1
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Giusti-Rodríguez P, Okewole N, Jain S, Montalvo-Ortiz JL, Peterson RE. Diversifying Psychiatric Genomics: Globally Inclusive Strategies Toward Health Equity. Psychiatr Clin North Am 2025; 48:241-256. [PMID: 40348415 DOI: 10.1016/j.psc.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The underrepresentation of non-European researchers, participants, and datasets in psychiatric genetics hinders the understanding of mental health conditions and perpetuates health inequities. Ancestral diversity in research is crucial for advancing insights into disease etiology and achieving equity in precision medicine. Key strategies include optimizing data use, fostering global collaboration for capacity building, and adopting best practices in research methods. Ensuring clinical impact, accountability, and multi-agency commitment is vital. A more inclusive approach will enhance understanding of genetic and environmental factors in mental health, leading to equitable and accessible health care outcomes for all populations.
Collapse
Affiliation(s)
- Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. https://twitter.com/GiustiLab
| | | | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA. https://twitter.com/JanitzaMontalvo
| | - Roseann E Peterson
- Department of Psychiatry and Behavioral Sciences, Institute for Genomics in Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
| |
Collapse
|
3
|
Vlaikou AM, Nussbaumer M, Iliou A, Papageorgiou MP, Komini C, Theodoridou D, Benaki D, Mikros E, Gikas E, Syrrou M, Filiou MD. Early Life Stress Induces Brain Mitochondrial Dynamics Changes and Sex-Specific Adverse Effects in Adulthood. J Neurosci Res 2025; 103:e70023. [PMID: 40195806 DOI: 10.1002/jnr.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 04/09/2025]
Abstract
Early life stress exposure exerts detrimental effects in adulthood and is a risk factor for psychiatric disorders. Studies addressing the molecular mechanisms of early life stress have primarily focused on hormones and stress circuits. However, little is known on how mitochondria and mitochondrial dynamics (i.e., the orchestration of mitochondrial fission, fusion, mitophagy, and biogenesis) modulate early life stress responses. Here, we used a maternal separation with early weaning (MSEW) paradigm to investigate the behavioral and molecular early life stress-elicited effects in male and female C57BL/6 mice in adulthood. We first applied a behavioral test battery to assess MSEW-driven, anxiety-related and stress-coping alterations. We then looked for MSEW-induced, mitochondria-centered changes in cingulate cortex, hippocampus and cerebellum, as well as in plasma by combining protein, mRNA, mitochondrial DNA copy number (mtDNAcn) and metabolomics analyses. We found that MSEW mice are more anxious, show decreased antioxidant capacity in the cingulate cortex and have higher mRNA levels of the fission regulator Fis1 and the mitophagy activator Pink1 in the hippocampus, indicating a shift towards mitochondrial degradation. Hippocampal mRNA level alterations of apoptotic markers further suggest an MSEW-driven activation of apoptosis accompanied by a dysregulation of purine catabolism in the cerebellum in MSEW mice. Sex-specific analysis revealed distinct MSEW-induced changes in male and female mice at the molecular level. Our work reveals a previously unexplored role of mitochondrial dynamics in regulating early life stress effects and highlights a mitochondria-centered dysregulation as a persistent outcome of early life stress in adulthood.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Aikaterini Iliou
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria P Papageorgiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitra Benaki
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Section of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas (BRI-FORTH), Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
4
|
Bast L, Yao S, Martínez-López JA, Memic F, French H, Valiukonyte M, Karlsson R, Wen J, Song J, Zhang R, Abrantes A, Koopmans F, Österholm AM, Rosoklija G, Mann JJ, Stankov A, Trencevska I, Dwork A, Stockmeier CA, Love MI, Giusti-Rodriguez P, Smit AB, Sullivan PF, Hjerling-Leffler J. Transcriptomic and genetic analysis suggests a role for mitochondrial dysregulation in schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.14.25323827. [PMID: 40162239 PMCID: PMC11952597 DOI: 10.1101/2025.03.14.25323827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Schizophrenia is an often devastating disorder characterized by persistent and idiopathic cognitive deficits, delusions and hallucinations. Schizophrenia has been associated with impaired nervous system development and an excitation/inhibition imbalance in the prefrontal cortex. On a molecular level, schizophrenia is moderately heritable and genetically complex. Hundreds of risk genes have been identified, spanning a heterogeneous landscape dominated by loci that confer relatively small risk. Bioinformatic analyses of genetic associations point to a limited set of neurons, mainly excitatory cortical neurons, but other analyses suggest the importance of astrocytes and microglia. To understand different cell type roles in schizophrenia and reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia, our study integrated genetic analysis with single nucleus RNA-seq of 536,618 nuclei from postmortem samples of dorsal prefrontal cortex (Brodmann Area 8/9) of 43 cases with schizophrenia and 42 neurotypical controls. We found no significant difference in cell type abundance. Gene expression in excitatory layer 2-3 intra-telencephalic neurons had the greatest number of differentially expressed transcripts and, together with excitatory deep layer intra-telencephalic neurons, conferred most of the genetic risk for schizophrenia. Most differential expression of genes was found in specific cell types and was dominated by down-regulated transcripts. Down-regulated transcripts were enriched in gene sets including transmembrane transport, mitochondrial function, protein folding, and cell-cell signaling whereas up-regulated transcripts were enriched in gene sets related to RNA processing, including RNA splicing in neurons. Co-regulation network analysis identified 40 schizophrenia-relevant programs across 13 cell types. A gene program largely shared between neuronal subtypes, astrocytes, and oligodendrocytes was significantly enriched for schizophrenia risk, supporting an aetiological role for perturbed protein modification, ion transport, and mitochondrial function. These results were largely consistent with cell-type expression quantitative trait locus and transcriptome-wide association analyses. Moreover, single-cell RNA sequencing results, most prominently mitochondrial dysfunction, had multiple points of convergence with proteomic and long-read RNA sequencing results from samples from the same donors. Our study integrates genetic analysis with transcriptomics to reveal novel cell-type specific aetiologically relevant perturbations in schizophrenia.
Collapse
Affiliation(s)
- Lisa Bast
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - José A. Martínez-López
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Present address: Department of Engineering, Universidad Loyola Andalucía, Seville, Spain
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hayley French
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Milda Valiukonyte
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jia Wen
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jie Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruyue Zhang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Anthony Abrantes
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Present address: Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin, US
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne-May Österholm
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gorazd Rosoklija
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
| | - J. John Mann
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Aleksandar Stankov
- Institute for Forensic Medicine and Criminalistics, School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Iskra Trencevska
- School of Medicine, University Ss Cyril and Methodius, Republic of North Macedonia
| | - Andrew Dwork
- Department of Psychiatry,Columbia University Irving Medical Center, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences and Arts (MASA), Skopje, Republic of North Macedonia
- Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Craig A. Stockmeier
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
5
|
Limberg AS, Berg F, Köper E, Lindgraf C, Gevers C, Kumsta R, Hummel EM, Moser DA. Cell-free DNA release following psychosocial and physical stress in women and men. Transl Psychiatry 2025; 15:26. [PMID: 39863589 PMCID: PMC11763022 DOI: 10.1038/s41398-025-03242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/05/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Cell-free DNA (cfDNA) is continuously shed by all cells in the body, but the regulation of this process and its physiological functions are still largely unknown. Previous research has demonstrated that both nuclear (cf-nDNA) and mitochondrial (cf-mtDNA) cfDNA levels increase in plasma in response to acute psychosocial and physical stress in males. This study further investigated these findings by testing 31 female participants (16 using oral hormonal contraception and 15 not using oral hormonal contraception), and the results were subsequently compared with those of 16 male participants. In addition, cf-nDNA and cf-mtDNA were comparatively quantified in both plasma and saliva at four time points, 2 min before and 2, 15, and 45 min after stress induction. A novel method was implemented to facilitate the straightforward collection of capillary blood by non-medical personnel for plasma analysis. While cf-mtDNA is readily detectable in body fluids due to its high copy number, the quantification of cf-nDNA is challenging due to its low abundance. To overcome this, a multiplex quantitative polymerase chain reaction (qPCR) protocol targeting L1PA2 elements, which are prevalent in the human genome, was utilized. The analysis indicated significantly elevated levels of cf-nDNA in both plasma and saliva in all participants, irrespective of gender, following psychosocial and physical stress. Conversely, neither plasma nor saliva exhibited a consistent or stress-induced release pattern for cf-mtDNA. CfDNA is a promising biomarker that is consistently released after stress in both men and women and can be detected in both plasma and saliva. However, further research is necessary to elucidate the mechanisms of cfDNA release from specific cells and to understand its biological function in the body.
Collapse
Affiliation(s)
- A S Limberg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - F Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - E Köper
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - C Lindgraf
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - C Gevers
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - R Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
- Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment Interplay, University of Luxemburg, Porte des Sciences, Esch-sur-Alzette, Luxembourg
| | - E M Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany
| | - D A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| |
Collapse
|
6
|
Vostatek R, Ay C. Biological Aging and Venous Thromboembolism: A Review of Telomeres and Beyond. Biomedicines 2024; 13:15. [PMID: 39857599 PMCID: PMC11759860 DOI: 10.3390/biomedicines13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Although venous thromboembolism (VTE) is the third most common cardiovascular disease, and the risk of VTE increases sharply with advancing age, approximately 40% of VTE cases are currently classified as unprovoked, highlighting the importance of risk factor research. While chronological aging is associated with the risk of VTE, the association with biological aging remains unclear. Biological aging is highly complex, influenced by several dysregulated cellular and biochemical mechanisms. In the last decade, advancements in omics methodologies provided insights into the molecular complexity of biological aging. Techniques such as high-throughput genomics, epigenomics, transcriptomics, proteomics, and metabolomics analyses identified and quantified numerous epigenetic markers, transcripts, proteins, and metabolites. These methods have also revealed the molecular alterations organisms undergo as they age. Despite the progress, there is still a lack of consensus regarding the methods for assessing and validating these biomarkers, and their application lacks standardization. This review gives an overview of biomarkers of biological aging, including telomere length, and their potential role for VTE. Furthermore, we critically examine the advantages and disadvantages of the proposed methods and discuss possible future directions for investigating biological aging in VTE.
Collapse
Affiliation(s)
| | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Ferreira T, Rodriguez S. Mitochondrial DNA: Inherent Complexities Relevant to Genetic Analyses. Genes (Basel) 2024; 15:617. [PMID: 38790246 PMCID: PMC11121663 DOI: 10.3390/genes15050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Mitochondrial DNA (mtDNA) exhibits distinct characteristics distinguishing it from the nuclear genome, necessitating specific analytical methods in genetic studies. This comprehensive review explores the complex role of mtDNA in a variety of genetic studies, including genome-wide, epigenome-wide, and phenome-wide association studies, with a focus on its implications for human traits and diseases. Here, we discuss the structure and gene-encoding properties of mtDNA, along with the influence of environmental factors and epigenetic modifications on its function and variability. Particularly significant are the challenges posed by mtDNA's high mutation rate, heteroplasmy, and copy number variations, and their impact on disease susceptibility and population genetic analyses. The review also highlights recent advances in methodological approaches that enhance our understanding of mtDNA associations, advocating for refined genetic research techniques that accommodate its complexities. By providing a comprehensive overview of the intricacies of mtDNA, this paper underscores the need for an integrated approach to genetic studies that considers the unique properties of mitochondrial genetics. Our findings aim to inform future research and encourage the development of innovative methodologies to better interpret the broad implications of mtDNA in human health and disease.
Collapse
Affiliation(s)
- Tomas Ferreira
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SL, UK
| | - Santiago Rodriguez
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| |
Collapse
|
8
|
Wang X, Memon AA, Hedelius A, Grundberg A, Sundquist J, Sundquist K. Circulating mitochondrial long non-coding 7S RNA in primary health care patients with depression/anxiety. J Affect Disord 2024; 349:101-106. [PMID: 38163568 DOI: 10.1016/j.jad.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The significant role of long non-coding 7S RNA in controlling mitochondrial transcription highlights its importance in mitochondrial function. Considering the suggested connection between mitochondrial dysfunction and the onset of mental disorders, this study aimed to explore the potential involvement of 7S RNA in the context of depression/anxiety. RESULTS A total of 181 patients in primary health care (age 20-64 years) with depression/anxiety and 59 healthy controls were included in the study. 7S RNA was measured using quantitative real-time PCR in plasma samples collected before (baseline) and after 8 weeks of treatment (mindfulness or cognitive-based behavioral therapy). Upon adjustment for age and sex, the baseline plasma levels of 7S RNA were significantly higher in patients than in healthy controls (p < 0.001). Notably, post-treatment, there was a significant reduction in 7S RNA levels (p = 0.03). These changes in 7S RNA were related to the treatment response, as indicated by HADS-D (Hospital Anxiety and Depression Scale) scores (ß = -0.04, p = 0.04), even after accounting for baseline scores and other cofounders. CONCLUSION The findings of this study indicate an association between plasma 7S RNA levels and depression/anxiety, as well as treatment response. While further confirmatory analyses are necessary, plasma 7S RNA holds promise as a potential predictive biomarker for both depression/anxiety and the treatment response within these disorders.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden.
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anton Grundberg
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| |
Collapse
|
9
|
Shan MA, Ishtiaq W, Kanwal S, Khan MU, Iftikhar A, Khan S. Cell-free DNA as a potential diagnostic biomarker in academic stress: A case-control study in young adults. Saudi J Biol Sci 2024; 31:103933. [PMID: 38304540 PMCID: PMC10831250 DOI: 10.1016/j.sjbs.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Background Stress is a pervasive issue in modern life, affecting both physical and mental health. Identifying biomarkers like cell-free DNA (cfDNA) could provide insights into stress response and help detect individuals at risk for stress-related disorders. Objective The aim of this study is to investigate the potential use of cfDNA as a diagnostic biomarker in individuals experiencing stress. Methodology A case-control analysis was conducted using convenient sampling on university participants (N = 285 cases, N = 500 controls) aged 18-24. The study assessed haematological and lipid profile parameters using the Sysmex XP-300TM automated analyzer and an automated biochemistry analyzer, and cfDNA was extracted using a standardized in house developed Phenol-Chloroform protocol and estimated using Agarose Gel Electrophoresis and Nanodrop. Statistical analysis was performed using SPSS ver. 21.0. Results The results indicated a significant difference between stressed individuals and healthy controls in demographic, haematological and biochemical parameters. Specifically, stressed cases had significantly higher levels of cholesterol, LDL cholesterol, triglycerides, glucose, VLDL cholesterol, and lower levels of HDL compared to healthy controls. Stressed cases also showed significantly elevated levels of circulating cfDNA relative to healthy controls. Conclusion These findings suggest that cfDNA may have potential as a diagnostic biomarker for stress.
Collapse
Affiliation(s)
| | - Warda Ishtiaq
- Center for Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shamsa Kanwal
- Muhammad Ali Jinnah University Karachi, Karachi, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Iftikhar
- Lahore Business School, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
10
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
11
|
Koller A, Filosi M, Weissensteiner H, Fazzini F, Gorski M, Pattaro C, Schönherr S, Forer L, Herold JM, Stark KJ, Döttelmayer P, Hicks AA, Pramstaller PP, Würzner R, Eckardt KU, Heid IM, Fuchsberger C, Lamina C, Kronenberg F. Nuclear and mitochondrial genetic variants associated with mitochondrial DNA copy number. Sci Rep 2024; 14:2083. [PMID: 38267512 PMCID: PMC10808213 DOI: 10.1038/s41598-024-52373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker for mitochondrial dysfunction associated with several diseases. Previous genome-wide association studies (GWAS) have been performed to unravel underlying mechanisms of mtDNA-CN regulation. However, the identified gene regions explain only a small fraction of mtDNA-CN variability. Most of this data has been estimated from microarrays based on various pipelines. In the present study we aimed to (1) identify genetic loci for qPCR-measured mtDNA-CN from three studies (16,130 participants) using GWAS, (2) identify potential systematic differences between our qPCR derived mtDNA-CN measurements compared to the published microarray intensity-based estimates, and (3) disentangle the nuclear from mitochondrial regulation of the mtDNA-CN phenotype. We identified two genome-wide significant autosomal loci associated with qPCR-measured mtDNA-CN: at HBS1L (rs4895440, p = 3.39 × 10-13) and GSDMA (rs56030650, p = 4.85 × 10-08) genes. Moreover, 113/115 of the previously published SNPs identified by microarray-based analyses were significantly equivalent with our findings. In our study, the mitochondrial genome itself contributed only marginally to mtDNA-CN regulation as we only detected a single rare mitochondrial variant associated with mtDNA-CN. Furthermore, we incorporated mitochondrial haplogroups into our analyses to explore their potential impact on mtDNA-CN. However, our findings indicate that they do not exert any significant influence on our results.
Collapse
Affiliation(s)
- Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Michele Filosi
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Federica Fazzini
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Janina M Herold
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Patricia Döttelmayer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Andrew A Hicks
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Chronic Kidney Disease Study, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Schöpfstrasse 41, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Jiang C, Huang H, Yang X, Le Q, Liu X, Ma L, Wang F. Targeting mitochondrial dynamics of morphine-responsive dopaminergic neurons ameliorates opiate withdrawal. J Clin Invest 2024; 134:e171995. [PMID: 38236644 PMCID: PMC10904060 DOI: 10.1172/jci171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Converging studies demonstrate the dysfunction of the dopaminergic neurons following chronic opioid administration. However, the therapeutic strategies targeting opioid-responsive dopaminergic ensembles that contribute to the development of opioid withdrawal remain to be elucidated. Here, we used the neuronal activity-dependent Tet-Off system to label dopaminergic ensembles in response to initial morphine exposure (Mor-Ens) in the ventral tegmental area (VTA). Fiber optic photometry recording and transcriptome analysis revealed downregulated spontaneous activity and dysregulated mitochondrial respiratory, ultrastructure, and oxidoreductase signal pathways after chronic morphine administration in these dopaminergic ensembles. Mitochondrial fragmentation and the decreased mitochondrial fusion gene mitofusin 1 (Mfn1) were found in these ensembles after prolonged opioid withdrawal. Restoration of Mfn1 in the dopaminergic Mor-Ens attenuated excessive oxidative stress and the development of opioid withdrawal. Administration of Mdivi-1, a mitochondrial fission inhibitor, ameliorated the mitochondrial fragmentation and maladaptation of the neuronal plasticity in these Mor-Ens, accompanied by attenuated development of opioid withdrawal after chronic morphine administration, without affecting the analgesic effect of morphine. These findings highlighted the plastic architecture of mitochondria as a potential therapeutic target for opioid analgesic-induced substance use disorders.
Collapse
Affiliation(s)
- Changyou Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Han Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Qiumin Le
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
13
|
Win PW, Nguyen J, Morin AL, Newcomb CE, Singh SM, Gomaa N, Castellani CA. Simultaneous assessment of mitochondrial DNA copy number and nuclear epigenetic age towards predictive models of development and aging. BMC Res Notes 2024; 17:21. [PMID: 38212867 PMCID: PMC10785513 DOI: 10.1186/s13104-023-06673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE Mitochondrial dysfunction and nuclear epigenetic alterations, two hallmarks of aging, are associated with aberrant development and complex disease risk. Here, we report a method for the simultaneous assessment of mitochondrial DNA copy number (mtDNA-CN) and DNA methylation age (DNAm age) from the same DNA extraction using quantitative polymerase chain reaction (qPCR) and array data, respectively. RESULT We present methods for the concurrent estimation of mtDNA-CN and DNAm age from the same DNA samples. This includes qPCR to estimate mtDNA-CN, representing the number of circular mitochondrial genomes in a cell, and DNA methylation microarray data to estimate the epigenetic age of an individual. Further, we provide a method for the combination of these metrics into a shared metric termed 'mtEpiAge'. This approach provides a valuable tool for exploring the interplay between mitochondrial dysfunction and nuclear epigenetic alterations, and their associations with disease and aging.
Collapse
Affiliation(s)
- Phyo W Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Biology, Western University, London, Canada
| | - Julia Nguyen
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Amanda L Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Charles E Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shiva M Singh
- Department of Biology, Western University, London, Canada
- Children's Health Research Institute, Lawson Research Institute, London, Canada
| | - Noha Gomaa
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Oral Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, Lawson Research Institute, London, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada.
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Canada.
- Children's Health Research Institute, Lawson Research Institute, London, Canada.
| |
Collapse
|
14
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
15
|
Czarny P, Ziółkowska S, Kołodziej Ł, Watała C, Wigner-Jeziorska P, Bliźniewska-Kowalska K, Wachowska K, Gałecka M, Synowiec E, Gałecki P, Bijak M, Szemraj J, Śliwiński T. Single-Nucleotide Polymorphisms in Genes Maintaining the Stability of Mitochondrial DNA Affect the Occurrence, Onset, Severity and Treatment of Major Depressive Disorder. Int J Mol Sci 2023; 24:14752. [PMID: 37834200 PMCID: PMC10573273 DOI: 10.3390/ijms241914752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Łukasz Kołodziej
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | | | - Katarzyna Wachowska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| |
Collapse
|
16
|
Ochi S, Roy B, Prall K, Shelton RC, Dwivedi Y. Strong associations of telomere length and mitochondrial copy number with suicidality and abuse history in adolescent depressed individuals. Mol Psychiatry 2023; 28:3920-3929. [PMID: 37735501 PMCID: PMC10730407 DOI: 10.1038/s41380-023-02263-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Major depressive disorder (MDD) is highly prevalent in adolescents and is a major risk factor for suicidality. Recent evidence shows that accelerated cellular senescence/aging is associated with psychiatric illness, including depression, in adults. The present study examined if the relationships of telomere length (TL) and mitochondrial DNA copy number (mtDNAcn), two critical indicators of cellular senescence/aging, are altered in depressed adolescents and whether these alterations are associated with suicidality, early-life adversities, and other co-occuring factors. In genomic DNA isolated from 53 adolescents (ages 16-19, 19 MDD with suicide attempt/suicidal ideation [MDD + SI/SA], 14 MDD without SA/SI [MDD-SI/SA], and 20 healthy controls [HC]), TL and mtDNAcn were measured as the ratio between the number of telomere repeats and that of a single-copy nuclear-hemoglobin [HBG] gene or the amount of mtDNA (NADH dehydrogenase, subunit 1) relative to HBG. Our data show that TL was significantly lower, and mtDNAcn was significantly higher in the total MDD group than HC. TL was significantly lower and mtDNAcn was significantly higher in the MDD + SA/SI group than in the HC, whereas there were no differences in the MDD-SI/SA group. TL was positively correlated with mtDNAcn in both HC and MDD-SA/SI groups; however, TL was negatively correlated with mtDNAcn in MDD + SA/SI. Furthermore, TL was negatively correlated with the severity of both depression and anxiety, while mtDNAcn was positively correlated with the severity of prior emotional abuse. Our study indicates that cellular senescence is more advanced in depressed adolescents with suicidal ideation and that childhood emotional abuse may participate in such a process.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Zaidi AA, Verma A, Morse C, Penn Medicine BioBank, Ritchie MD, Mathieson I. The genetic and phenotypic correlates of mtDNA copy number in a multi-ancestry cohort. HGG ADVANCES 2023; 4:100202. [PMID: 37255673 PMCID: PMC10225932 DOI: 10.1016/j.xhgg.2023.100202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Mitochondrial DNA copy number (mtCN) is often treated as a proxy for mitochondrial (dys-) function and disease risk. Pathological changes in mtCN are common symptoms of rare mitochondrial disorders, but reported associations between mtCN and common diseases vary across studies. To understand the biology of mtCN, we carried out genome- and phenome-wide association studies of mtCN in 30,666 individuals from the Penn Medicine BioBank (PMBB)-a diverse cohort of largely African and European ancestry. We estimated mtCN in peripheral blood using exome sequence data, taking cell composition into account. We replicated known genetic associations of mtCN in the PMBB and found that their effects are highly correlated between individuals of European and African ancestry. However, the heritability of mtCN was much higher among individuals of largely African ancestry ( h 2 = 0.3 ) compared with European ancestry individuals( h 2 = 0.1 ) . Admixture mapping suggests that there are undiscovered variants underlying mtCN that are differentiated in frequency between individuals with African and European ancestry. We show that mtCN is associated with many health-related phenotypes. We discovered robust associations between mtDNA copy number and diseases of metabolically active tissues, such as cardiovascular disease and liver damage, that were consistent across African and European ancestry individuals. Other associations, such as epilepsy and prostate cancer, were only discovered in either individuals with European or African ancestry but not both. We show that mtCN-phenotype associations can be sensitive to blood cell composition and environmental modifiers, explaining why such associations are inconsistent across studies. Thus, mtCN-phenotype associations must be interpreted with care.
Collapse
Affiliation(s)
- Arslan A. Zaidi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Morse
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Penn Medicine BioBank
- Center for Translational Bioinformatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Abstract
The genetic dissection of major depressive disorder (MDD) ranks as one of the success stories of psychiatric genetics, with genome-wide association studies (GWAS) identifying 178 genetic risk loci and proposing more than 200 candidate genes. However, the GWAS results derive from the analysis of cohorts in which most cases are diagnosed by minimal phenotyping, a method that has low specificity. I review data indicating that there is a large genetic component unique to MDD that remains inaccessible to minimal phenotyping strategies and that the majority of genetic risk loci identified with minimal phenotyping approaches are unlikely to be MDD risk loci. I show that inventive uses of biobank data, novel imputation methods, combined with more interviewer diagnosed cases, can identify loci that contribute to the episodic severe shifts of mood, and neurovegetative and cognitive changes that are central to MDD. Furthermore, new theories about the nature and causes of MDD, drawing upon advances in neuroscience and psychology, can provide handles on how best to interpret and exploit genetic mapping results.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, Billy and Audrey Wilder Endowed Chair in Psychiatry and Neuroscience, Center for Neurobehavioral Genetics, 695 Charles E. Young Drive South, 3357B Gonda, Box 951761, Los Angeles, CA, 90095-1761, USA.
| |
Collapse
|
19
|
Ryan KM, Doody E, McLoughlin DM. Whole blood mitochondrial DNA copy number in depression and response to electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110656. [PMID: 36216200 DOI: 10.1016/j.pnpbp.2022.110656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction may play a role in various psychiatric conditions. Mitochondrial DNA copy number (mtDNAcn), the ratio of mitochondrial DNA to nuclear DNA, represents an attractive marker of mitochondrial health that is easily measured from stored DNA samples, and has been shown to be altered in depression. In this study, we measured mtDNAcn in whole blood samples from medicated patients with depression (n = 100) compared to healthy controls (n = 89) and determined the relationship between mtDNAcn and depression severity and the therapeutic response to electroconvulsive therapy (ECT). We also explored the relationship between mtDNAcn and telomere length and inflammatory markers. Our results show that mtDNAcn was significantly elevated in blood from patients with depression when compared to control samples, and this result survived statistical adjustment for potential confounders (p = 0.002). mtDNAcn was significantly elevated in blood from subgroups of patients with non-psychotic or unipolar depression. There was no difference in mtDNAcn noted in subgroups of ECT remitters/non-remitters or responders/non-responders. Moreover, mtDNAcn was not associated with depression severity, telomere length, or circulating inflammatory marker concentrations. Overall, our results show that mtDNAcn is elevated in blood from patients with depression, though whether this translates to mitochondrial function is unknown. Further work is required to clarify the contribution of mitochondria and mtDNA to the pathophysiology of depression and the therapeutic response to antidepressant treatments.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Eimear Doody
- Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, James Street, Dublin 8, Ireland.
| |
Collapse
|
20
|
Sex-related difference of association of mitochondrial DNA copy number with PTSD in U.S. service members. J Psychiatr Res 2023; 159:1-5. [PMID: 36652751 DOI: 10.1016/j.jpsychires.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Gender differences in the lifetime prevalence of post-traumatic stress disorder (PTSD) have been well described with rates reported as approximately 10%-12% in females and 5%-6% in males (Olff, 2017). This study examined whether the sex-related difference of mitochondrial DNA copy number (mtDNAcn), an emerging systemic index of mitochondrial biogenesis and function can serve as a potential biomarker for PTSD. Leukocyte mtDNAcn of service members with PTSD (male = 127, female = 24) or without PTSD (male = 621, female = 78) was assessed using a TaqMan assay. The results were validated by the absolute quantification of QX-200 droplet digital PCR (ddPCR). PTSD symptoms and symptom severity were assessed using the PTSD Checklist (PCL), a 17-item, DSM-based, self-report questionnaire with well-established validity and reliability. DSM-IV criteria and PTSD were determined by PCL total score. We found that mtDNAcn of female subjects with PTSD was significantly higher compared to either male or female non-PTSD controls or male subjects with PTSD (p < 0.05). There was no significant difference in mtDNAcn between males with PTSD and male/female controls without PTSD. Using in vitro cultured SH-SY5Y cells (human neuroblastoma), we demonstrated that estrogen (Estro) treatment significantly decreased mtDNAcn (P < 0.001) compared to the vehicle control. We also found that pre-treatment with either synthetic glucocorticoid dexamethasone (Dex) or Estro blocker tamoxifen (Tamox) attenuated the estrogen-induced decreases of mtDNAcn. Our data suggest that mtDNAcn may be gender-dependent in the Servicemembers with PTSD. Glucocorticoid and/or estrogen receptors may play a role in the regulation of mtDNAcn. The sex-related difference of mtDNAcn may serve as a PTSD biomarker for females.
Collapse
|
21
|
Hummel EM, Piovesan K, Berg F, Herpertz S, Kessler H, Kumsta R, Moser DA. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder. Psychoneuroendocrinology 2023; 148:105993. [PMID: 36462294 DOI: 10.1016/j.psyneuen.2022.105993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental health condition thought to be mediated by a dysregulated stress response system. Stress, especially chronic stress, affects mitochondrial activity and their efficiency in duplicating their genomes. Human cells contain numerous mitochondria that harbor multiple copies of their own genome, which consist of a mixture of wild type and variant mtDNA - a condition known as mitochondrial heteroplasmy. Number of mitochondrial genomes in a cell and the degree of heteroplasmy may serve as an indicator of mitochondrial allostatic load. Changes in mtDNA copy number and the proportion of variant mtDNA may be related to mental disorders and symptom severity, suggesting an involvement of mitochondrial dysfunction also in PTSD. Therefore, we examined number and composition of mitochondrial DNA before and after six weeks of inpatient psychotherapy treatment in a cohort of 60 female PTSD patients. We extracted DNA from isolated monocytes before and after inpatient treatment and quantified cellular mtDNA using multiplex qPCR. We hypothesized that treatment would lead to changes in cellular mtDNA levels and that change in mtDNA level would be associated with PTSD symptom severity and treatment response. It could be shown that mtDNA copy number and the ratio of variant mtDNA decreased during therapy, however, this change did not correlate with treatment response. Our results suggest that inpatient treatment can reduce signs of mitochondrial allostatic load, which could have beneficial effects on mental health. The quantification of mtDNA and the determination of cellular heteroplasmy could represent valuable biomarkers for the molecular characterization of mental disorders in the future.
Collapse
Affiliation(s)
- E M Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - K Piovesan
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - F Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - S Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany; Department of Psychosomatic Medicine and Psychotherapy, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - R Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment nterplay, University of Luxemburg, Porte des Sciences, L-4366 Esch-sur-Alzette, Luxemburg
| | - D A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
22
|
Wang B, Shi H, Yang B, Miao Z, Sun M, Yang H, Xu X. The mitochondrial Ahi1/GR participates the regulation on mtDNA copy numbers and brain ATP levels and modulates depressive behaviors in mice. Cell Commun Signal 2023; 21:21. [PMID: 36691038 PMCID: PMC9869592 DOI: 10.1186/s12964-022-01034-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Previous studies have shown that depression is often accompanied by an increase in mtDNA copy number and a decrease in ATP levels; however, the exact regulatory mechanisms remain unclear. METHODS In the present study, Western blot, cell knockdown, immunofluorescence, immunoprecipitation and ChIP-qPCR assays were used to detect changes in the Ahi1/GR-TFAM-mtDNA pathway in the brains of neuronal Abelson helper integration site-1 (Ahi1) KO mice and dexamethasone (Dex)-induced mice to elucidate the pathogenesis of depression. In addition, a rescue experiment was performed to determine the effects of regular exercise on the Ahi1/GR-TFAM-mtDNA-ATP pathway and depression-like behavior in Dex-induced mice and Ahi1 KO mice under stress. RESULTS In this study, we found that ATP levels decreased and mitochondrial DNA (mtDNA) copy numbers increased in depression-related brain regions in Dex-induced depressive mice and Ahi1 knockout (KO) mice. In addition, Ahi1 and glucocorticoid receptor (GR), two important proteins related to stress and depressive behaviors, were significantly decreased in the mitochondria under stress. Intriguingly, GR can bind to the D-loop control region of mitochondria and regulate mitochondrial replication and transcription. Importantly, regular exercise significantly increased mitochondrial Ahi1/GR levels and ATP levels and thus improved depression-like behaviors in Dex-induced depressive mice but not in Ahi1 KO mice under stress. CONCLUSIONS In summary, our findings demonstrated that the mitochondrial Ahi1/GR complex and TFAM coordinately regulate mtDNA copy numbers and brain ATP levels by binding to the D-loop region of mtDNA Regular exercise increases the levels of the mitochondrial Ahi1/GR complex and improves depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Miao Sun
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Yang
- Department of Fetology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
23
|
Robichaud K, Craig PM. Nuclear microRNAs may regulate mitochondrial gene expression following effluent exposure in darter (Etheostoma) species. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110754. [PMID: 35580806 DOI: 10.1016/j.cbpb.2022.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Wastewater effluent is a metabolic stressor to aquatic organisms, though the mechanisms regulating metabolic rate in fish are not fully understood. Changes in metabolism may be regulated by microRNA (miRNA), small RNA molecules that post-transcriptionally regulate target mRNA translation in fish. Nuclear encoded miRNA are present in mammalian mitochondria where they regulate translation of mitochondrial genes, namely subunits for oxidative phosphorylation complexes; though this mechanism has not been identified in fish. This study aimed to identify if miRNA are present in darter (Etheostoma spp.) mitochondria, and if the metabolic stress occurring in darters in the Grand River, Waterloo, is partly regulated by miRNAs supressing translation of target mitochondrial genes. Three species of darters (E. caeruleum; E. nigrum; E. flabellare) were collected from upstream and downstream of the Waterloo wastewater treatment plant, and qPCR analysis confirmed the presence of four miRNA bioinformatically predicted to target mitochondrial mRNAs within the mitochondria, namely let-7a, miR-1, miR-122 and miR-20. E. caeruleum collected from downstream had lower cytochrome c oxidase activity, with a respective higher miR-1 abundance in the mitochondria, while E. nigrum had both a higher miR-20 abundance and cytochrome c oxidase activity downstream. E. flabellare was the only species that exhibited a lower miR-122 abundance downstream, despite no difference in cytochrome c oxidase activity between sites. Overall, this study confirmed the presence of miRNA within the mitochondria of daters, predicted a relationship between miR-1, and miR-20 abundance and cytochrome c oxidase activity, and identified one sex-specific miRNA, miR-20.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
24
|
Simons ND, Michopoulos V, Wilson M, Barreiro LB, Tung J. Agonism and grooming behaviour explain social status effects on physiology and gene regulation in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210132. [PMID: 35000435 PMCID: PMC8743879 DOI: 10.1098/rstb.2021.0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Variation in social status predicts molecular, physiological and life-history outcomes across a broad range of species, including our own. Experimental studies indicate that some of these relationships persist even when the physical environment is held constant. Here, we draw on datasets from one such study-experimental manipulation of dominance rank in captive female rhesus macaques-to investigate how social status shapes the lived experience of these animals to alter gene regulation, glucocorticoid physiology and mitochondrial DNA phenotypes. We focus specifically on dominance rank-associated dimensions of the social environment, including both competitive and affiliative interactions. Our results show that simple summaries of rank-associated behavioural interactions are often better predictors of molecular and physiological outcomes than dominance rank itself. However, while measures of immune function are best explained by agonism rates, glucocorticoid-related phenotypes tend to be more closely linked to affiliative behaviour. We conclude that dominance rank serves as a useful summary for investigating social environmental effects on downstream outcomes. Nevertheless, the behavioural interactions that define an individual's daily experiences reveal the proximate drivers of social status-related differences and are especially relevant for understanding why individuals who share the same social status sometimes appear physiologically distinct. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Noah D. Simons
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Wilson
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis B. Barreiro
- Genetics Section, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Durham, NC 27708, USA
- Canadian Institute for Advanced Research, Toronto, Canada M5G 1M1
| |
Collapse
|
25
|
Almeida J, Pérez-Figueroa A, Alves JM, Valecha M, Prado-López S, Alvariño P, Cameselle-Teijeiro JM, Chantada D, Fonseca MM, Posada D. Single-cell mtDNA heteroplasmy in colorectal cancer. Genomics 2022; 114:110315. [PMID: 35181467 DOI: 10.1016/j.ygeno.2022.110315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Human mitochondria can be genetically distinct within the same individual, a phenomenon known as heteroplasmy. In cancer, this phenomenon seems exacerbated, and most mitochondrial mutations seem to be heteroplasmic. How this genetic variation is arranged within and among normal and tumor cells is not well understood. To address this question, here we sequenced single-cell mitochondrial genomes from multiple normal and tumoral locations in four colorectal cancer patients. Our results suggest that single cells, both normal and tumoral, can carry various mitochondrial haplotypes. Remarkably, this intra-cell heteroplasmy can arise before tumor development and be maintained afterward in specific tumoral cell subpopulations. At least in the colorectal patients studied here, the somatic mutations in the single-cells do not seem to have a prominent role in tumorigenesis.
Collapse
Affiliation(s)
- João Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - Andrés Pérez-Figueroa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal; CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - João M Alves
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Monica Valecha
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Sonia Prado-López
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
| | - José Manuel Cameselle-Teijeiro
- Department of Pathology, Clinical University Hospital, Galician Healthcare Service (SERGAS), Santiago de Compostela, Spain; Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Débora Chantada
- Department of Pathology, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Miguel M Fonseca
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain; Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
26
|
Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, Lali R, Khan I, Khan M, Judge C, Machipisa T, Cawte N, O'Donnell M, Pigeyre M, Akhabir L, Paré G. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. eLife 2022; 11:e70382. [PMID: 35023831 PMCID: PMC8865845 DOI: 10.7554/elife.70382] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Background Mitochondrial DNA copy number (mtDNA-CN) is an accessible blood-based measurement believed to capture underlying mitochondrial (MT) function. The specific biological processes underpinning its regulation, and whether those processes are causative for disease, is an area of active investigation. Methods We developed a novel method for array-based mtDNA-CN estimation suitable for biobank-scale studies, called 'automatic mitochondrial copy (AutoMitoC).' We applied AutoMitoC to 395,781 UKBiobank study participants and performed genome- and exome-wide association studies, identifying novel common and rare genetic determinants. Finally, we performed two-sample Mendelian randomization to assess whether genetically low mtDNA-CN influenced select MT phenotypes. Results Overall, genetic analyses identified 71 loci for mtDNA-CN, which implicated several genes involved in rare mtDNA depletion disorders, deoxynucleoside triphosphate (dNTP) metabolism, and the MT central dogma. Rare variant analysis identified SAMHD1 mutation carriers as having higher mtDNA-CN (beta = 0.23 SDs; 95% CI, 0.18-0.29; p=2.6 × 10-19), a potential therapeutic target for patients with mtDNA depletion disorders, but at increased risk of breast cancer (OR = 1.91; 95% CI, 1.52-2.40; p=2.7 × 10-8). Finally, Mendelian randomization analyses suggest a causal effect of low mtDNA-CN on dementia risk (OR = 1.94 per 1 SD decrease in mtDNA-CN; 95% CI, 1.55-2.32; p=7.5 × 10-4). Conclusions Altogether, our genetic findings indicate that mtDNA-CN is a complex biomarker reflecting specific MT processes related to mtDNA regulation, and that these processes are causally related to human diseases. Funding No funds supported this specific investigation. Awards and positions supporting authors include: Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award (MC, PM); CIHR Post-Doctoral Fellowship Award (RM); Wellcome Trust Grant number: 099313/B/12/A; Crasnow Travel Scholarship; Bongani Mayosi UCT-PHRI Scholarship 2019/2020 (TM); Wellcome Trust Health Research Board Irish Clinical Academic Training (ICAT) Programme Grant Number: 203930/B/16/Z (CJ); European Research Council COSIP Grant Number: 640580 (MO); E.J. Moran Campbell Internal Career Research Award (MP); CISCO Professorship in Integrated Health Systems and Canada Research Chair in Genetic and Molecular Epidemiology (GP).
Collapse
Affiliation(s)
- Michael Chong
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Pedrum Mohammadi-Shemirani
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Thrombosis and Atherosclerosis Research InstituteHamiltonCanada
| | - Nicolas Perrot
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Walter Nelson
- Centre for Data Science and Digital Health, Hamilton Health SciencesHamiltonCanada
| | - Robert Morton
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Sukrit Narula
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Ricky Lali
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
| | - Irfan Khan
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Mohammad Khan
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Conor Judge
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Tafadzwa Machipisa
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, University of Cape Town & Groote Schuur HospitalCape TownSouth Africa
- Hatter Institute for Cardiovascular Diseases Research in Africa (HICRA) & Cape Heart Institute (CHI), Department of Medicine, University of Cape TownCape TownSouth Africa
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
| | - Martin O'Donnell
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- National University of Ireland, GalwayGalwayIreland
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Loubna Akhabir
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| | - Guillaume Paré
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamiltonCanada
- Department of Pathology and Molecular Medicine, McMaster UniversityHamiltonCanada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health SciencesHamiltonCanada
- Department of Health Research Methods, Evidence, and Impact, McMaster UniversityHamiltonCanada
- Department of Medicine, McMaster University, Michael G. DeGroote School of MedicineHamiltonCanada
| |
Collapse
|
27
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Liu Q, Wangqing P, Baima Y, Wang S, Shen Z, Zhou J, Song H, Liu Y, Liu X, Luo P, Zhao X. Comorbid Depressive and Anxiety Symptoms and Their Correlates Among 93,078 Multiethnic Adults in Southwest China. Front Public Health 2022; 9:783687. [PMID: 34970528 PMCID: PMC8712466 DOI: 10.3389/fpubh.2021.783687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Depressive symptoms and anxiety symptoms commonly coexist and severely increases the disease burden worldwide. Little is known about the patterns and correlates of comorbid depressive and anxiety symptoms among the multiethnic populations of China. Methods: This population-based study investigated the comprehensive associations of comorbid depressive and anxiety symptoms with lifestyles, stressful life events, chronic diseases, and physical and mental well-being among 93,078 participants (37,193 men, 55,885 women) aged 30–79 years across seven ethnic groups in Southwest China. Multivariable logistic regression models were used to estimate associations. Results: Overall, 2.9% (2.1% in men and 3.5% in women) participants had comorbid depressive and anxiety symptoms; there was considerable heterogeneity among multiethnic populations. Participants with chronic diseases were more likely to have comorbidity than those without them; people with rheumatic heart disease reported the highest risk, with an odds ratio (OR) of 6.25 and 95% confidence interval (CI) of 4.06–9.62. Having experienced 3 or more stressful life events (OR, 8.43, 95% CI: 7.27–9.77), very poor self-rated health status (OR, 33.60, 95%CI: 25.16–44.87), and very unsatisfied life (OR, 33.30, 95% CI: 23.73–46.74) had strong positive associations with comorbid depressive symptoms and anxiety symptoms, with a dose-response relationship (P < 0.05). High frequency of physical activity had negative associations. All the associations were stronger than depressive symptoms alone or anxiety symptoms alone. Conclusions: Our findings emphasize the need to focus on the vulnerable ethnic groups with comorbid depressive and anxiety symptoms, ultimate for help early prevention and improvement of health equity in the underdevelopment and high urbanization areas.
Collapse
Affiliation(s)
- Qiaolan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | | | - Yangji Baima
- Department of Preventive Medicine, College of Medicine, Tibet University, Lhasa, China
| | - Songmei Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zhuozhi Shen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jing Zhou
- Chenghua District Center for Disease Control and Prevention, Chenghua, China
| | - Huan Song
- West China Biomedical Big Data Center of West China Hospital, Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yuanyuan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiang Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Gentiluomo M, Giaccherini M, Gào X, Guo F, Stocker H, Schöttker B, Brenner H, Canzian F, Campa D. Genome-wide association study of mitochondrial copy number. Hum Mol Genet 2021; 31:1346-1355. [PMID: 34964454 DOI: 10.1093/hmg/ddab341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNAcn) variation has been associated with increased risk of several human diseases in epidemiological studies. The quantification of mtDNAcn performed with real-time PCR is currently considered the de facto standard among several techniques. However, the heterogeneity of the laboratory methods (DNA extraction, storage, processing) used could give rise to results that are difficult to compare and reproduce across different studies. Several lines of evidence suggest that mtDNAcn is influenced by nuclear and mitochondrial genetic variability, however this relation is largely unexplored. The aim of this work was to elucidate the genetic basis of mtDNAcn variation. We performed a genome-wide association study (GWAS) of mtDNAcn in 6836 subjects from the ESTHER prospective cohort, and included, as replication set, the summary statistics of a GWAS that used 295 150 participants from the UK Biobank. We observed two novel associations with mtDNAcn variation on chromosome 19 (rs117176661), and 12 (rs7136238) that reached statistical significance at the genome-wide level. A polygenic score that we called mitoscore including all known single nucleotide polymorphisms explained 1.11% of the variation of mtDNAcn (p = 5.93 × 10-7). In conclusion, we performed a GWAS on mtDNAcn, adding to the evidence of the genetic background of this trait.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| | - Matteo Giaccherini
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy.,Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Feng Guo
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.,Network Aging Research, Heidelberg University, Heidelberg, 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Heidelberg, 69120, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Daniele Campa
- Unit of Genetics, Department of Biology, University of Pisa, 56126, Italy
| |
Collapse
|
30
|
Mitochondrial DNA Copy Number Adaptation as a Biological Response Derived from an Earthquake at Intrauterine Stage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211771. [PMID: 34831526 PMCID: PMC8624126 DOI: 10.3390/ijerph182211771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 01/07/2023]
Abstract
An altered mitochondrial DNA copy number (mtDNAcn) at birth can be a marker of increased disease susceptibility later in life. Gestational exposure to acute stress, such as that derived from the earthquake experienced on 19 September 2017 in Mexico City, could be associated with changes in mtDNAcn at birth. Our study used data from the OBESO (Biochemical and Epigenetic Origins of Overweight and Obesity) perinatal cohort in Mexico City. We compared the mtDNAcn in the umbilical cord blood of 22 infants born before the earthquake, 24 infants whose mothers were pregnant at the time of the earthquake (exposed), and 37 who were conceived after the earthquake (post-earthquake). We quantified mtDNAcn by quantitative real-time polymerase chain reaction normalized with a nuclear gene. We used a linear model adjusted by maternal age, body mass index, socioeconomic status, perceived stress, and pregnancy comorbidities. Compared to non-exposed newborns (mean ± SD mtDNAcn: 0.740 ± 0.161), exposed and post-earthquake newborns (mtDNAcn: 0.899 ± 0.156 and 0.995 ± 0.169, respectively) had increased mtDNAcn, p = 0.001. The findings of this study point at mtDNAcn as a potential biological marker of acute stress and suggest that experiencing an earthquake during pregnancy or before gestation can have programing effects in the unborn child. Long-term follow-up of newborns to women who experience stress prenatally, particularly that derived from a natural disaster, is warranted.
Collapse
|
31
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
32
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
33
|
Association of Mitochondrial DNA Copy Number and Telomere Length with Prevalent and Incident Cancer and Cancer Mortality in Women: A Prospective Swedish Population-Based Study. Cancers (Basel) 2021; 13:cancers13153842. [PMID: 34359743 PMCID: PMC8345403 DOI: 10.3390/cancers13153842] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/09/2022] Open
Abstract
Changes in mitochondrial DNA copy number (mtDNA-CN) and telomere length have, separately, been proposed as risk factors for various cancer types. However, those results are conflicting. Here, mtDNA-CN and relative telomere length were measured in 3225 middle-aged women included in a large population-based prospective cohort. The baseline mtDNA-CN in patients with prevalent breast cancer was significantly higher (12.39 copies/µL) than cancer-free individuals. During an average of 15.2 years of follow-up, 520 patients were diagnosed with cancer. Lower mtDNA-CN was associated with decreased risk of genital organ cancer (hazard ratio (HR), 0.84), and shorter telomere length was associated with increased risk of urinary system cancer (HR, 1.79). Furthermore, mtDNA-CN was inversely associated with all-cause (HR, 1.20) and cancer-specific mortality (HR, 1.21) when considering all cancer types. Surprisingly, shorter telomere length was associated with decreased risk of cancer-specific mortality when considering all cancer types (HR, 0.85). Finally, lower mtDNA-CN and shorter telomere length were associated with increased risk of both all-cause and cancer-specific mortality in genital organ cancer patients. In this study population, we found that mtDNA-CN and telomere length were significantly associated with prevalent and incident cancer and cancer mortality. However, these associations were cancer type specific and need further investigation.
Collapse
|
34
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
35
|
Moya GE, Rivera PD, Dittenhafer-Reed KE. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int J Mol Sci 2021; 22:7030. [PMID: 34209978 PMCID: PMC8268735 DOI: 10.3390/ijms22137030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
Collapse
Affiliation(s)
| | - Phillip D. Rivera
- Department of Chemistry and Biology, Hope College, Holland, MI 49423, USA;
| | | |
Collapse
|
36
|
Zhao S, Bao Z, Zhao X, Xu M, Li MD, Yang Z. Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods. Front Neurosci 2021; 15:645998. [PMID: 34220416 PMCID: PMC8249859 DOI: 10.3389/fnins.2021.645998] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Major depressive disorder (MDD) is a global health challenge that impacts the quality of patients’ lives severely. The disorder can manifest in many forms with different combinations of symptoms, which makes its clinical diagnosis difficult. Robust biomarkers are greatly needed to improve diagnosis and to understand the etiology of the disease. The main purpose of this study was to create a predictive model for MDD diagnosis based on peripheral blood transcriptomes. Materials and Methods We collected nine RNA expression datasets for MDD patients and healthy samples from the Gene Expression Omnibus database. After a series of quality control and heterogeneity tests, 302 samples from six studies were deemed suitable for the study. R package “MetaOmics” was applied for systematic meta-analysis of genome-wide expression data. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic effectiveness of individual genes. To obtain a better diagnostic model, we also adopted the support vector machine (SVM), random forest (RF), k-nearest neighbors (kNN), and naive Bayesian (NB) tools for modeling, with the RF method being used for feature selection. Results Our analysis revealed six differentially expressed genes (AKR1C3, ARG1, KLRB1, MAFG, TPST1, and WWC3) with a false discovery rate (FDR) < 0.05 between MDD patients and control subjects. We then evaluated the diagnostic ability of these genes individually. With single gene prediction, we achieved a corresponding area under the curve (AUC) value of 0.63 ± 0.04, 0.67 ± 0.07, 0.70 ± 0.11, 0.64 ± 0.08, 0.68 ± 0.07, and 0.62 ± 0.09, respectively, for these genes. Next, we constructed the classifiers of SVM, RF, kNN, and NB with an AUC of 0.84 ± 0.09, 0.81 ± 0.10, 0.73 ± 0.11, and 0.83 ± 0.09, respectively, in validation datasets, suggesting that the SVM classifier might be superior for constructing an MDD diagnostic model. The final SVM classifier including 70 feature genes was capable of distinguishing MDD samples from healthy controls and yielded an AUC of 0.78 in an independent dataset. Conclusion This study provides new insights into potential biomarkers through meta-analysis of GEO data. Constructing different machine learning models based on these biomarkers could be a valuable approach for diagnosing MDD in clinical practice.
Collapse
Affiliation(s)
- Shu Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiwei Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengxiang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Ganel L, Chen L, Christ R, Vangipurapu J, Young E, Das I, Kanchi K, Larson D, Regier A, Abel H, Kang CJ, Scott A, Havulinna A, Chiang CWK, Service S, Freimer N, Palotie A, Ripatti S, Kuusisto J, Boehnke M, Laakso M, Locke A, Stitziel NO, Hall IM. Mitochondrial genome copy number measured by DNA sequencing in human blood is strongly associated with metabolic traits via cell-type composition differences. Hum Genomics 2021; 15:34. [PMID: 34099068 PMCID: PMC8185936 DOI: 10.1186/s40246-021-00335-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mitochondrial genome copy number (MT-CN) varies among humans and across tissues and is highly heritable, but its causes and consequences are not well understood. When measured by bulk DNA sequencing in blood, MT-CN may reflect a combination of the number of mitochondria per cell and cell-type composition. Here, we studied MT-CN variation in blood-derived DNA from 19184 Finnish individuals using a combination of genome (N = 4163) and exome sequencing (N = 19034) data as well as imputed genotypes (N = 17718). RESULTS We identified two loci significantly associated with MT-CN variation: a common variant at the MYB-HBS1L locus (P = 1.6 × 10-8), which has previously been associated with numerous hematological parameters; and a burden of rare variants in the TMBIM1 gene (P = 3.0 × 10-8), which has been reported to protect against non-alcoholic fatty liver disease. We also found that MT-CN is strongly associated with insulin levels (P = 2.0 × 10-21) and other metabolic syndrome (metS)-related traits. Using a Mendelian randomization framework, we show evidence that MT-CN measured in blood is causally related to insulin levels. We then applied an MT-CN polygenic risk score (PRS) derived from Finnish data to the UK Biobank, where the association between the PRS and metS traits was replicated. Adjusting for cell counts largely eliminated these signals, suggesting that MT-CN affects metS via cell-type composition. CONCLUSION These results suggest that measurements of MT-CN in blood-derived DNA partially reflect differences in cell-type composition and that these differences are causally linked to insulin and related traits.
Collapse
Affiliation(s)
- Liron Ganel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Chen
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Christ
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Erica Young
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Indraniel Das
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Krishna Kanchi
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - David Larson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Allison Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandra Scott
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aki Havulinna
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Quantitative and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Susan Service
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Nelson Freimer
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit (ATGU), Psychiatric & Neurodevelopmental Genetics Unit, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Adam Locke
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nathan O Stitziel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Wasik K, Berisa T, Pickrell JK, Li JH, Fraser DJ, King K, Cox C. Comparing low-pass sequencing and genotyping for trait mapping in pharmacogenetics. BMC Genomics 2021; 22:197. [PMID: 33743587 PMCID: PMC7981957 DOI: 10.1186/s12864-021-07508-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low pass sequencing has been proposed as a cost-effective alternative to genotyping arrays to identify genetic variants that influence multifactorial traits in humans. For common diseases this typically has required both large sample sizes and comprehensive variant discovery. Genotyping arrays are also routinely used to perform pharmacogenetic (PGx) experiments where sample sizes are likely to be significantly smaller, but clinically relevant effect sizes likely to be larger. RESULTS To assess how low pass sequencing would compare to array based genotyping for PGx we compared a low-pass assay (in which 1x coverage or less of a target genome is sequenced) along with software for genotype imputation to standard approaches. We sequenced 79 individuals to 1x genome coverage and genotyped the same samples on the Affymetrix Axiom Biobank Precision Medicine Research Array (PMRA). We then down-sampled the sequencing data to 0.8x, 0.6x, and 0.4x coverage, and performed imputation. Both the genotype data and the sequencing data were further used to impute human leukocyte antigen (HLA) genotypes for all samples. We compared the sequencing data and the genotyping array data in terms of four metrics: overall concordance, concordance at single nucleotide polymorphisms in pharmacogenetics-related genes, concordance in imputed HLA genotypes, and imputation r2. Overall concordance between the two assays ranged from 98.2% (for 0.4x coverage sequencing) to 99.2% (for 1x coverage sequencing), with qualitatively similar numbers for the subsets of variants most important in pharmacogenetics. At common single nucleotide polymorphisms (SNPs), the mean imputation r2 from the genotyping array was 0.90, which was comparable to the imputation r2 from 0.4x coverage sequencing, while the mean imputation r2 from 1x sequencing data was 0.96. CONCLUSIONS These results indicate that low-pass sequencing to a depth above 0.4x coverage attains higher power for association studies when compared to the PMRA and should be considered as a competitive alternative to genotyping arrays for trait mapping in pharmacogenetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Karen King
- PAREXEL Genomic Medicine, Durham, NC, 27713, USA
| | | |
Collapse
|
39
|
Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations Between Maternal Lifetime Stress and Placental Mitochondrial DNA Mutations in an Urban Multiethnic Cohort. Biol Psychiatry 2021; 89:570-578. [PMID: 33229036 PMCID: PMC7889635 DOI: 10.1016/j.biopsych.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted placental functioning due to stress can have lifelong implications. Cumulative stress and trauma are likely to have lasting impacts on maternal physiological functioning and offspring development, resulting in increased risk for later-life complex disorders for which racial disparities exist. METHODS This study examined the association between maternal lifetime stress and placental mitochondrial DNA mutational load in an urban multiethnic cohort. Maternal lifetime exposure to stressful events was assessed using the validated Life Stressor Checklist-Revised. Whole mitochondrial DNA sequencing was performed and mutations were determined for 365 placenta samples with complete exposure and covariate data. Multivariable regression was used to model maternal lifetime stress in relation to placental mitochondrial DNA mutational load. Racial/ethnic differences were examined by cross-product terms and contrast statements. Gene-wise analyses were conducted. RESULTS We identified 13,189 heteroplasmies (Phred score > 10,000, minor allele frequency < 0.5, number of mutant reads > 1). Women experiencing increased psychosocial stress over their lifetime exhibited a higher number of total placental mitochondrial mutations (β = .23, 95% confidence interval = .03 to .42) and heteroplasmic mutations (β = .18, 95% confidence interval = .05 to .31) but not homoplasmic mutations (β = -.008, 95% confidence interval = -.03 to .01); the strongest associations were observed among Black women and genes coding for NADH dehydrogenase and cytochrome c oxidase subunits. CONCLUSIONS Cumulative maternal lifetime stress is associated with a greater mitochondrial mutational load, particularly among Black women. The impact of racial/ethnic differences in mutational load on placental function directly affecting offspring development and/or leading to chronic disease disparities warrants further investigation.
Collapse
Affiliation(s)
- Kelly J. Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Li Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Xiang Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Andrea A. Baccarelli
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Tessa Bloomquist
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Rosalind J. Wright
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics and Department of Environmental Medicine & Public Health, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
40
|
Nandakumar P, Tian C, O'Connell J, Hinds D, Paterson AD, Sondheimer N. Nuclear genome-wide associations with mitochondrial heteroplasmy. SCIENCE ADVANCES 2021; 7:7/12/eabe7520. [PMID: 33731350 PMCID: PMC7968846 DOI: 10.1126/sciadv.abe7520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/27/2021] [Indexed: 05/10/2023]
Abstract
The role of the nuclear genome in maintaining the stability of the mitochondrial genome (mtDNA) is incompletely known. mtDNA sequence variants can exist in a state of heteroplasmy, which denotes the coexistence of organellar genomes with different sequences. Heteroplasmic variants that impair mitochondrial capacity cause disease, and the state of heteroplasmy itself is deleterious. However, mitochondrial heteroplasmy may provide an intermediate state in the emergence of novel mitochondrial haplogroups. We used genome-wide genotyping data from 982,072 European ancestry individuals to evaluate variation in mitochondrial heteroplasmy and to identify the regions of the nuclear genome that affect it. Age, sex, and mitochondrial haplogroup were associated with the extent of heteroplasmy. GWAS identified 20 loci for heteroplasmy that exceeded genome-wide significance. This included a region overlapping mitochondrial transcription factor A (TFAM), which has multiple roles in mtDNA packaging, replication, and transcription. These results show that mitochondrial heteroplasmy has a heritable nuclear component.
Collapse
Affiliation(s)
| | - Chao Tian
- 23andMe Inc., 223 N Mathilda Ave, Sunnyvale, CA, USA
| | | | - David Hinds
- 23andMe Inc., 223 N Mathilda Ave, Sunnyvale, CA, USA.
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Li JH, Mazur CA, Berisa T, Pickrell JK. Low-pass sequencing increases the power of GWAS and decreases measurement error of polygenic risk scores compared to genotyping arrays. Genome Res 2021; 31:529-537. [PMID: 33536225 PMCID: PMC8015847 DOI: 10.1101/gr.266486.120] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Low-pass sequencing (sequencing a genome to an average depth less than 1× coverage) combined with genotype imputation has been proposed as an alternative to genotyping arrays for trait mapping and calculation of polygenic scores. To empirically assess the relative performance of these technologies for different applications, we performed low-pass sequencing (targeting coverage levels of 0.5× and 1×) and array genotyping (using the Illumina Global Screening Array [GSA]) on 120 DNA samples derived from African- and European-ancestry individuals that are part of the 1000 Genomes Project. We then imputed both the sequencing data and the genotyping array data to the 1000 Genomes Phase 3 haplotype reference panel using a leave-one-out design. We evaluated overall imputation accuracy from these different assays as well as overall power for GWAS from imputed data and computed polygenic risk scores for coronary artery disease and breast cancer using previously derived weights. We conclude that low-pass sequencing plus imputation, in addition to providing a substantial increase in statistical power for genome-wide association studies, provides increased accuracy for polygenic risk prediction at effective coverages of ∼0.5× and higher compared to the Illumina GSA.
Collapse
Affiliation(s)
- Jeremiah H Li
- Gencove, Incorporated, New York, New York 10016, USA
| | - Chase A Mazur
- Gencove, Incorporated, New York, New York 10016, USA
| | - Tomaz Berisa
- Gencove, Incorporated, New York, New York 10016, USA
| | | |
Collapse
|
42
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Zhao H, Song R, Ye Y, Chow WH, Shen J. Allostatic score and its associations with demographics, healthy behaviors, tumor characteristics, and mitochondrial DNA among breast cancer patients. Breast Cancer Res Treat 2021; 187:587-596. [PMID: 33507481 DOI: 10.1007/s10549-021-06102-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Allostatic load (AL), a composite index, has been used to capture variation in life-course stresses. However, few studies have been carried out among breast cancer patients. METHODS In this study, we examined the cross-sectional association of AL with demographics, healthy behaviors, tumor characteristics, and mitochondrial DNA copy number in breast cancer patients. The study used a sub-sample of 934 women with newly diagnosed breast cancer at M.D. Anderson from 2013 to 2018. To construct the AL score, the study used a battery of seventeen factors that represents the activity of five physiological systems: metabolic, cardiovascular, immunological, renal, and liver. RESULTS AL was positively associated with the age of disease diagnosis (P = 0.002), and was higher in Black and Hispanic populations than White (P = 0.001 and 0.032, respectively). AL was also found more abundant in those who experienced marital dissolution (P = 0.006), lacked a college education (P = 0.045), currently smoked (P = 0.011), and had low levels of physical activity (P = 0.037) than their counterparts. The study then found that higher AL was associated with increased odds of having poorly differentiated tumors (Odds ratio (OR): 1.40, 95% confidence interval (CI): 1.28, 1.62). An additional significant association was observed between AL with estrogen receptor negative (ER-) (OR = 1.56, 95%CI: 1.02, 2.36) among Black patients. Finally, we observed a significant positive correlation between AL with leukocyte mitochondrial DNA copy number variation (P < 0.001). CONCLUSIONS We conclude AL is influenced by selected demographics and healthy behaviors, and further is correlated with tumor characteristics and mitochondrial DNA copy number in breast cancer patients.
Collapse
Affiliation(s)
- Hua Zhao
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuanqing Ye
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Precision Health and Data Science, School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wong-Ho Chow
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Shen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Family Medicine and Population Health, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
44
|
Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet 2020; 140:849-861. [PMID: 33385171 PMCID: PMC8099832 DOI: 10.1007/s00439-020-02249-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Mitochondrial (MT) dysfunction is a hallmark of aging and has been associated with most aging-related diseases as well as immunological processes. However, little is known about aging, lifestyle and genetic factors influencing mitochondrial DNA (mtDNA) abundance. In this study, mtDNA abundance was estimated from the weighted intensities of probes mapping to the MT genome in 295,150 participants from the UK Biobank. We found that the abundance of mtDNA was significantly elevated in women compared to men, was negatively correlated with advanced age, higher smoking exposure, greater body-mass index, higher frailty index as well as elevated red and white blood cell count and lower mortality. In addition, several biochemistry markers in blood-related to cholesterol metabolism, ion homeostasis and kidney function were found to be significantly associated with mtDNA abundance. By performing a genome-wide association study, we identified 50 independent regions genome-wide significantly associated with mtDNA abundance which harbour multiple genes involved in the immune system, cancer as well as mitochondrial function. Using mixed effects models, we estimated the SNP-heritability of mtDNA abundance to be around 8%. To investigate the consequence of altered mtDNA abundance, we performed a phenome-wide association study and found that mtDNA abundance is involved in risk for leukaemia, hematologic diseases as well as hypertension. Thus, estimating mtDNA abundance from genotyping arrays has the potential to provide novel insights into age- and disease-relevant processes, particularly those related to immunity and established mitochondrial functions.
Collapse
|
45
|
Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2020; 56:111-117. [PMID: 33220501 DOI: 10.1016/j.mito.2020.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 01/11/2023]
Abstract
Mitochondria are responsible for providing our cells with energy, as well as regulating oxidative stress and apoptosis, and considerable evidence demonstrates that mitochondria-related alterations are prevalent during chronic stress and depression. Here, we discuss how chronic stress may induce depressive behavior by potentiating mitochondrial allostatic load, which ultimately decreases energy production, elevates the generation of harmful reactive oxygen species, damages mitochondrial DNA and increases membrane permeability and pro-apoptotic factor release. We also discuss how mitochondrial insults can exacerbate the immune response, contributing to depressive symptomology. Furthermore, we illustrate how depression symptoms are associated with specific mitochondrial defects, and how targeting of these defects with pharmacological agents may be a promising avenue for the development of novel, more efficacious antidepressants. In summary, this review supports the notion that severe psychosocial stress induces mitochondrial dysfunction, thereby increasing the vulnerability to developing depressive symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
46
|
Calarco CA, Lobo MK. Depression and substance use disorders: Clinical comorbidity and shared neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:245-309. [PMID: 33648671 DOI: 10.1016/bs.irn.2020.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mood disorders, including major depressive disorder (MDD), are the most prevalent psychiatric illnesses, and pose an incredible burden to society, both in terms of disability and in terms of costs associated with medical care and lost work time. MDD has extremely high rates of comorbidity with substance use disorders (SUD) as many of the same neurobiological circuits and molecular mechanisms regulate the reward pathways disrupted in both conditions. MDD may induce SUDs, SUD may contribute to MDD development, or underlying vulnerabilities and common life experience may confer risk to developing both conditions. In this chapter we explore theories of MDD and SUD comorbidity, the neurobiological underpinnings of depression, overlapping cellular and molecular pathways for both conditions, and current treatment approaches for these comorbid conditions.
Collapse
Affiliation(s)
- Cali A Calarco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
47
|
Jaiswal KS, Khanna S, Ghosh A, Padhan P, Raghav SK, Gupta B. Differential mitochondrial genome in patients with Rheumatoid Arthritis. Autoimmunity 2020; 54:1-12. [PMID: 33191792 DOI: 10.1080/08916934.2020.1846182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mitochondria play an important role in cell survival, function and lineage differentiation. Changes in mitochondrial DNA (mtDNA) may control mitochondrial functions and thus may impart an alternative cellular state thereby leading to a disease condition in the body. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease wherein immune cells become self-reactive causing joint inflammation, swelling and pain in patients. The changes in mtDNA may alter cellular functions thereby directing the immune cells towards an inflammatory phenotype in RA. Therefore, it becomes pertinent to identify changes in mtDNA sequence in immune cells of RA patients to understand the pathogenesis and progression of RA. METHODS mtDNA from peripheral blood mono-nuclear cells (PBMCs) of 23 RA patients and 17 healthy controls (HCs) were sequenced using next-generation sequencing (NGS). Further, single nucleotide polymorphisms (SNPs) and other variable changes in mtDNA hypervariable and coding regions, amino acid changes with a putative impact on disease, levels of heteroplasmy, copy number variations and haplogroup analysis in RA patients and HCs were analysed and compared to identify any association of mtDNA changes and RA disease. RESULTS A total of 382 single nucleotide mtDNA variants were observed, 91 (23.82%) were present in hypervariable region and 291 (76.18%) in coding region of patients and HC. The variant 513 GCA > ACA, with G present in HVR-III, known to control the mitochondrial translation function, was significantly present in RA patients. The CYTB gene had larger number of SNPs in HC samples while RNR2 was more variable in RA patients. A non-synonymous heteroplasmy in ND1 gene was found at a single nucleotide position 3533 in an increased number of RA patients as compared to the controls. A significant increase in mtDNA duplication and a higher frequency of the haplogroup U was also characteristic of RA. Also, the presence of SNPs in mitochondrial tRNA genes at two positions 12308 A > G and 15924 A > G were found to be pathogenic. CONCLUSION We herein observed an altered mtDNA sequence in immune cells of RA patients and thus a possible role of mitochondrial genome in the development of RA. The observed nucleotide changes in mtDNA control region, RNR2 gene, increased heteroplasmy and mtDNA duplication in RA patients may alter sites for transcription factor binding thereby influencing mtDNA gene expression, as well as copy numbers thereby affecting the mitochondrial proteins and their functions. These changes in mtDNA could be one of the probable reasons among many leading to the progression of RA.
Collapse
Affiliation(s)
- Kumar Sagar Jaiswal
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Shweta Khanna
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Arup Ghosh
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sunil Kumar Raghav
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
48
|
Jia Q, Xu L, Shen J, Wei Y, Xu H, Shi J, Jia Z, Zhao X, Liu C, Zhong Q, Tian Y, He K. Detecting Rare Variants and Heteroplasmy of Mitochondrial DNA from High-Throughput Sequencing in Patients with Coronary Artery Disease. Med Sci Monit 2020; 26:e925401. [PMID: 33132382 PMCID: PMC7646198 DOI: 10.12659/msm.925401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Although mutations and dysfunction of mitochondrial DNA (mtDNA) are related to a variety of diseases, few studies have focused on the relationship between mtDNA and coronary artery disease (CAD), especially the relationship between rare variants and CAD. Material/Methods Two-stage high-throughput sequencing was performed to detect mtDNA variants or heteroplasmy and the relationship between them and CAD phenotypes. In the discovery stage, mtDNA was analyzed by high-throughput sequencing of long-range PCR products generated from the peripheral blood of 85 CAD patients and 80 demographically matched controls. In the validation stage, high-throughput sequencing for mtDNA target regions captured by GenCap Kit was performed on 100 CAD samples and 100 controls. Finally, tRNA fine mapping was performed between our study and the reported Chinese CAD study. Results Among the tRNA genes, we confirmed a highly conserved rare variant, A5592G, previously reported in the Chinese CAD study, and 2 novel rare mutations that reached Bonferroni’s correction significance in the combined analysis were found (P=7.39×10−4 for T5628C in tRNAAla and P=1.01×10−5 for T681C in 12S rRNA) in the CAD study. Both of them were predicted to be pathological, with T5628C disrupting an extremely conservative base-pairing at the AC stem of tRNAAla. Furthermore, we confirmed the controversial issue that the number of non-synonymous heteroplasmic sites per sample was significantly higher in CAD patients. Conclusions In conclusion, our study confirmed the contribution of rare variants in CAD and showed that CAD patients had more non-synonymous heterogeneity mutations, which may be helpful in identifying the genetic and molecular basis of CAD.
Collapse
Affiliation(s)
- Qian Jia
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Lu Xu
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Juan Shen
- BGI Genomics, Shenzhen, Guangdong, China (mainland)
| | - Yanping Wei
- BGI Genomics, Shenzhen, Guangdong, China (mainland)
| | - Huaiqian Xu
- BGI Genomics, Shenzhen, Guangdong, China (mainland)
| | - Jinlong Shi
- Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Zhilong Jia
- Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Xiaojing Zhao
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Chunlei Liu
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Qin Zhong
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Yaping Tian
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Kunlun He
- Core Laboratory of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland).,Beijing Key laboratory of Chronic Heart Failure Precision Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| |
Collapse
|
49
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
50
|
Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020; 53:214-223. [PMID: 32544465 DOI: 10.1016/j.mito.2020.06.004] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) is a biomarker of mitochondrial function and levels of mtDNA-CN have been reproducibly associated with overall mortality and a number of age-related diseases, including cardiovascular disease, chronic kidney disease, and cancer. Recent advancements in techniques for estimating mtDNA-CN, in particular the use of DNA microarrays and next-generation sequencing data, have led to the comprehensive assessment of mtDNA-CN across these and other diseases and traits. The importance of mtDNA-CN measures to disease and these advancing technologies suggest the potential for mtDNA-CN to be a useful biomarker in the clinic. While the exact mechanism(s) underlying the association of mtDNA-CN with disease remain to be elucidated, we review the existing literature which supports roles for inflammatory dynamics, immune function and alterations to cell signaling as consequences of variation in mtDNA-CN. We propose that future studies should focus on characterizing longitudinal, cell-type and cross-tissue profiles of mtDNA-CN as well as improving methods for measuring mtDNA-CN which will expand the potential for its use as a clinical biomarker.
Collapse
Affiliation(s)
- Christina A Castellani
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ryan J Longchamps
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jing Sun
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eliseo Guallar
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dan E Arking
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|