1
|
Toth BA, Burgess CR. Phasic Dopamine Release in the Nucleus Accumbens Influences REM Sleep Timing. J Neurosci 2025; 45:e1374242024. [PMID: 39794128 PMCID: PMC11867001 DOI: 10.1523/jneurosci.1374-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
Based on the activity of dopamine (DA) neurons during behavioral states, the DA system has long been thought to be foundational in regulating sleep-wake behavior; over the past decade, advances in circuit manipulation and recording techniques have strengthened this perspective. Recently, several studies have demonstrated that DA release in regions of the limbic system is important in the promotion of REM sleep. Yet how DA dynamics change within bouts of sleep, how these changes are regulated, and whether they influence future state changes remains unclear. To address these questions, in mice of both sexes we used in vivo fiber photometry and inhibitory optogenetics to identify a specific role of DA transients in the nucleus accumbens (NAcc) in state transitions from NREM sleep. We found that DA transients increase their frequency and amplitude over the duration of NREM sleep and that this increase is more pronounced during NREM bouts that transition into REM sleep. Next, we found that DA transients in NREM sleep are influenced by changes in REM sleep pressure. Finally, we show that transient DA release in the NAcc plays a functional role in regulating the timing of REM sleep entrances, as inhibition of midbrain DA neuron terminals in the NAcc prolonged bouts of NREM sleep and decreased the frequency of bouts of REM sleep. These findings demonstrate that DA release in the NAcc is dynamically regulated by sleep pressure and has a functional role in transitions from NREM sleep, particularly those into REM sleep.
Collapse
Affiliation(s)
- Brandon A Toth
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Christian R Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Higashiyama M, Masuda Y, Katagiri A, Toyoda H, Yamada M, Yoshida A, Kato T. Comparison of rhythmic jaw muscle activities induced by electrical stimulations of the corticobulbar tract during rapid eye movement sleep with those during wakefulness and non-rapid eye movement sleep in freely moving Guinea pigs. J Oral Biosci 2024; 66:58-66. [PMID: 39304060 DOI: 10.1016/j.job.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Rhythmic jaw muscle activities (RJMAs) occur during rapid eye movement (REM) sleep in humans and animals even though motoneurons are inhibited. The present study compared the characteristics of jaw muscle activities induced by electrical microstimulations of the corticobulbar tract (CT) during REM sleep with those during wakefulness and non-REM sleep. METHODS Eleven guinea pigs were surgically prepared for polygraphic recordings with the implantation of a stimulating electrode. Long- and short-train repetitive electrical microstimulations were applied to the CT under freely moving conditions. The response rate, latency, burst amplitude, and cycle length in the digastric muscle were calculated and cortical and cardiac activities were quantified. RESULTS Long-train microstimulations induced RJMAs in the digastric muscle followed by masseter muscle activity during wakefulness and non-REM sleep and only induced rhythmic digastric muscle activity during REM sleep. The response rate of RJMAs and the burst amplitude of digastric muscles were significantly lower during REM sleep than during wakefulness and non-REM sleep. However, response latency did not significantly differ between REM sleep and wakefulness. Transient cortical and cardiac changes were associated with RJMAs induced during non-REM sleep, but not during REM sleep. Short-train microstimulations induced a short-latency digastric response, the amplitude of which was significantly lower during REM sleep than during non-REM sleep and wakefulness. CONCLUSIONS These results suggest that the masticatory CPG was activated by electrical CT stimulations independently of the motoneuron inhibitory system during REM sleep.
Collapse
Affiliation(s)
- Makoto Higashiyama
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Yuji Masuda
- Matsumoto Dental University, Graduate School of Oral Medicine, Department of Oro-maxillofacial Neurobiology, Shiojiri, Nagano, Japan.
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Masaharu Yamada
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Atsushi Yoshida
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, Japan.
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan; Sleep Medicine Center Osaka University Hospital, Osaka, Japan.
| |
Collapse
|
3
|
Obeid JM, Sadeghi JK, Wolf AS, Bremner RM. Sleep, Nutrition, and Health Maintenance in Cardiothoracic Surgery. Thorac Surg Clin 2024; 34:213-221. [PMID: 38944448 DOI: 10.1016/j.thorsurg.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Cardiothoracic surgeons work in high-intensity environments starting in surgical training and throughout their careers. They deal with critical patients. Their routine procedures are delicate, require extensive attention to detail, and can have detrimental effects on patients' lives. Cardiothoracic surgeons are required to perform at their best capacity incessantly. To do this, they must safeguard their mental and physical well-being. Preserving health through sleep, nutrition, exercise, and routine medical checkups ensures a cardiothoracic surgeon's well-being. Great personal effort and discipline is required to maintain health in a busy schedule. We offer our best recommendations from expert peers in the field.
Collapse
Affiliation(s)
- Joseph M Obeid
- Department of Cardiothoracic Surgery, Temple University Hospital, 3401 N Broad Street, Parkinson Pavilion, Suite 501C, Philadelphia, PA 19140, USA
| | - John K Sadeghi
- Department of Cardiothoracic Surgery, Temple University Hospital, 3401 N Broad Street, Parkinson Pavilion, Suite 501C, Philadelphia, PA 19140, USA
| | - Andrea S Wolf
- New York Mesothelioma Program, Department of Thoracic Surgery, The Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, Box 1023, New York, NY 10029, USA
| | - Ross M Bremner
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 500 W. Thomas Road, Suite 500, Phoenix, AZ 85013, USA; School of Medicine, Creighton University, Phoenix Health Sciences Campus, 3100 N Central Avenue, Phoenix, AZ 85012, USA.
| |
Collapse
|
4
|
Le L, Miyanishi K, Tanaka J, Majewska AK. Microglial Regulation of Sleep and Wakefulness. ADVANCES IN NEUROBIOLOGY 2024; 37:243-260. [PMID: 39207696 DOI: 10.1007/978-3-031-55529-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sleep serves a multitude of roles in brain maturation and function. Although the neural networks involved in sleep regulation have been extensively characterized, it is increasingly recognized that neurons are not the sole conductor orchestrating the rhythmic cycle of sleep and wakefulness. In the central nervous system, microglia have emerged as an important player in sleep regulation. Within the last two decades, microglia have gained substantial attention for carrying out numerous nonimmune tasks that are crucial for brain development and function by co-opting similar mechanisms used in their conventional immune functions. Here, we highlight the importance of microglia in sleep regulation with recent findings reporting an arrhythmic sleep/wake cycle in the absence of microglia. Although the underlying mechanisms for such regulation are still being uncovered, it is likely that microglial contributions to the rhythmic control of the sleep/wake cycle come from their influence on synaptic strength and neuronal activity. We review the current literature to provide speculative signaling pathways and suggest key questions for future research. Advancing our knowledge of the mechanistic contribution of microglia to sleep regulation will not only further our insight into this critical biological process but also be instrumental in providing novel therapeutic strategies for sleep disorders.
Collapse
Affiliation(s)
- Linh Le
- Department of Neuroscience, Del Monte Institute of Neuroscience, Center for Visual Science, Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA
| | - Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan.
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute of Neuroscience, Center for Visual Science, Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Marshall Orem J. Skimming stones. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad026. [PMID: 37650120 PMCID: PMC10465270 DOI: 10.1093/sleepadvances/zpad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Indexed: 09/01/2023]
|
6
|
Osanai H, Yamamoto J, Kitamura T. Extracting electromyographic signals from multi-channel LFPs using independent component analysis without direct muscular recording. CELL REPORTS METHODS 2023; 3:100482. [PMID: 37426755 PMCID: PMC10326347 DOI: 10.1016/j.crmeth.2023.100482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 07/11/2023]
Abstract
Electromyography (EMG) has been commonly used for the precise identification of animal behavior. However, it is often not recorded together with in vivo electrophysiology due to the need for additional surgeries and setups and the high risk of mechanical wire disconnection. While independent component analysis (ICA) has been used to reduce noise from field potential data, there has been no attempt to proactively use the removed "noise," of which EMG signals are thought to be one of the major sources. Here, we demonstrate that EMG signals can be reconstructed without direct EMG recording using the "noise" ICA component from local field potentials. The extracted component is highly correlated with directly measured EMG, termed IC-EMG. IC-EMG is useful for measuring an animal's sleep/wake, freezing response, and non-rapid eye movement (NREM)/REM sleep states consistently with actual EMG. Our method has advantages in precise and long-term behavioral measurement in wide-ranging in vivo electrophysiology experiments.
Collapse
Affiliation(s)
- Hisayuki Osanai
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Tellenbach N, Schmidt MH, Alexiev F, Blondiaux E, Cavalloni F, Bassetti CL, Heydrich L, Bargiotas P. REM sleep and muscle atonia in brainstem stroke: A quantitative polysomnographic and lesion analysis study. J Sleep Res 2023; 32:e13640. [PMID: 35609965 DOI: 10.1111/jsr.13640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Important brainstem regions are involved in the regulation of rapid eye movement sleep. We hypothesized that brainstem stroke is associated with dysregulated rapid eye movement sleep and related muscle activity. We compared quantitative/qualitative polysomnography features of rapid eye movement sleep and muscle activity (any, phasic, tonic) between 15 patients with brainstem stroke (N = 46 rapid eye movement periods), 16 patients with lacunar/non-brainstem stroke (N = 40 rapid eye movement periods), 15 healthy controls (N = 62 rapid eye movement periods), and patients with Parkinson's disease and polysomnography-confirmed rapid eye movement sleep behaviour disorder. Further, in the brainstem group, we performed a magnetic resonance imaging-based lesion overlap analysis. The mean ratio of muscle activity to rapid eye movement sleep epoch in the brainstem group ("any" muscle activity 0.09 ± 0.15; phasic muscle activity 0.08 ± 0.14) was significantly lower than in the lacunar group ("any" muscle activity 0.17 ± 0.2, p < 0.05; phasic muscle activity 0.16 ± 0.19, p < 0.05), and also lower than in the control group ("any" muscle activity 0.15 ± 0.17, p < 0.05). Magnetic resonance imaging-based lesion analysis indicated an area of maximum overlap in the medioventral pontine region for patients with reduced phasic muscle activity index. For all groups, mean values of muscle activity were significantly lower than in the patients with Parkinson's disease and polysomnography-confirmed REM sleep behaviour disorder group ("any" activity 0.51 ± 0.26, p < 0.0001 for all groups; phasic muscle activity 0.42 ± 0.21, p < 0.0001 for all groups). For the tonic muscle activity in the mentalis muscle, no significant differences were found between the groups. In the brainstem group, contrary to the lacunar and the control groups, "any" muscle activity index during rapid eye movement sleep was significantly reduced after the third rapid eye movement sleep phase. This study reports on the impact of brainstem stroke on rapid eye movement atonia features in a human cohort. Our findings highlight the important role of the human brainstem, in particular the medioventral pontine regions, in the regulation of phasic muscle activity during rapid eye movement sleep and the ultradian distribution of rapid eye movement-related muscle activity.
Collapse
Affiliation(s)
- Nathalie Tellenbach
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Filip Alexiev
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland.,Neurology Clinic, St Anna University Hospital, Sofia, Bulgaria
| | - Eva Blondiaux
- Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal institute of Technology (EPFL), Geneva, Switzerland
| | - Fabian Cavalloni
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Claudio L Bassetti
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Lukas Heydrich
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland
| | - Panagiotis Bargiotas
- Department of Neurology, University Hospital (Inselspital) and University of Bern, Bern, Switzerland.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Rial RV, Akaârir M, Canellas F, Barceló P, Rubiño JA, Martín-Reina A, Gamundí A, Nicolau MC. Mammalian NREM and REM sleep: Why, when and how. Neurosci Biobehav Rev 2023; 146:105041. [PMID: 36646258 DOI: 10.1016/j.neubiorev.2023.105041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
This report proposes that fish use the spinal-rhombencephalic regions of their brain to support their activities while awake. Instead, the brainstem-diencephalic regions support the wakefulness in amphibians and reptiles. Lastly, mammals developed the telencephalic cortex to attain the highest degree of wakefulness, the cortical wakefulness. However, a paralyzed form of spinal-rhombencephalic wakefulness remains in mammals in the form of REMS, whose phasic signs are highly efficient in promoting maternal care to mammalian litter. Therefore, the phasic REMS is highly adaptive. However, their importance is low for singletons, in which it is a neutral trait, devoid of adaptive value for adults, and is mal-adaptive for marine mammals. Therefore, they lost it. The spinal-rhombencephalic and cortical wakeful states disregard the homeostasis: animals only attend their most immediate needs: foraging defense and reproduction. However, these activities generate allostatic loads that must be recovered during NREMS, that is a paralyzed form of the amphibian-reptilian subcortical wakefulness. Regarding the regulation of tonic REMS, it depends on a hypothalamic switch. Instead, the phasic REMS depends on an independent proportional pontine control.
Collapse
Affiliation(s)
- Rubén V Rial
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Mourad Akaârir
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Francesca Canellas
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Pere Barceló
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - José A Rubiño
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut; Hospital Son Espases, 07120, Palma de Mallorca (España).
| | - Aida Martín-Reina
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - Antoni Gamundí
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| | - M Cristina Nicolau
- Laboratori de Fisiologia del son i els ritmes biologics. Universitat de les Illes Balears, Ctra. Valldemossa Km 7.5, 07122 Palma de Mallorca (España); IDISBA. Institut d'Investigació Sanitaria de les Illes Balears; IUNICS Institut Universitari d'Investigació en Ciències de la Salut.
| |
Collapse
|
9
|
Pupil Dynamics-derived Sleep Stage Classification of a Head-fixed Mouse Using a Recurrent Neural Network. Keio J Med 2023. [PMID: 36740272 DOI: 10.2302/kjm.2022-0020-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The standard method for sleep state classification is thresholding the amplitudes of electroencephalography (EEG) and electromyography (EMG) data, followed by manual correction by an expert. Although popular, this method has some shortcomings: (1) the time-consuming manual correction by human experts is sometimes a bottleneck hindering sleep studies, (2) EEG electrodes on the skull interfere with wide-field imaging of the cortical activity of a head-fixed mouse under a microscope, (3) invasive surgery to fix the electrodes on the thin mouse skull risks brain tissue injury, and (4) metal electrodes for EEG and EMG recording are difficult to apply to some experimental apparatus such as that for functional magnetic resonance imaging. To overcome these shortcomings, we propose a pupil dynamics-based vigilance state classification method for a head-fixed mouse using a long short-term memory (LSTM) model, a variant of a recurrent neural network, for multi-class labeling of NREM, REM, and WAKE states. For supervisory hypnography, EEG and EMG recording were performed on head-fixed mice. This setup was combined with left eye pupillometry using a USB camera and a markerless tracking toolbox, DeepLabCut. Our open-source LSTM model with feature inputs of pupil diameter, pupil location, pupil velocity, and eyelid opening for 10 s at a 10 Hz sampling rate achieved vigilance state estimation with a higher classification performance (macro F1 score, 0.77; accuracy, 86%) than a feed-forward neural network. Findings from a diverse range of pupillary dynamics implied possible subdivision of the vigilance states defined by EEG and EMG. Pupil dynamics-based hypnography can expand the scope of alternatives for sleep stage scoring of head-fixed mice.
Collapse
|
10
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
11
|
Regularly occurring bouts of retinal movements suggest an REM sleep-like state in jumping spiders. Proc Natl Acad Sci U S A 2022; 119:e2204754119. [PMID: 35939710 PMCID: PMC9388130 DOI: 10.1073/pnas.2204754119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sleep and sleep-like states are present across the animal kingdom, with recent studies convincingly demonstrating sleep-like states in arthropods, nematodes, and even cnidarians. However, the existence of different sleep phases across taxa is as yet unclear. In particular, the study of rapid eye movement (REM) sleep is still largely centered on terrestrial vertebrates, particularly mammals and birds. The most salient indicator of REM sleep is the movement of eyes during this phase. Movable eyes, however, have evolved only in a limited number of lineages-an adaptation notably absent in insects and most terrestrial arthropods-restricting cross-species comparisons. Jumping spiders, however, possess movable retinal tubes to redirect gaze, and in newly emerged spiderlings, these movements can be directly observed through their temporarily translucent exoskeleton. Here, we report evidence for an REM sleep-like state in a terrestrial invertebrate: periodic bouts of retinal movements coupled with limb twitching and stereotyped leg curling behaviors during nocturnal resting in a jumping spider. Observed retinal movement bouts were consistent, including regular durations and intervals, with both increasing over the course of the night. That these characteristic REM sleep-like behaviors exist in a highly visual, long-diverged lineage further challenges our understanding of this sleep state. Comparisons across such long-diverged lineages likely hold important questions and answers about the visual brain as well as the origin, evolution, and function of REM sleep.
Collapse
|
12
|
Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022; 31:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
We summarize here the progress in identifying the neuronal network as well as the function of paradoxical sleep and the gaps of knowledge that should be filled in priority. The core system generating paradoxical sleep localized in the brainstem is now well identified, and the next step is to clarify the role of the forebrain in particular that of the hypothalamus including the melanin-concentrating hormone neurons and of the basolateral amygdala. We discuss these two options, and also the discovery that cortical activation during paradoxical sleep is restricted to a few limbic cortices activated by the lateral supramammillary nucleus and the claustrum. Such activation nicely supports the findings recently obtained showing that neuronal reactivation occurs during paradoxical sleep in these structures, and induces both memory consolidation of important memory and forgetting of less relevant ones. The question that still remains to be answered is whether paradoxical sleep is playing more crucial roles in processing emotional and procedural than other types of memories. One attractive hypothesis is that paradoxical sleep is responsible for erasing negative emotional memories, and that this function is not properly functioning in depressed patients. On the other hand, the presence of a muscle atonia during paradoxical sleep is in favour of a role in procedural memory as new types of motor behaviours can be tried without harm during the state. In a way, it also fits with the proposed role of paradoxical sleep in setting up the sensorimotor system during development.
Collapse
Affiliation(s)
- Elisa Casaglia
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France.,University of Cagliari, Cagliari, Italy
| | - Pierre-Hervé Luppi
- INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France.,University Lyon 1, Lyon, France
| |
Collapse
|
13
|
The REM-sleep related characteristics of narcolepsy: A nation-wide multi-center study in Turkey, the REMCON study. Sleep Med 2022; 94:17-25. [DOI: 10.1016/j.sleep.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/18/2022]
|
14
|
Tseng YT, Zhao B, Chen S, Ye J, Liu J, Liang L, Ding H, Schaefke B, Yang Q, Wang L, Wang F, Wang L. The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron 2022; 110:1223-1239.e8. [PMID: 35065715 DOI: 10.1016/j.neuron.2021.12.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/10/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
When an animal faces a threatening situation while asleep, rapid arousal is the essential prerequisite for an adequate response. Here, we find that predator stimuli induce immediate arousal from REM sleep compared with NREM sleep. Using in vivo neural activity recording and cell-type-specific manipulations, we identify neurons in the medial subthalamic nucleus (mSTN) expressing corticotropin-releasing hormone (CRH) that mediate arousal and defensive responses to acute predator threats received through multiple sensory modalities across REM sleep and wakefulness. We observe involvement of the same neurons in the normal regulation of REM sleep and the adaptive increase in REM sleep induced by sustained predator stress. Projections to the lateral globus pallidus (LGP) are the effector pathway for the threat-coping responses and REM-sleep expression. Together, our findings suggest adaptive REM-sleep responses could be protective against threats and uncover a critical component of the neural circuitry at their basis.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Binghao Zhao
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shanping Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialin Ye
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lisha Liang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Ding
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Bernhard Schaefke
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Qin Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Lina Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| |
Collapse
|
15
|
Modarres MH, Elliott JE, Weymann KB, Pleshakov D, Bliwise DL, Lim MM. Validation of Visually Identified Muscle Potentials during Human Sleep Using High Frequency/Low Frequency Spectral Power Ratios. SENSORS (BASEL, SWITZERLAND) 2021; 22:55. [PMID: 35009594 PMCID: PMC8747095 DOI: 10.3390/s22010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Surface electromyography (EMG), typically recorded from muscle groups such as the mentalis (chin/mentum) and anterior tibialis (lower leg/crus), is often performed in human subjects undergoing overnight polysomnography. Such signals have great importance, not only in aiding in the definitions of normal sleep stages, but also in defining certain disease states with abnormal EMG activity during rapid eye movement (REM) sleep, e.g., REM sleep behavior disorder and parkinsonism. Gold standard approaches to evaluation of such EMG signals in the clinical realm are typically qualitative, and therefore burdensome and subject to individual interpretation. We originally developed a digitized, signal processing method using the ratio of high frequency to low frequency spectral power and validated this method against expert human scorer interpretation of transient muscle activation of the EMG signal. Herein, we further refine and validate our initial approach, applying this to EMG activity across 1,618,842 s of polysomnography recorded REM sleep acquired from 461 human participants. These data demonstrate a significant association between visual interpretation and the spectrally processed signals, indicating a highly accurate approach to detecting and quantifying abnormally high levels of EMG activity during REM sleep. Accordingly, our automated approach to EMG quantification during human sleep recording is practical, feasible, and may provide a much-needed clinical tool for the screening of REM sleep behavior disorder and parkinsonism.
Collapse
Affiliation(s)
- Mo H. Modarres
- Mental Illness Research, Education and Clinical Center (MIRECC-VISN1), VA Bedford Health Care System, Bedford, MA 01730, USA;
| | - Jonathan E. Elliott
- VA Portland Health Care System, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Dennis Pleshakov
- School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | | | - Miranda M. Lim
- VA Portland Health Care System, Portland, OR 97239, USA;
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
16
|
Toyota R, Fukui KI, Kamimura M, Katagiri A, Sato H, Toyoda H, Rompré P, Ikebe K, Kato T. Sleep stage-dependent changes in tonic masseter and cortical activities in young subjects with primary sleep bruxism. Sleep 2021; 45:6349091. [PMID: 34383078 DOI: 10.1093/sleep/zsab207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/02/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES The present study investigated the hypothesis that subjects with primary sleep bruxism (SB) exhibit masseter and cortical hyperactivities during quiet sleep periods that are associated with a high frequency of rhythmic masticatory muscle activity (RMMA). METHODS Fifteen SB and ten control participants underwent polysomnographic recordings. The frequencies of oromotor events and arousals and the percentage of arousals with oromotor events were assessed. Masseter muscle tone during sleep was quantified using a cluster analysis. Electroencephalography power and heart rate variability were quantified and then compared between the two groups and among sleep stages. RESULTS The frequency of RMMA and percentage of arousals with RMMA were significantly higher in SB subjects than in controls in all stages, while these variables for non-rhythmic oromotor events did not significantly differ between the groups. In SB subjects, the frequency of RMMA was the highest in stage N1 and the lowest in stages N3 and R, while the percentage of arousals with RMMA was higher in stage N3 than stages N1 and R. The cluster analysis classified masseter activity during sleep into two clusters for masseter tone and contractions. Masseter muscle tone showed typical stage-dependent changes in both groups, but did not significantly differ between the groups. Furthermore, no significant differences were observed in electroencephalography power or heart rate variability between the groups. CONCLUSION Young SB subjects exhibited sleep stage-dependent increases in the responsiveness of RMMA to transient arousals, but did not show masseter or cortical hyperactivity during sleep.
Collapse
Affiliation(s)
- Risa Toyota
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ken-Ichi Fukui
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Mayo Kamimura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ayano Katagiri
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hajime Sato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Division of Pharmacology, Meikai University School of Dentistry
| | - Hiroki Toyoda
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Pierre Rompré
- Faculty of Dentistry, Université de Montréal, Montreal
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takafumi Kato
- Department of Oral Physiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Sleep Medicine Center, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
17
|
Yoshimoto A, Yamashiro K, Ikegaya Y, Matsumoto N. Acute Ramelteon Treatment Maintains the Cardiac Rhythms of Rats during Non-REM Sleep. Biol Pharm Bull 2021; 44:789-797. [PMID: 34078810 DOI: 10.1248/bpb.b20-00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sleep curtailment negatively affects cardiac activities and thus should be ameliorated by pharmacological methods. One of the therapeutic targets is melatonin receptors, which tune circadian rhythms. Ramelteon, a melatonin MT1/MT2 receptor agonist, has recently been developed to modulate sleep-wake rhythms. To date, the sleep-promoting effect of ramelteon has been widely delineated, but whether ramelteon treatment physiologically influences cardiac function is not well understood. To address this question, we recorded electrocardiograms, electromyograms, and electrocorticograms in the frontal cortex and the olfactory bulb of unrestrained rats treated with either ramelteon or vehicle. We detected vigilance states based on physiological measurements and analyzed cardiac and muscular activities. We found that during non-rapid eye movement (non-REM) sleep, heartrate variability was maintained by ramelteon treatment. Analysis of the electromyograms confirmed that neither microarousal during non-REM sleep nor the occupancy of phasic periods during REM sleep was altered by ramelteon. Our results indicate that ramelteon has a remedial effect on cardiac activity by keeping the heartrate variability and may reduce cardiac dysfunction during sleep.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Institute for AI and Beyond, The University of Tokyo
- Center for Information and Neural Networks, National Institute of Information and Communications Technology
| | | |
Collapse
|
18
|
Eckert MJ, McNaughton BL, Tatsuno M. Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190655. [PMID: 32248776 DOI: 10.1098/rstb.2019.0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural activity patterns of recent experiences are reactivated during sleep in structures critical for memory storage, including hippocampus and neocortex. This reactivation process is thought to aid memory consolidation. Although synaptic rearrangement dynamics following learning involve an interplay between slow-wave sleep (SWS) and rapid eye movement (REM) sleep, most physiological evidence implicates SWS directly following experience as a preferred window for reactivation. Here, we show that reactivation occurs in both REM and SWS and that coordination of REM and SWS activation on the same day is associated with rapid learning of a motor skill. We performed 6 h recordings from cells in rats' motor cortex as they were trained daily on a skilled reaching task. In addition to SWS following training, reactivation occurred in REM, primarily during the pre-task rest period, and REM and SWS reactivation occurred on the same day in rats that acquired the skill rapidly. Both pre-task REM and post-task SWS activation were coordinated with muscle activity during sleep, suggesting a functional role for reactivation in skill learning. Our results provide the first demonstration that reactivation in REM sleep occurs during motor skill learning and that coordinated reactivation in both sleep states on the same day, although at different times, is beneficial for skill learning. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- M J Eckert
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - B L McNaughton
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4.,Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - M Tatsuno
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
19
|
Torontali ZA, Fraigne JJ, Sanghera P, Horner R, Peever J. The Sublaterodorsal Tegmental Nucleus Functions to Couple Brain State and Motor Activity during REM Sleep and Wakefulness. Curr Biol 2019; 29:3803-3813.e5. [PMID: 31679942 DOI: 10.1016/j.cub.2019.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
Appropriate levels of muscle tone are needed to support waking behaviors such as sitting or standing. However, it is unclear how the brain functions to couple muscle tone with waking behaviors. Cataplexy is a unique experiment of nature in which muscle paralysis involuntarily intrudes into otherwise normal periods of wakefulness. Cataplexy therefore provides the opportunity to identify the circuit mechanisms that couple muscle tone and waking behaviors. Here, we tested the long-standing hypothesis that muscle paralysis during cataplexy is caused by recruitment of the brainstem circuit that induces muscle paralysis during REM sleep. Using behavioral, electrophysiological, and chemogenetic strategies, we found that muscle tone and arousal state can be decoupled by manipulation of the REM sleep circuit (the sublaterodorsal tegmental nucleus [SLD]). First, we show that silencing SLD neurons prevents motor suppression during REM sleep. Second, we show that activating these same neurons promotes cataplexy in narcoleptic (orexin-/-) mice, whereas silencing these neurons prevents cataplexy. Most importantly, we show that SLD neurons can decouple motor activity and arousal state in healthy mice. We show that SLD activation triggers cataplexy-like attacks in wild-type mice that are behaviorally and electrophysiologically indistinguishable from cataplexy in orexin-/- mice. We conclude that the SLD functions to engage arousal-motor synchrony during both wakefulness and REM sleep, and we propose that pathological recruitment of SLD neurons could underlie cataplexy in narcolepsy.
Collapse
|
20
|
Iwasaki LR, Gallo LM, Markova M, Erni S, Liu H, Nickel JC. Night‐time autonomic nervous system ultradian cycling and masticatory muscle activity. Orthod Craniofac Res 2019; 22 Suppl 1:107-112. [DOI: 10.1111/ocr.12267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Laura R. Iwasaki
- Department of OrthodonticsSchool of DentistryOregon Health & Science University Portland Oregon
| | - Luigi M. Gallo
- Department of Masticatory DisordersSchool of DentistryUniversity of Zurich Zurich Switzerland
| | - Michala Markova
- Department of Masticatory DisordersSchool of DentistryUniversity of Zurich Zurich Switzerland
| | - Stefan Erni
- Department of Masticatory DisordersSchool of DentistryUniversity of Zurich Zurich Switzerland
| | - Hongzeng Liu
- Department of OrthodonticsSchool of DentistryOregon Health & Science University Portland Oregon
| | - Jeff C. Nickel
- Department of OrthodonticsSchool of DentistryOregon Health & Science University Portland Oregon
| |
Collapse
|
21
|
Stefani A, Holzknecht E, Högl B. Clinical neurophysiology of REM parasomnias. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:381-396. [DOI: 10.1016/b978-0-444-64142-7.00062-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Sánchez-López A, Silva-Pérez M, Escudero M. Temporal dynamics of the transition period between nonrapid eye movement and rapid eye movement sleep in the rat. Sleep 2018; 41:5042786. [DOI: 10.1093/sleep/zsy121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Alvaro Sánchez-López
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Manuel Silva-Pérez
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| | - Miguel Escudero
- Departamento de Fisiología, Neurociencia y Comportamiento, Universidad de Sevilla, Avda. Reina Mercedes, – Seville, Spain
| |
Collapse
|
23
|
Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behavior disorder. Nat Commun 2018; 9:504. [PMID: 29402935 PMCID: PMC5799338 DOI: 10.1038/s41467-017-02761-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Despite decades of research, there is a persistent debate regarding the localization of GABA/glycine neurons responsible for hyperpolarizing somatic motoneurons during paradoxical (or REM) sleep (PS), resulting in the loss of muscle tone during this sleep state. Combining complementary neuroanatomical approaches in rats, we first show that these inhibitory neurons are localized within the ventromedial medulla (vmM) rather than within the spinal cord. We then demonstrate their functional role in PS expression through local injections of adeno-associated virus carrying specific short-hairpin RNA in order to chronically impair inhibitory neurotransmission from vmM. After such selective genetic inactivation, rats display PS without atonia associated with abnormal and violent motor activity, concomitant with a small reduction of daily PS quantity. These symptoms closely mimic human REM sleep behavior disorder (RBD), a prodromal parasomnia of synucleinopathies. Our findings demonstrate the crucial role of GABA/glycine inhibitory vmM neurons in muscle atonia during PS and highlight a candidate brain region that can be susceptible to α-synuclein-dependent degeneration in RBD patients.
Collapse
|
24
|
Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018; 28:392-400.e3. [PMID: 29358069 PMCID: PMC5807087 DOI: 10.1016/j.cub.2017.12.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
During wakefulness, pupil diameter can reflect changes in attention, vigilance, and cortical states. How pupil size relates to cortical activity during sleep, however, remains unknown. Pupillometry during natural sleep is inherently challenging since the eyelids are usually closed. Here, we present a novel head-fixed sleep paradigm in combination with infrared back-illumination pupillometry (iBip) allowing robust tracking of pupil diameter in sleeping mice. We found that pupil size can be used as a reliable indicator of sleep states and that cortical activity becomes tightly coupled to pupil size fluctuations during non-rapid eye movement (NREM) sleep. Pharmacological blocking experiments indicate that the observed pupil size changes during sleep are mediated via the parasympathetic system. We furthermore found that constrictions of the pupil during NREM episodes might play a protective role for stability of sleep depth. These findings reveal a fundamental relationship between cortical activity and pupil size, which has so far been hidden behind closed eyelids. Infrared back-illumination allows accurate pupillometry in sleeping mice Brain activity and pupil diameter are tightly coupled during sleep The parasympathetic system is the main driver of pupillary changes during NREM sleep Pupillary constrictions might have a protective function to stabilize deep sleep
Collapse
Affiliation(s)
- Özge Yüzgeç
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robert Zimmermann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Abstract
Despite decades of intense study, the functions of sleep are still shrouded in mystery. The difficulty in understanding these functions can be at least partly attributed to the varied manifestations of sleep in different animals. Daily sleep duration can range from 4-20 hrs among mammals, and sleep can manifest throughout the brain, or it can alternate over time between cerebral hemispheres, depending on the species. Ecological factors are likely to have shaped these and other sleep behaviors during evolution by altering the properties of conserved arousal circuits in the brain. Nonetheless, core functions of sleep are likely to have arisen early and to have persisted to the present day in diverse organisms. This review will discuss the evolutionary forces that may be responsible for phylogenetic differences in sleep and the potential core functions that sleep fulfills.
Collapse
Affiliation(s)
- William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0636, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
26
|
|
27
|
St Louis EK, Boeve AR, Boeve BF. REM Sleep Behavior Disorder in Parkinson's Disease and Other Synucleinopathies. Mov Disord 2017; 32:645-658. [PMID: 28513079 DOI: 10.1002/mds.27018] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Rapid eye movement sleep behavior disorder is characterized by dream enactment and complex motor behaviors during rapid eye movement sleep and rapid eye movement sleep atonia loss (rapid eye movement sleep without atonia) during polysomnography. Rapid eye movement sleep behavior disorder may be idiopathic or symptomatic and in both settings is highly associated with synucleinopathy neurodegeneration, especially Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure. Rapid eye movement sleep behavior disorder frequently manifests years to decades prior to overt motor, cognitive, or autonomic impairments as the presenting manifestation of synucleinopathy, along with other subtler prodromal "soft" signs of hyposmia, constipation, and orthostatic hypotension. Between 35% and 91.9% of patients initially diagnosed with idiopathic rapid eye movement sleep behavior disorder at a sleep center later develop a defined neurodegenerative disease. Less is known about the long-term prognosis of community-dwelling younger patients, especially women, and rapid eye movement sleep behavior disorder associated with antidepressant medications. Patients with rapid eye movement sleep behavior disorder are frequently prone to sleep-related injuries and should be treated to prevent injury with either melatonin 3-12 mg or clonazepam 0.5-2.0 mg to limit injury potential. Further evidence-based studies about rapid eye movement sleep behavior disorder are greatly needed, both to enable accurate prognostic prediction of end synucleinopathy phenotypes for individual patients and to support the application of symptomatic and neuroprotective therapies. Rapid eye movement sleep behavior disorder as a prodromal synucleinopathy represents a defined time point at which neuroprotective therapies could potentially be applied for the prevention of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Erik K St Louis
- Center for Sleep Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Angelica R Boeve
- Center for Sleep Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Bradley F Boeve
- Center for Sleep Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
28
|
McKenna D, Peever J. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder. Mov Disord 2017; 32:636-644. [DOI: 10.1002/mds.27003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Dillon McKenna
- Centre for Biological Timing and Cognition, Department of Cell and Systems Biology; University of Toronto; Toronto Canada
| | - John Peever
- Centre for Biological Timing and Cognition, Department of Cell and Systems Biology; University of Toronto; Toronto Canada
| |
Collapse
|
29
|
Abstract
How does the brain control dreams? New science shows that a small node of cells in the medulla - the most primitive part of the brain - may function to control REM sleep, the brain state that underlies dreaming.
Collapse
Affiliation(s)
- John Peever
- Departments of Cell and Systems Biology and Physiology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|