)
- Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
31
|
Shukla A, Perales R, Kennedy S. piRNAs coordinate poly(UG) tailing to prevent aberrant and perpetual gene silencing. Curr Biol 2021; 31:4473-4485.e3. [PMID: 34428467 DOI: 10.1016/j.cub.2021.07.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/03/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Noncoding RNAs have emerged as mediators of transgenerational epigenetic inheritance (TEI) in a number of organisms. A robust example of such RNA-directed TEI is the inheritance of gene-silencing states following RNA interference (RNAi) in the metazoan C. elegans. During RNAi inheritance, gene silencing is transmitted by a self-perpetuating cascade of siRNA-directed poly(UG) tailing of mRNA fragments (pUGylation), followed by siRNA synthesis from poly(UG)-tailed mRNA templates (termed pUG RNA/siRNA cycling). Despite the self-perpetuating nature of pUG RNA/siRNA cycling, RNAi inheritance is finite, suggesting that systems likely exist to prevent indefinite RNAi-triggered gene silencing. Here we show that, in the absence of Piwi-interacting RNAs (piRNAs), an animal-specific class of small noncoding RNA, RNAi-based gene silencing can become essentially permanent, lasting at near 100% penetrance for more than 5 years and hundreds of generations. This perpetual gene silencing is mediated by continuous pUG RNA/siRNA cycling. Further, we find that piRNAs coordinate endogenous RNAi pathways to prevent germline-expressed genes, which are not normally subjected to TEI, from entering a state of continual and irreversible epigenetic silencing also mediated by continuous maintenance of pUG RNA/siRNA cycling. Together, our results show that one function of C. elegans piRNAs is to insulate germline-expressed genes from aberrant and runaway inactivation by the pUG RNA/siRNA epigenetic inheritance system.
Collapse
Affiliation(s)
- Aditi Shukla
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Roberto Perales
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Shape Therapeutics, Seattle, WA 98109, USA
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Cecere G. Small RNAs in epigenetic inheritance: from mechanisms to trait transmission. FEBS Lett 2021; 595:2953-2977. [PMID: 34671979 PMCID: PMC9298081 DOI: 10.1002/1873-3468.14210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/02/2023]
Abstract
Inherited information is transmitted to progeny primarily by the genome through the gametes. However, in recent years, epigenetic inheritance has been demonstrated in several organisms, including animals. Although it is clear that certain post‐translational histone modifications, DNA methylation, and noncoding RNAs regulate epigenetic inheritance, the molecular mechanisms responsible for epigenetic inheritance are incompletely understood. This review focuses on the role of small RNAs in transmitting epigenetic information across generations in animals. Examples of documented cases of transgenerational epigenetic inheritance are discussed, from the silencing of transgenes to the inheritance of complex traits, such as fertility, stress responses, infections, and behavior. Experimental evidence supporting the idea that small RNAs are epigenetic molecules capable of transmitting traits across generations is highlighted, focusing on the mechanisms by which small RNAs achieve such a function. Just as the role of small RNAs in epigenetic processes is redefining the concept of inheritance, so too our understanding of the molecular pathways and mechanisms that govern epigenetic inheritance in animals is radically changing.
Collapse
Affiliation(s)
- Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR3738, CNRS, Paris, France
| |
Collapse
|
33
|
Wang X, Zeng C, Liao S, Zhu Z, Zhang J, Tu X, Yao X, Feng X, Guang S, Xu C. Molecular basis for PICS-mediated piRNA biogenesis and cell division. Nat Commun 2021; 12:5595. [PMID: 34552083 PMCID: PMC8458385 DOI: 10.1038/s41467-021-25896-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
By incorporating two mutually exclusive factors, PID-1 and TOST-1, C. elegans PICS complex plays important roles in piRNA biogenesis, chromosome segregation and cell division. We firstly map the interaction network between PICS subunits, then uncover the mechanisms underlying the interactions between PICS subunits by solving several complex structures, including those of TOFU-6/PICS-1, ERH-2/PICS-1, and ERH-2/TOST-1. Our biochemical experiment also demonstrates that PICS exists as an octamer consisting of two copies of each subunit. Combining structural analyses with mutagenesis experiments, we identify interfacial residues of PICS subunits that are critical for maintaining intact PICS complex in vitro. Furthermore, using genetics, cell biology and imaging experiments, we find that those mutants impairing the in vitro interaction network within PICS, also lead to dysfunction of PICS in vivo, including mislocalization of PICS, and reduced levels of piRNAs or aberrant chromosome segregation and cell division. Therefore, our work provides structural insights into understanding the PICS-mediated piRNA biogenesis and cell division.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shanhui Liao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Zhongliang Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xiaoming Tu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuebiao Yao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| | - Chao Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
34
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Liao S, Chen X, Xu T, Jin Q, Xu Z, Xu D, Zhou X, Zhu C, Guang S, Feng X. Antisense ribosomal siRNAs inhibit RNA polymerase I-directed transcription in C. elegans. Nucleic Acids Res 2021; 49:9194-9210. [PMID: 34365510 PMCID: PMC8450093 DOI: 10.1093/nar/gkab662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that function in the nucleus. We previously found that erroneous rRNAs induce the generation of antisense ribosomal siRNAs (risiRNAs) which silence the expression of rRNAs via the nuclear RNAi defective (Nrde) pathway. To further understand the biological roles and mechanisms of this class of small regulatory RNAs, we conducted forward genetic screening to identify factors involved in risiRNA generation in Caenorhabditis elegans. We found that risiRNAs accumulated in the RNA exosome mutants. risiRNAs directed the association of NRDE proteins with pre-rRNAs and the silencing of pre-rRNAs. In the presence of risiRNAs, NRDE-2 accumulated in the nucleolus and colocalized with RNA polymerase I. risiRNAs inhibited the transcription elongation of RNA polymerase I by decreasing RNAP I occupancy downstream of the RNAi-targeted site. Meanwhile, exosomes mislocalized from the nucleolus to nucleoplasm in suppressor of siRNA (susi) mutants, in which erroneous rRNAs accumulated. These results established a novel model of rRNA surveillance by combining ribonuclease-mediated RNA degradation with small RNA-directed nucleolar RNAi system.
Collapse
Affiliation(s)
- Shimiao Liao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xiangyang Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Ting Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Qile Jin
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Zongxiu Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Demin Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xufei Zhou
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chengming Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, P.R. China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
36
|
Dong S, Ma W. How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102027. [PMID: 33684881 DOI: 10.1016/j.pbi.2021.102027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The 'zigzag' model formulates some of the fundamental principles underpinning the dynamic interactions between pathogen effectors and plant immunity. As key virulence factors, effectors often exhibit a pattern of rapid evolution, presumably as a result of the host-pathogen arms race. Here, we summarize the current knowledge of mechanisms that may accelerate effector evolution in the highly successful Phytophthora pathogens. Recent findings on epigenetic regulation of effector genes that allows evasion of host recognition and maintenance of cost/benefit balance, and a conserved structural unit in effector proteins that may promote the evolution of virulence activities are highlighted.
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology and Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom; Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
37
|
Huang X, Cheng P, Weng C, Xu Z, Zeng C, Xu Z, Chen X, Zhu C, Guang S, Feng X. A chromodomain protein mediates heterochromatin-directed piRNA expression. Proc Natl Acad Sci U S A 2021; 118:e2103723118. [PMID: 34187893 PMCID: PMC8271797 DOI: 10.1073/pnas.2103723118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) play significant roles in suppressing transposons, maintaining genome integrity, and defending against viral infections. How piRNA source loci are efficiently transcribed is poorly understood. Here, we show that in Caenorhabditis elegans, transcription of piRNA clusters depends on the chromatin microenvironment and a chromodomain-containing protein, UAD-2. piRNA clusters form distinct focus in germline nuclei. We conducted a forward genetic screening and identified UAD-2 that is required for piRNA focus formation. In the absence of histone 3 lysine 27 methylation or proper chromatin-remodeling status, UAD-2 is depleted from the piRNA focus. UAD-2 recruits the upstream sequence transcription complex (USTC), which binds the Ruby motif to piRNA promoters and promotes piRNA generation. Vice versa, the USTC complex is required for UAD-2 to associate with the piRNA focus. Thus, transcription of heterochromatic small RNA source loci relies on coordinated recruitment of both the readers of histone marks and the core transcriptional machinery to DNA.
Collapse
Affiliation(s)
- Xinya Huang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Peng Cheng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenchun Weng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zongxiu Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Chenming Zeng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Zheng Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Xiangyang Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Chengming Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei 230027, People's Republic of China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, People's Republic of China;
| |
Collapse
|
38
|
Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021; 12:658551. [PMID: 34054822 PMCID: PMC8155505 DOI: 10.3389/fimmu.2021.658551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
What defines whether the interaction between environment and organism creates a genetic memory able to be transferred to subsequent generations? Bacteria and the products of their metabolism are the most ubiquitous biotic environments to which every living organism is exposed. Both microbiota and host establish a framework where environmental and genetic factors are integrated to produce adaptive life traits, some of which can be inherited. Thus, the interplay between host and microbe is a powerful model to study how phenotypic plasticity is inherited. Communication between host and microbe can occur through diverse molecules such as small RNAs (sRNAs) and the RNA interference machinery, which have emerged as mediators and carriers of heritable environmentally induced responses. Notwithstanding, it is still unclear how the organism integrates sRNA signaling between different tissues to orchestrate a systemic bacterially induced response that can be inherited. Here we discuss current evidence of heritability produced by the intestinal microbiota from several species. Neurons and gut are the sensing systems involved in transmitting changes through transcriptional and post-transcriptional modifications to the gonads. Germ cells express inflammatory receptors, and their development and function are regulated by host and bacterial metabolites and sRNAs thus suggesting that the dynamic interplay between host and microbe underlies the host's capacity to transmit heritable behaviors. We discuss how the host detects changes in the microbiota that can modulate germ cells genomic functions. We also explore the nature of the interactions that leave permanent or long-term memory in the host and propose mechanisms by which the microbiota can regulate the development and epigenetic reprogramming of germ cells, thus influencing the inheritance of the host. We highlight the vast contribution of the bacterivore nematode C. elegans and its commensal and pathogenic bacteria to the understanding on how behavioral adaptations can be inter and transgenerational inherited.
Collapse
Affiliation(s)
- Marcia Manterola
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
- Programa de Doctorado en Ciencias, mención Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
39
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
40
|
Berkyurek AC, Furlan G, Lampersberger L, Beltran T, Weick E, Nischwitz E, Cunha Navarro I, Braukmann F, Akay A, Price J, Butter F, Sarkies P, Miska EA. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40:e105565. [PMID: 33533030 PMCID: PMC7917558 DOI: 10.15252/embj.2020105565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 01/03/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are genome-encoded small RNAs that regulate germ cell development and maintain germline integrity in many animals. Mature piRNAs engage Piwi Argonaute proteins to silence complementary transcripts, including transposable elements and endogenous genes. piRNA biogenesis mechanisms are diverse and remain poorly understood. Here, we identify the RNA polymerase II (RNA Pol II) core subunit RPB-9 as required for piRNA-mediated silencing in the nematode Caenorhabditis elegans. We show that rpb-9 initiates heritable piRNA-mediated gene silencing at two DNA transposon families and at a subset of somatic genes in the germline. We provide genetic and biochemical evidence that RPB-9 is required for piRNA biogenesis by recruiting the Integrator complex at piRNA genes, hence promoting transcriptional termination. We conclude that, as a part of its rapid evolution, the piRNA pathway has co-opted an ancient machinery for high-fidelity transcription.
Collapse
Affiliation(s)
- Ahmet C Berkyurek
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Giulia Furlan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Lisa Lampersberger
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Toni Beltran
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eva‐Maria Weick
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Present address:
Structural Biology ProgramSloan Kettering InstituteMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Emily Nischwitz
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Isabela Cunha Navarro
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Fabian Braukmann
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Alper Akay
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Present address:
School of Biological SciencesUniversity of East AngliaNorwich, NorfolkUK
| | - Jonathan Price
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
| | - Falk Butter
- Quantitative ProteomicsInstitute of Molecular BiologyMainzGermany
| | - Peter Sarkies
- MRC London Institute of Medical SciencesLondonUK
- Institute of Clinical SciencesImperial College LondonLondonUK
| | - Eric A Miska
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Wellcome Sanger InstituteWellcome Trust Genome CampusCambridgeUK
| |
Collapse
|
41
|
How do histone modifications contribute to transgenerational epigenetic inheritance in C. elegans? Biochem Soc Trans 2021; 48:1019-1034. [PMID: 32539084 DOI: 10.1042/bst20190944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.
Collapse
|
42
|
Lev I, Rechavi O. Germ Granules Allow Transmission of Small RNA-Based Parental Responses in the "Germ Plasm". iScience 2020; 23:101831. [PMID: 33305186 PMCID: PMC7718480 DOI: 10.1016/j.isci.2020.101831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the recent decade small RNA-based inheritance has been implicated in a variety of transmitted physiological responses to the environment. In Caenorhabditis elegans, heritable small RNAs rely on RNA-dependent RNA polymerases, RNA-processing machinery, chromatin modifiers, and argonauts for their biogenesis and gene-regulatory effects. Importantly, many of these factors reside in evolutionary conserved germ granules that are required for maintaining germ cell identity and gene expression. Recent literature demonstrated that transient disturbance to the stability of the germ granules leads to changes in the pools of heritable small RNAs and the physiology of the progeny. In this piece, we discuss the heritable consequences of transient destabilization of germ granules and elaborate on the various small RNA-related processes that act in the germ granules. We further propose that germ granules may serve as environment sensors that translate environmental changes to inheritable small RNA-based responses.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
43
|
Wan G, Yan J, Fei Y, Pagano DJ, Kennedy S. A Conserved NRDE-2/MTR-4 Complex Mediates Nuclear RNAi in Caenorhabditis elegans. Genetics 2020; 216:1071-1085. [PMID: 33055090 PMCID: PMC7768265 DOI: 10.1534/genetics.120.303631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Small regulatory RNAs, such as small interfering RNAs (siRNAs) and PIWI-interacting RNAs, regulate splicing, transcription, and genome integrity in many eukaryotes. In Caenorhabditis elegans, siRNAs bind nuclear Argonautes (AGOs), which interact with homologous premessenger RNAs to recruit downstream silencing effectors, such as NRDE-2, to direct cotranscriptional gene silencing [or nuclear RNA interference (RNAi)]. To further our understanding of the mechanism of nuclear RNAi, we conducted immunoprecipitation-mass spectrometry on C. elegans NRDE-2 The major NRDE-2 interacting protein identified was the RNA helicase MTR-4 Co-immunoprecipitation analyses confirmed a physical association between NRDE-2 and MTR-4 MTR-4 colocalizes with NRDE-2 within the nuclei of most/all C. elegans somatic and germline cells. MTR-4 is required for nuclear RNAi, and interestingly, MTR-4 is recruited to premessenger RNAs undergoing nuclear RNAi via a process requiring nuclear siRNAs, the nuclear AGO HRDE-1, and NRDE-2, indicating that MTR-4 is a component of the C. elegans nuclear RNAi machinery. Finally, we confirm previous reports showing that human (Hs)NRDE2 and HsMTR4 also physically interact. Our data show that the NRDE-2/MTR-4 interactions are evolutionarily conserved, and that, in C. elegans, the NRDE-2/MTR-4 complex contributes to siRNA-directed cotranscriptional gene silencing.
Collapse
Affiliation(s)
- Gang Wan
- Ministry Of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China 510275
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Jenny Yan
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Yuhan Fei
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China 210095
| | - Daniel J Pagano
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
44
|
Bergthorsson U, Sheeba CJ, Konrad A, Belicard T, Beltran T, Katju V, Sarkies P. Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression. BMC Biol 2020; 18:162. [PMID: 33158445 PMCID: PMC7646084 DOI: 10.1186/s12915-020-00897-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background Transposable elements (TEs) are an almost universal constituent of eukaryotic genomes. In animals, Piwi-interacting small RNAs (piRNAs) and repressive chromatin often play crucial roles in preventing TE transcription and thus restricting TE activity. Nevertheless, TE content varies widely across eukaryotes and the dynamics of TE activity and TE silencing across evolutionary time is poorly understood. Results Here, we used experimentally evolved populations of C. elegans to study the dynamics of TE expression over 409 generations. The experimental populations were evolved at population sizes of 1, 10 and 100 individuals to manipulate the efficiency of natural selection versus genetic drift. We demonstrate increased TE expression relative to the ancestral population, with the largest increases occurring in the smallest populations. We show that the transcriptional activation of TEs within active regions of the genome is associated with failure of piRNA-mediated silencing, whilst desilenced TEs in repressed chromatin domains retain small RNAs. Additionally, we find that the sequence context of the surrounding region influences the propensity of TEs to lose silencing through failure of small RNA-mediated silencing. Conclusions Our results show that natural selection in C. elegans is responsible for maintaining low levels of TE expression, and provide new insights into the epigenomic features responsible.
Collapse
Affiliation(s)
- Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA
| | - Caroline J Sheeba
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Anke Konrad
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA.,Present Address: Intituto Gulbenkian de Ciencia, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Tony Belicard
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Toni Beltran
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Present Address: Centre for Genomic Regulation, PRBB Building, 08003, Barcelona, Spain
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77845, USA.
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK. .,Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
45
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Schwartz-Orbach L, Zhang C, Sidoli S, Amin R, Kaur D, Zhebrun A, Ni J, Gu SG. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. eLife 2020; 9:e54309. [PMID: 32804637 PMCID: PMC7431132 DOI: 10.7554/elife.54309] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 08/04/2020] [Indexed: 12/29/2022] Open
Abstract
Nuclear RNAi provides a highly tractable system to study RNA-mediated chromatin changes and epigenetic inheritance. Recent studies have indicated that the regulation and function of nuclear RNAi-mediated heterochromatin are highly complex. Our knowledge of histone modifications and the corresponding histonemodifying enzymes involved in the system remains limited. In this study, we show that the heterochromatin mark, H3K23me3, is induced by nuclear RNAi at both exogenous and endogenous targets in C. elegans. In addition, dsRNA-induced H3K23me3 can persist for multiple generations after the dsRNA exposure has stopped. We demonstrate that the histone methyltransferase SET-32, methylates H3K23 in vitro. Both set-32 and the germline nuclear RNAi Argonaute, hrde-1, are required for nuclear RNAi-induced H3K23me3 in vivo. Our data poise H3K23me3 as an additional chromatin modification in the nuclear RNAi pathway and provides the field with a new target for uncovering the role of heterochromatin in transgenerational epigenetic silencing.
Collapse
Affiliation(s)
- Lianna Schwartz-Orbach
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Chenzhen Zhang
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, BronxNew YorkUnited States
| | - Richa Amin
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Diljeet Kaur
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Anna Zhebrun
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Julie Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| | - Sam G Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New JerseyPiscatawayUnited States
| |
Collapse
|
47
|
Zeng C, Weng C, Wang X, Yan YH, Li WJ, Xu D, Hong M, Liao S, Dong MQ, Feng X, Xu C, Guang S. Functional Proteomics Identifies a PICS Complex Required for piRNA Maturation and Chromosome Segregation. Cell Rep 2020; 27:3561-3572.e3. [PMID: 31216475 DOI: 10.1016/j.celrep.2019.05.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/08/2019] [Accepted: 05/20/2019] [Indexed: 01/19/2023] Open
Abstract
piRNAs play significant roles in suppressing transposons and nonself nucleic acids, maintaining genome integrity, and defending against viral infections. In C. elegans, piRNA precursors are transcribed in the nucleus and are subjected to a number of processing and maturation steps. The biogenesis of piRNAs is not fully understood. We use functional proteomics in C. elegans and identify a piRNA biogenesis and chromosome segregation (PICS) complex. The PICS complex contains TOFU-6, PID-1, PICS-1, TOST-1, and ERH-2, which exhibit dynamic localization among different subcellular compartments. In the germlines, the PICS complex contains TOFU-6/PICS-1/ERH-2/PID-1, is largely concentrated at the perinuclear granule zone, and engages in piRNA processing. During embryogenesis, the TOFU-6/PICS-1/ERH-2/TOST-1 complex accumulates in the nucleus and plays essential roles in chromosome segregation. The functions of these factors in mediating chromosome segregation are independent of piRNA production. We speculate that differential compositions of PICS factors may help cells coordinate distinct cellular processes.
Collapse
Affiliation(s)
- Chenming Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chenchun Weng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xiaoyang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wen-Jun Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Minjie Hong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xuezhu Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Chao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.
| | - Shouhong Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, P.R. China.
| |
Collapse
|
48
|
Rogers AK, Phillips CM. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Res 2020; 48:4256-4273. [PMID: 32187370 PMCID: PMC7192617 DOI: 10.1093/nar/gkaa174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023] Open
Abstract
Repression of cellular reprogramming in germ cells is critical to maintaining cell fate and fertility. When germ cells mis-express somatic genes they can be directly converted into other cell types, resulting in loss of totipotency and reproductive potential. Identifying the molecular mechanisms that coordinate these cell fate decisions is an active area of investigation. Here we show that RNAi pathways play a key role in maintaining germline gene expression and totipotency after heat stress. By examining transcriptional changes that occur in mut-16 mutants, lacking a key protein in the RNAi pathway, at elevated temperature we found that genes normally expressed in the soma are mis-expressed in germ cells. Furthermore, these genes displayed increased chromatin accessibility in the germlines of mut-16 mutants at elevated temperature. These findings indicate that the RNAi pathway plays a key role in preventing aberrant expression of somatic genes in the germline during heat stress. This regulation occurs in part through the maintenance of germline chromatin, likely acting through the nuclear RNAi pathway. Identification of new pathways governing germ cell reprogramming is critical to understanding how cells maintain proper gene expression and may provide key insights into how cell identity is lost in some germ cell tumors.
Collapse
Affiliation(s)
- Alicia K Rogers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
49
|
Garrigues JM, Tsu BV, Daugherty MD, Pasquinelli AE. Diversification of the Caenorhabditis heat shock response by Helitron transposable elements. eLife 2019; 8:51139. [PMID: 31825311 PMCID: PMC6927752 DOI: 10.7554/elife.51139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR.
Collapse
Affiliation(s)
- Jacob M Garrigues
- Division of Biology, University of California, San Diego, San Diego, United States
| | - Brian V Tsu
- Division of Biology, University of California, San Diego, San Diego, United States
| | - Matthew D Daugherty
- Division of Biology, University of California, San Diego, San Diego, United States
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, San Diego, United States
| |
Collapse
|
50
|
Woodhouse RM, Buchmann G, Hoe M, Harney DJ, Low JKK, Larance M, Boag PR, Ashe A. Chromatin Modifiers SET-25 and SET-32 Are Required for Establishment but Not Long-Term Maintenance of Transgenerational Epigenetic Inheritance. Cell Rep 2019; 25:2259-2272.e5. [PMID: 30463020 DOI: 10.1016/j.celrep.2018.10.085] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Some epigenetic modifications are inherited from one generation to the next, providing a potential mechanism for the inheritance of environmentally acquired traits. Transgenerational inheritance of RNAi phenotypes in Caenorhabditis elegans provides an excellent model to study this phenomenon, and although studies have implicated both chromatin modifications and small RNA pathways in heritable silencing, their relative contributions remain unclear. Here, we demonstrate that the putative histone methyltransferases SET-25 and SET-32 are required for establishment of a transgenerational silencing signal but not for long-term maintenance of this signal between subsequent generations, suggesting that transgenerational epigenetic inheritance is a multi-step process with distinct genetic requirements for establishment and maintenance of heritable silencing. Furthermore, small RNA sequencing reveals that the abundance of secondary siRNAs (thought to be the effector molecules of heritable silencing) does not correlate with silencing phenotypes. Together, our results suggest that the current mechanistic models of epigenetic inheritance are incomplete.
Collapse
Affiliation(s)
- Rachel M Woodhouse
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Gabriele Buchmann
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Matthew Hoe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Dylan J Harney
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Jason K K Low
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Mark Larance
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Peter R Boag
- Monash University, Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Clayton, VIC 3800, Australia
| | - Alyson Ashe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; The University of Wollongong, School of Biological Sciences and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|