1
|
Yamhure-Ramírez D, Wainwright PC, Ramírez SR. Sexual dimorphism and morphological integration in the orchid bee brain. Sci Rep 2025; 15:8915. [PMID: 40087395 PMCID: PMC11909157 DOI: 10.1038/s41598-025-92712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Sex-specific behaviours are common across animals and often associated with sexual dimorphism in the nervous system. Using micro-CT scanning we standardized sex-specific brain atlases and tested for sexual dimorphism in the brain of the orchid bee Euglossa dilemma, a species with marked sex differences in social behaviour, mating strategies and foraging. Males show greater investment in all primary visual processing neuropils and are uniquely integrated with the central complex, evidenced by a strong positive covariation. This suggests that males invest more on locomotor control, flight stability and sky-compass navigation which may have evolved in response to sex-specific behaviours, like courtship display. In contrast, females have larger mushroom bodies that strongly and positively covary with the optic lobes and have increased volume of the Kenyon cell cluster, implying greater capabilities for visual associative memory. We speculate this is an adaptation to social and nest-building behaviours, and reliance on learning visual landmarks required for central place foraging. Our study provides the first record of sexually dimorphic morphological integration in the brain of an insect, an approach that revealed sex-specific brain traits that lack an apparent morphological signal. These subtle differences provide further evidence for the causal link between brain architecture and behaviour.
Collapse
Affiliation(s)
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Santiago R Ramírez
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Tichit P, Kendall L, Olsson P, Taylor G, Rau C, Caplat P, Smith HG, Baird E. The Interplay Between Visual Traits and Forest in Bumblebee Communities Across Sweden. Ecol Evol 2024; 14:e70635. [PMID: 39717629 PMCID: PMC11664236 DOI: 10.1002/ece3.70635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Understanding how ecological communities assemble in relation to natural and human-induced environmental changes is critical, particularly for communities of pollinators that deliver essential ecosystem services. Despite widespread attention to interactions between functional traits and community responses to environmental changes, the importance of sensory traits has received little attention. To address this, we asked whether visual traits of bumblebee communities varied at large geographical scales along a habitat gradient of increased tree cover. Because trees generate challenging light conditions for flying insects, in particular a reduced light intensity, we hypothesised that differences in tree cover would correlate with shifts in the visual and taxonomical composition of bumblebee communities. We quantified 11 visual traits across 36 specimens from 20 species of bumblebees using micro-CT and optical modelling of compound eyes and ocelli, and investigated how these traits scale with body size. Using an inventory of bumblebee communities across Sweden and our visual trait dataset, we then explored how visual traits (both absolute and relative to body size) differed in relation to tree cover. We found positive shifts of the community weighted means of visual traits along the increasingly forested habitat gradient (facet diameter, inter-ommatidial angle, eye parameter of the compound eye and alignment of the three ocelli) that were consistent regardless of body size, while other traits decreased when more forest was present in the landscape (facet number). These functional patterns were associated with differences in the abundance of six common species that likely explains the community-wide shift of visual traits along the habitat gradient. Our study demonstrates the interaction between vision, habitat and community assembly in bumblebees, while highlighting a promising research topic at the interface between sensory biology and landscape ecology.
Collapse
Affiliation(s)
- Pierre Tichit
- Department of BiologyLund UniversityLundSweden
- Department of ZoologyStockholm UniversityStockholmSweden
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
| | - Liam Kendall
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Peter Olsson
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Gavin Taylor
- Institute for Globally Distributed Open Research and Education (IGDORE)São CarlosBrazil
| | | | - Paul Caplat
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
- School of Biological SciencesQueen's University BelfastBelfastUK
| | - Henrik G. Smith
- Department of BiologyLund UniversityLundSweden
- Centre for Environmental and Climate ScienceLund UniversityLundSweden
| | - Emily Baird
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
3
|
Araújo P, Belušič G, Ilić M, Foster J, Pfeiffer K, Baird E. Polarized light detection in bumblebees varies with light intensity and is mediated by both the ocelli and compound eyes. Biol Lett 2024; 20:20240299. [PMID: 39317328 PMCID: PMC11421908 DOI: 10.1098/rsbl.2024.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/25/2024] [Indexed: 09/26/2024] Open
Abstract
Like many insects, bumblebees use polarized light (PL) to orient and navigate. The celestial PL pattern is strongest when the sun is close to the horizon, during the dim light of dawn and dusk. In the dim light, the sensitivity of the compound eyes may not be sufficient for detecting PL or landmarks, and it has previously been hypothesized that bumblebees rely on PL from their more sensitive ocelli to navigate at dawn and dusk. Here, we tested this hypothesis using a combination of electrophysiological and behavioural tests. Specifically, we investigate whether bumblebee ocelli can detect PL and explore how the PL contribution from the ocelli and compound eyes is affected by light intensity. We find that bumblebee ocelli do indeed have PL sensitivity and that PL information can be used to guide behaviour in dim light. In bright light, however, both the compound eyes and ocelli are important for the detection of PL. Our results support the hypothesis that bumblebees use PL information from the ocelli at the low light levels that occur around dawn and dusk, and this may support their ability to forage during these periods.
Collapse
Affiliation(s)
- Priscila Araújo
- Department of Zoology, Stockholm University, Stockholm11418, Sweden
| | - Gregor Belušič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana1000, Slovenia
| | - Marko Ilić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana1000, Slovenia
| | - James Foster
- Department of Neurobiology, University of Konstanz, Konstanz78464, Germany
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Würzburg97074, Germany
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm11418, Sweden
| |
Collapse
|
4
|
Somanathan H. Why diversity matters for understanding the visual ecology and behaviour of bees. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101224. [PMID: 38925459 DOI: 10.1016/j.cois.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Two bee species, the European honeybee and the buff-tailed bumblebee, are well-developed models of visual behaviour and ecology. How representative of bees across phylogeny and geography are these two species? Bee sensory systems likely differ between temperate and tropical species due to differences in the intensity or the types of selection pressures. Differences in temperate and tropical floral diversity, abundance and seasonality can influence sensory adaptations and behaviours. Niche partitioning in the speciose tropics along the microhabitat and temporal axes is increasingly reported to involve special visual adaptations in bees. Inclusive approaches encompassing other bee species and building on lessons from the 'model' bees will inform how ecology shapes bee senses, and, in turn, the structure of plant-bee mutualisms.
Collapse
Affiliation(s)
- Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Abstract
More than a century of research, of which JEB has published a substantial selection, has highlighted the rich diversity of animal eyes. From these studies have emerged numerous examples of visual systems that depart from our own familiar blueprint, a single pair of lateral cephalic eyes. It is now clear that such departures are common, widespread and highly diverse, reflecting a variety of different eye types, visual abilities and architectures. Many of these examples have been described as 'distributed' visual systems, but this includes several fundamentally different systems. Here, I re-examine this term, suggest a new framework within which to evaluate visual system distribution in both spatial and functional senses, and propose a roadmap for future work. The various architectures covered by this term reflect three broad strategies that offer different opportunities and require different approaches for study: the duplication of functionally identical eyes, the expression of multiple, functionally distinct eye types in parallel and the use of dispersed photoreceptors to mediate visual behaviour without eyes. Within this context, I explore some of the possible implications of visual system architecture for how visual information is collected and integrated, which has remained conceptually challenging in systems with a large degree of spatial and/or functional distribution. I highlight two areas that should be prioritised in future investigations: the whole-organism approach to behaviour and signal integration, and the evolution of visual system architecture across Metazoa. Recent advances have been made in both areas, through well-designed ethological experiments and the deployment of molecular tools.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz Institute for Biodiversity and Evolution, Invalidenstrasse 43, 10115 Berlin, Germany
| |
Collapse
|
6
|
Hao Y, Wang Q, Wen C, Wen J. Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults. INSECTS 2023; 14:699. [PMID: 37623409 PMCID: PMC10455913 DOI: 10.3390/insects14080699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Eucryptorrhynchus scrobiculatus and E. brandti are the main borers of Ailanthus altissima, causing serious economic and ecological losses. The external morphology and internal ultrastructure of the compound eyes of two related weevils were investigated with light microscopy, scanning electron microscopy, and transmission electron microscopy. E. scrobiculatus and E. brandti possess a pair of reniform apposition compound eyes and contain about 550 ommatidia per eye. The interommatidial angle of E. scrobiculatus and E. brandti are 7.08 ± 0.31° and 4.84 ± 0.49°, respectively. The corneal thickness, rhabdom length, and ommatidium length of E. scrobiculatus are significantly greater than those of E. brandti. Under light-adapted conditions, the pigment granules are mainly distributed at the junction of the cone and the rhabdom, and the diameter and the cross-sectional area of the middle end of the rhabdom is increased in the two weevil species. Under dark-adapted conditions, the pigment granules shift longitudinally and are evenly distributed on both sides of the cone and the rhabdom, and the diameter and cross-sectional area of the middle end of the rhabdom are decreased. The discrepancy in visual structure is beneficial for adaptation to niche differentiation of the two related species. The present results suggest that the two weevils possess different visual organ structures to perceive visual information in the external environment.
Collapse
Affiliation(s)
- Yingying Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Qi Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chao Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Junbao Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Jie VW, Miettinen A, Baird E. Novel Methodology for Localizing and Studying Insect Dorsal Rim Area Morphology in 2D and 3D. INSECTS 2023; 14:670. [PMID: 37623380 PMCID: PMC10455470 DOI: 10.3390/insects14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Polarized light-based navigation in insects is facilitated by a polarization-sensitive part of the eye, the dorsal rim area (DRA). Existing methods to study the anatomy of the DRA are destructive and time-consuming. We presented a novel method for DRA localization, dissection, and measurement using 3D volumetric images from X-ray micro-computed tomography in combination with 2D photographs. Applying the method on size-polymorphic buff-tailed bumblebees, Bombus terrestris, we found that the DRA was easily obtainable from photographs of the dorsal eye region. Allometric analysis of the DRA in relation to body size in B. terrestris showed that it increased with the body size but not at the same rate. By localizing the DRA of individual bumblebees, we could also perform individual-level descriptions and inter-individual comparisons between the ommatidial structures (lens, crystalline cones, rhabdoms) of three different eye regions (DRA, non-DRA, proximate to DRA). One feature distinct to the bumblebee DRA was the smaller dimension of the crystalline cones in comparison to other regions of the eye. Using our novel methodology, we provide the first individual-level description of DRA ommatidial features and a comparison of how the DRA varies with body size in bumblebees.
Collapse
Affiliation(s)
- Vun Wen Jie
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| | - Arttu Miettinen
- Department of Physics, University of Jyvaskyla, 40014 Jyvaskyla, Finland;
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Emily Baird
- Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| |
Collapse
|
8
|
Currea JP, Sondhi Y, Kawahara AY, Theobald J. Measuring compound eye optics with microscope and microCT images. Commun Biol 2023; 6:246. [PMID: 36882636 PMCID: PMC9992655 DOI: 10.1038/s42003-023-04575-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.
Collapse
Affiliation(s)
- John Paul Currea
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
| | - Yash Sondhi
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
9
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
10
|
The diversity of invertebrate visual opsins spanning Protostomia, Deuterostomia, and Cnidaria. Dev Biol 2022; 492:187-199. [PMID: 36272560 DOI: 10.1016/j.ydbio.2022.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
Across eumetazoans, the ability to perceive and respond to visual stimuli is largely mediated by opsins, a family of proteins belonging to the G protein-coupled receptor (GPCR) superclass. Lineage-specific gains and losses led to a striking diversity in the numbers, types, and spectral sensitivities conferred by visual opsin gene expression. Here, we review the diversity of visual opsins and differences in opsin gene expression from well-studied protostome, invertebrate deuterostome, and cnidarian groups. We discuss the functional significance of opsin expression differences and spectral tuning among lineages. In some cases, opsin evolution has been linked to the detection of relevant visual signals, including sexually selected color traits and host plant features. In other instances, variation in opsins has not been directly linked to functional or ecological differences. Overall, the array of opsin expression patterns and sensitivities across invertebrate lineages highlight the diversity of opsins in the eumetazoan ancestor and the labile nature of opsins over evolutionary time.
Collapse
|
11
|
Spaeker O, Taylor GJ, Wilts BD, Slabý T, Abdel‐Rahman MAK, Scoppola E, Schmitt CNZ, Sztucki M, Liu J, Bertinetti L, Wagermaier W, Scholtz G, Fratzl P, Politi Y. Gradients of Orientation, Composition, and Hydration of Proteins for Efficient Light Collection by the Cornea of the Horseshoe Crab. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203371. [PMID: 36251923 PMCID: PMC9685478 DOI: 10.1002/advs.202203371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.
Collapse
Affiliation(s)
- Oliver Spaeker
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Gavin J. Taylor
- Institute for Globally Distributed Open Research and Education (IGDORE)Ribeirão Preto14091‐310Brazil
| | - Bodo D. Wilts
- Chemistry and Physics of MaterialsUniversity of SalzburgJakob‐Haringer‐Str. 2aSalzburg5020Austria
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Tomáš Slabý
- TELIGHTLibušina třída 21Brno623 00Czech Republic
| | | | - Ernesto Scoppola
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Clemens N. Z. Schmitt
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Michael Sztucki
- European Synchrotron Radiation Facility (ESRF)71 avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Jiliang Liu
- European Synchrotron Radiation Facility (ESRF)71 avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Luca Bertinetti
- B CUBE – Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| | - Wolfgang Wagermaier
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Gerhard Scholtz
- Humboldt‐University BerlinInstitute of BiologyPhilippstraße 1310115BerlinGermany
| | - Peter Fratzl
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - Yael Politi
- B CUBE – Center for Molecular BioengineeringTechnische Universität Dresden01307DresdenGermany
| |
Collapse
|
12
|
Nilsson DE, Smolka J, Bok M. The vertical light-gradient and its potential impact on animal distribution and behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The visual environment provides vital cues allowing animals to assess habitat quality, weather conditions or measure time of day. Together with other sensory cues and physiological conditions, the visual environment sets behavioral states that make the animal more prone to engage in some behaviors, and less in others. This master-control of behavior serves a fundamental and essential role in determining the distribution and behavior of all animals. Although it is obvious that visual information contains vital input for setting behavioral states, the precise nature of these visual cues remains unknown. Here we use a recently described method to quantify the distribution of light reaching animals’ eyes in different environments. The method records the vertical gradient (as a function of elevation angle) of intensity, spatial structure and spectral balance. Comparison of measurements from different types of environments, weather conditions, times of day, and seasons reveal that these aspects can be readily discriminated from one another. The vertical gradients of radiance, spatial structure (contrast) and color are thus reliable indicators that are likely to have a strong impact on animal behavior and spatial distribution.
Collapse
|
13
|
Morimoto J, Barcellos R, Schoborg TA, Nogueira LP, Colaço MV. Assessing Anatomical Changes in Male Reproductive Organs in Response to Larval Crowding Using Micro-computed Tomography Imaging. NEOTROPICAL ENTOMOLOGY 2022; 51:526-535. [PMID: 35789989 PMCID: PMC9304064 DOI: 10.1007/s13744-022-00976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Ecological conditions shape (adaptive) responses at the molecular, anatomical, and behavioral levels. Understanding these responses is key to predict the outcomes of intra- and inter-specific competitions and the evolutionary trajectory of populations. Recent technological advances have enabled large-scale molecular (e.g., RNAseq) and behavioral (e.g., computer vision) studies, but the study of anatomical responses to ecological conditions has lagged behind. Here, we highlight the role of X-ray micro-computed tomography (micro-CT) in generating in vivo and ex vivo 3D imaging of anatomical structures, which can enable insights into adaptive anatomical responses to ecological environments. To demonstrate the application of this method, we manipulated the larval density of Drosophila melanogaster Meigen flies and applied micro-CT to investigate the anatomical responses of the male reproductive organs to varying intraspecific competition levels during development. Our data is suggestive of two classes of anatomical responses which broadly agree with sexual selection theory: increasing larval density led to testes and ejaculatory duct to be overall larger (in volume), while the volume of accessory glands and, to a lesser extent, ejaculatory duct decreased. These two distinct classes of anatomical responses might reflect shared developmental regulation of the structures of the male reproductive system. Overall, we show that micro-CT can be an important tool to advance the study of anatomical (adaptive) responses to ecological environments.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
- Institute of Mathematics, University of Aberdeen, Aberdeen, UK.
- Programa de Pós-Graduação Em Ecologia E Conservação, Universidade Federal Do Paraná, Curitiba, Paraná, Brazil.
- Institute of Differential Geometry, Riemann Centre for Geometry and Physics, Leibniz Universität Hannover, Hannover, Germany.
| | - Renan Barcellos
- COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Todd A Schoborg
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | - Marcos Vinicius Colaço
- Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
15
|
Guignard Q, Allison JD, Slippers B. The evolution of insect visual opsin genes with specific consideration of the influence of ocelli and life history traits. BMC Ecol Evol 2022; 22:2. [PMID: 34996358 PMCID: PMC8739693 DOI: 10.1186/s12862-022-01960-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Visual opsins are expressed in the compound eyes and ocelli of insects and enable light detection. Three distinct phylogenetic groups of visual opsins are found in insects, named long (LW), short (SW) and ultraviolet (UV) wavelength sensitive opsins. Recently, the LW group was found to be duplicated into the LW2b and the LW2a opsins. The expression of LW2b opsins is ocelli specific in some insects (e.g., bees, cricket, scorpion flies), but the gene was not found in other orders possessing three or less ocelli (e.g., dragonflies, beetles, moths, bugs). In flies, two LW2b homologs have been characterised, with one expressed in the ocelli and the other in the compound eyes. To date, it remains unclear which evolutionary forces have driven gains and losses of LW opsins in insects. Here we take advantage of the recent rapid increase in available sequence data (i.e., from insect genomes, targeted PCR amplification, RNAseq) to characterize the phylogenetic relationships of 1000 opsin sequences in 18 orders of Insects. The resulting phylogeny discriminates between four main groups of opsins, and onto this phylogeny we mapped relevant morphological and life history traits. Results Our results demonstrate a conserved LW2b opsin only present in insects with three ocelli. Only two groups (Brachycera and Odonata) possess more than one LW2b opsin, likely linked to their life history. In flies, we hypothesize that the duplication of the LW2b opsin occurred after the transition from aquatic to terrestrial larvae. During this transition, higher flies (Brachycera) lost a copy of the LW2a opsin, still expressed and duplicated in the compound eyes of lower flies (Nematocera). In higher flies, the LW2b opsin has been duplicated and expressed in the compound eyes while the ocelli and the LW2b opsin were lost in lower flies. In dragonflies, specialisation of flight capabilities likely drove the diversification of the LW2b visual opsins. Conclusion The presence of the LW2b opsin in insects possessing three ocelli suggests a role in specific flight capabilities (e.g., stationary flight). This study provides the most complete view of the evolution of visual opsin genes in insects yet, and provides new insight into the influence of ocelli and life history traits on opsin evolution in insects. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01960-8.
Collapse
Affiliation(s)
- Quentin Guignard
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Jeremy D Allison
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.,Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street E, Sault Ste. Marie, ON, P6A 2E5, Canada
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
16
|
Penmetcha B, Ogawa Y, Ryan LA, Hart NS, Narendra A. Ocellar spatial vision in Myrmecia ants. J Exp Biol 2021; 224:272224. [PMID: 34542631 DOI: 10.1242/jeb.242948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.
Collapse
Affiliation(s)
- Bhavana Penmetcha
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuri Ogawa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Laura A Ryan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Ljungholm M, Nilsson DE. Modelling the visual world of a velvet worm. PLoS Comput Biol 2021; 17:e1008808. [PMID: 34319993 PMCID: PMC8363015 DOI: 10.1371/journal.pcbi.1008808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/13/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022] Open
Abstract
In many animal phyla, eyes are small and provide only low-resolution vision for general orientation in the environment. Because these primitive eyes rarely have a defined image plane, traditional visual-optics principles cannot be applied. To assess the functional capacity of such eyes we have developed modelling principles based on ray tracing in 3D reconstructions of eye morphology, where refraction on the way to the photoreceptors and absorption in the photopigment are calculated incrementally for ray bundles from all angles within the visual field. From the ray tracing, we calculate the complete angular acceptance function of each photoreceptor in the eye, revealing the visual acuity for all parts of the visual field. We then use this information to generate visual filters that can be applied to high resolution images or videos to convert them to accurate representations of the spatial information seen by the animal. The method is here applied to the 0.1 mm eyes of the velvet worm Euperipatoides rowelli (Onychophora). These eyes of these terrestrial invertebrates consist of a curved cornea covering an irregular but optically homogeneous lens directly joining a retina packed with photoreceptive rhabdoms. 3D reconstruction from histological sections revealed an asymmetric eye, where the retina is deeper in the forward-pointing direction. The calculated visual acuity also reveals performance differences across the visual field, with a maximum acuity of about 0.11 cycles/deg in the forward direction despite laterally pointing eyes. The results agree with previous behavioural measurements of visual acuity, and suggest that velvet worm vision is adequate for orientation and positioning within the habitat.
Collapse
Affiliation(s)
- Mikael Ljungholm
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Dan-E. Nilsson
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Rother L, Kraft N, Smith DB, El Jundi B, Gill RJ, Pfeiffer K. A micro-CT-based standard brain atlas of the bumblebee. Cell Tissue Res 2021; 386:29-45. [PMID: 34181089 PMCID: PMC8526489 DOI: 10.1007/s00441-021-03482-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nadine Kraft
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Basil El Jundi
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
19
|
Alba-Alejandre I, Alba-Tercedor J, Hunter WB. Anatomical study of the female reproductive system and bacteriome of Diaphorina citri Kuwayama, (Insecta: Hemiptera, Liviidae) using micro-computed tomography. Sci Rep 2020; 10:7161. [PMID: 32346040 PMCID: PMC7189384 DOI: 10.1038/s41598-020-64132-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Huanglongbing (HLB) (citrus greening disease) is one of the most serious bacterial diseases of citrus. It is caused by (1) Candidatus Liberibacter africanus, transmitted by Trioza erytreae and (2) C.L. asiaticus and C.L. americanus, transmitted by Diaphorina citri. As part of a multidisciplinary project on D. citri (www.citrusgreening.org), we made a detailed study, using micro-computed tomography, of the female abdominal terminalia, reproductive system (ovaries, accessory glands, spermatheca, colleterial (= cement) gland, connecting ducts, and ovipositor) and bacteriome, which we present here. New terms and structures are introduced and described, particularly concerning the spermatheca, ovipositor and bacteriome. The quality of images and bacteriome reconstructions are comparable, or clearer, than those previously published using a synchrotron or fluorescence in situ hybridisation (FISH). This study: reviews knowledge of the female reproductive system and bacteriome organ in D. citri; represents the first detailed morphological study of D. citri to use micro-CT; and extensively revises existing morphological information relevant to psylloids, hemipterans and insects in general. High quality images and supplementary videos represent a significant advance in knowledge of psylloid anatomy and are useful tools for future research and as educational aids.
Collapse
Affiliation(s)
- Ignacio Alba-Alejandre
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, Campus de Fuentenueva, Granada, Spain.
| | - Wayne B Hunter
- U.S. Department Agriculture, Agricultural Research Service, Fort Pierce, Florida, USA
| |
Collapse
|
20
|
Kelber A, Somanathan H. Spatial Vision and Visually Guided Behavior in Apidae. INSECTS 2019; 10:insects10120418. [PMID: 31766747 PMCID: PMC6956220 DOI: 10.3390/insects10120418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/10/2023]
Abstract
The family Apidae, which is amongst the largest bee families, are important pollinators globally and have been well studied for their visual adaptations and visually guided behaviors. This review is a synthesis of what is known about their eyes and visual capabilities. There are many species-specific differences, however, the relationship between body size, eye size, resolution, and sensitivity shows common patterns. Salient differences between castes and sexes are evident in important visually guided behaviors such as nest defense and mate search. We highlight that Apis mellifera and Bombus terrestris are popular bee models employed in the majority of studies that have contributed immensely to our understanding vision in bees. However, other species, specifically the tropical and many non-social Apidae, merit further investigation for a better understanding of the influence of ecological conditions on the evolution of bee vision.
Collapse
Affiliation(s)
- Almut Kelber
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
- Correspondence: (A.K.); (H.S.)
| | - Hema Somanathan
- IISER TVM Centre for Research and Education in Ecology and Evolution (ICREEE), School of Biology, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
- Correspondence: (A.K.); (H.S.)
| |
Collapse
|
21
|
Sumner-Rooney L, Kenny NJ, Ahmed F, Williams ST. The utility of micro-computed tomography for the non-destructive study of eye microstructure in snails. Sci Rep 2019; 9:15411. [PMID: 31659206 PMCID: PMC6817935 DOI: 10.1038/s41598-019-51909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
Molluscan eyes exhibit an enormous range of morphological variation, ranging from tiny pigment-cup eyes in limpets, compound eyes in ark clams and pinhole eyes in Nautilus, through to concave mirror eyes in scallops and the large camera-type eyes of the more derived cephalopods. Here we assess the potential of non-destructive micro-computed tomography (µ-CT) for investigating the anatomy of molluscan eyes in three species of the family Solariellidae, a group of small, deep-sea gastropods. We compare our results directly with those from traditional histological methods applied to the same specimens, and show not only that eye microstructure can be visualised in sufficient detail for meaningful comparison even in very small animals, but also that μ-CT can provide additional insight into gross neuroanatomy without damaging rare and precious specimens. Data from μ-CT scans also show that neurological innervation of eyes is reduced in dark-adapted snails when compared with the innervation of cephalic tentacles, which are involved in mechanoreception and possibly chemoreception. Molecular tests also show that the use of µ-CT and phosphotungstic acid stain do not prevent successful downstream DNA extraction, PCR amplification or sequencing. The use of µ-CT methods is therefore highly recommended for the investigation of difficult-to-collect or unique specimens.
Collapse
Affiliation(s)
| | | | - Farah Ahmed
- Natural History Museum, Cromwell Road, London, UK
- Exponent International Ltd, London, UK
| | | |
Collapse
|
22
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
23
|
Ocellar structure of African and Australian desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:699-706. [PMID: 31273454 DOI: 10.1007/s00359-019-01357-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Few walking insects possess simple eyes known as the ocelli. The role of the ocelli in walking insects such as ants has been less explored. Physiological and behavioural evidence in the desert ant, Cataglyphis bicolor, indicates that ocellar receptors are polarisation sensitive and are used to derive compass information from the pattern of polarised skylight. The ability to detect polarised skylight can also be inferred from the structure and the organisation of the ocellar retina. However, the functional anatomy of the desert ant ocelli has not been investigated. Here we characterised the anatomical organisation of the ocelli in three species of desert ants. The two congeneric species of Cataglyphis we studied had a fused rhabdom, but differed in their organisation of the retina. In Cataglyphis bicolor, each retinula cell contributed microvilli in one orientation enabling them to compare e-vector intensities. In Cataglyphis fortis, some retinula cells contributed microvilli in more than one orientation, indicating that not all cells are polarisation sensitive. The desert ant Melophorus bagoti had an unusual ocellar retina with a hexagonal or pentagonal rhabdomere arrangement forming an open rhabdom. Each retinula cell contributed microvilli in more than one orientation, making them unlikely to be polarisation detectors.
Collapse
|
24
|
Wilby D, Aarts T, Tichit P, Bodey A, Rau C, Taylor G, Baird E. Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli. Vision Res 2019; 158:100-108. [PMID: 30826353 DOI: 10.1016/j.visres.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/27/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Affiliation(s)
- David Wilby
- Department of Biology, Lund University, Lund, Sweden
| | - Tobio Aarts
- Department of Biology, Lund University, Lund, Sweden; Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, Netherlands
| | - Pierre Tichit
- Department of Biology, Lund University, Lund, Sweden
| | - Andrew Bodey
- Diamond Light Source, Oxfordshire, United Kingdom
| | | | - Gavin Taylor
- Department of Biology, Lund University, Lund, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
25
|
Sumner-Rooney L. The Kingdom of the Blind: Disentangling Fundamental Drivers in the Evolution of Eye Loss. Integr Comp Biol 2019; 58:372-385. [PMID: 29873729 DOI: 10.1093/icb/icy047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Light is a fundamentally important biological cue used by almost every animal on earth, to maintain daily rhythms, navigate, forage, find mates, or avoid predators. But an enormous number of species live in darkness: in subterranean caves, deep oceans, underground burrows, and within parasitic host bodies, and the loss of eyes appears consistently across these ecosystems. However, the evolutionary mechanisms that lead to the reduction of the visual system remain the subject of great interest and debate more than 150 years after Darwin tackled the issue. Studies of model taxa have discovered significant roles for natural selection, neutral evolution, and pleiotropy, but the interplay between them remains unclear. To nail down unifying concepts surrounding the evolution of eye loss, we must embrace the enormous range of affected animals and habitats. The fine developmental details of model systems such as the Mexican cave tetra Astyanax mexicanus have transformed and enriched the field, but these should be complemented by wider studies to identify truly overarching patterns that apply throughout animals. Here, the major evolutionary drivers are placed within a conceptual cost-benefit framework that incorporates the fundamental constraints and forces that influence evolution in the dark. Major physiological, ecological, and environmental factors are considered within the context of this framework, which appears faithful to observed patterns in deep-sea and cavernicolous animals. To test evolutionary hypotheses, a comparative phylogenetic approach is recommended, with the goal of studying large groups exhibiting repeated reduction, and then comparing these across habitats, taxa, and lifestyles. Currently, developmental and physiological methods cannot feasibly be used on such large scales, but penetrative imaging techniques could provide detailed morphological data non-invasively and economically for large numbers of species. Comprehensive structural datasets can then be contextualized phylogenetically to examine recurrent trends and associations, and to reconstruct character histories through multiple independent transitions into darkness. By assessing these evolutionary trajectories within an energetic cost-benefit framework, the relationships between fundamental influences can be inferred and compared across different biological and physical parameters. However, substantial numbers of biological and environmental factors affect the evolutionary trajectory of loss, and it is critical that researchers make fair and reasonable comparisons between objectively similar groups.
Collapse
|
26
|
Taylor GJ, Tichit P, Schmidt MD, Bodey AJ, Rau C, Baird E. Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife 2019; 8:40613. [PMID: 30803484 PMCID: PMC6391067 DOI: 10.7554/elife.40613] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022] Open
Abstract
The quality of visual information that is available to an animal is limited by the size of its eyes. Differences in eye size can be observed even between closely related individuals, yet we understand little about how this affects vision. Insects are good models for exploring the effects of size on visual systems because many insect species exhibit size polymorphism. Previous work has been limited by difficulties in determining the 3D structure of eyes. We have developed a novel method based on x-ray microtomography to measure the 3D structure of insect eyes and to calculate predictions of their visual capabilities. We used our method to investigate visual allometry in the bumblebee Bombus terrestris and found that size affects specific aspects of vision, including binocular overlap, optical sensitivity, and dorsofrontal visual resolution. This reveals that differential scaling between eye areas provides flexibility that improves the visual capabilities of larger bumblebees. Bees fly through complex environments in search of nectar from flowers. They are aided in this quest by excellent eyesight. Scientists have extensively studied the eyesight of honeybees to learn more about how such tiny eyes work and how they process and learn visual information. Less is known about the honeybee’s larger cousins, the bumblebees, which are also important pollinators. Bumblebees come in different sizes and one question scientists have is how eye size affects vision. Bigger bumblebees are known to have bigger eyes, and bigger eyes are usually better. But which aspects of vision are improved in larger eyes is not clear. For example, does the size of a bee’s eyes affect how large their field of view is, or how sensitive they are to light? Or does it impact their visual acuity, a measurement of the smallest objects the eye can see? Scaling up an eye would likely improve all these aspects of sight slightly, but changes in a small area of the eye might more drastically improve some parts of vision. Now, Taylor et al. show that larger bumblebees with bigger eyes have better vision than their smaller counterparts. In the experiments, a technique called microtomography was used to measure the 3D structure of bumblebee eyes. The measurements were then applied to build 3D models of the bumblebee eyes, and computational geometry was used to calculate the sensitivity, acuity, and viewing direction across the entire surface of each model eye. Taylor et al. found that larger bees had improved ability to see small objects in front or slightly above them. They had a bigger area of overlap between the sight in both eyes when they looked forward and up. They were also more sensitive to light across the eye. The experiments show that improvements in eyesight with larger size are very specific and likely help larger bees to adapt to their environment. Behavioral studies could help scientists better understand how these changes help bigger bees and how the traits evolved. These findings might also help engineers trying to design miniature cameras to help small, flying autonomous vehicles navigate. Bees fly through complex environments and face challenges similar to those small flying vehicles would face. Emulating the design of bee eyes and how they change with size might lead to the development of better cameras for these vehicles.
Collapse
Affiliation(s)
| | - Pierre Tichit
- Department of Biology, Lund University, Lund, Sweden
| | - Marie D Schmidt
- Department of Biology, Lund University, Lund, Sweden.,Westphalian University of Applied Sciences, Bocholt, Germany
| | | | | | - Emily Baird
- Department of Biology, Lund University, Lund, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
27
|
du Plessis A, Broeckhoven C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater 2019; 85:27-40. [PMID: 30543937 DOI: 10.1016/j.actbio.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Albert Einstein once said "look deep into nature, and then you will understand everything better". Looking deep into nature has in the last few years become much more achievable through the use of high-resolution X-ray micro-computed tomography (microCT). The non-destructive nature of microCT, combined with three-dimensional visualization and analysis, allows for the most complete internal and external "view" of natural materials and structures at both macro- and micro-scale. This capability brings with it the possibility to learn from nature at an unprecedented level of detail in full three dimensions, allowing us to improve our current understanding of structures, learn from them and apply them to solve engineering problems. The use of microCT in the fields of biomimicry, biomimetic engineering and bioinspiration is growing rapidly and holds great promise. MicroCT images and three-dimensional data can be used as generic bio-inspiration, or may be interpreted as detailed blueprints for specific engineering applications, i.e., reverse-engineering nature. In this review, we show how microCT has been used in bioinspiration and biomimetic studies to date, including investigations of multifunctional structures, hierarchical structures and the growing use of additive manufacturing and mechanical testing of 3D printed models in combination with microCT. The latest microCT capabilities and developments which might support biomimetic studies are described and the unique synergy between microCT and biomimicry is demonstrated. STATEMENT OF SIGNIFICANCE: This review highlights the growing use of X-ray micro computed tomography in biomimetic research. We feel the timing of this paper is excellent as there is a significant growth and interest in biomimetic research, also coupled with additive manufacturing, but still no review of the use of microCT in this field. The use of microCT for structural biomimetic and biomaterials research has huge potential but is still under-utilized, partly due to lack of knowledge of the capabilities and how it can be used in this field. We hope this review fills this gap and fuels further advances in this field using microCT.
Collapse
|
28
|
Brand P, Larcher V, Couto A, Sandoz JC, Ramírez SR. Sexual dimorphism in visual and olfactory brain centers in the perfume-collecting orchid bee Euglossa dilemma (Hymenoptera, Apidae). J Comp Neurol 2018; 526:2068-2077. [PMID: 30088672 PMCID: PMC6174972 DOI: 10.1002/cne.24483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Insect mating behavior is controlled by a diverse array of sex‐specific traits and strategies that evolved to maximize mating success. Orchid bees exhibit a unique suite of perfume‐mediated mating behaviors. Male bees collect volatile compounds from their environment to concoct species‐specific perfume mixtures that are presumably used to attract conspecific females. Despite a growing understanding of the ecology and evolution of chemical signaling in orchid bees, many aspects of the functional adaptations involved, in particular regarding sensory systems, remain unknown. Here we investigated male and female brain morphology in the common orchid bee Euglossa dilemma Bembé & Eltz. Males exhibited increased relative volumes of the Medulla, a visual brain region, which correlated with larger compound eye size (area). While the overall volume of olfactory brain regions was similar between sexes, the antennal lobes exhibited several sex‐specific structures including one male‐specific macroglomerulus. These findings reveal sexual dimorphism in both the visual and the olfactory system of orchid bees. It highlights the tendency of an increased investment in the male visual system similar to that observed in other bee lineages, and suggests that visual input may play a more important role in orchid bee male mating behavior than previously thought. Furthermore, our results suggest that the evolution of perfume communication in orchid bees did not involve drastic changes in olfactory brain morphology compared to other bee lineages.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| | - Virginie Larcher
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Antoine Couto
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Santiago R Ramírez
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| |
Collapse
|
29
|
Narendra A, Ribi WA. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. ACTA ACUST UNITED AC 2018; 220:4383-4390. [PMID: 29187620 DOI: 10.1242/jeb.159392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi A Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface 2018; 14:rsif.2017.0405. [PMID: 28878033 DOI: 10.1098/rsif.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
Billions of migratory birds navigate thousands of kilometres every year aided by a magnetic compass sense, the biophysical mechanism of which is unclear. One leading hypothesis is that absorption of light by specialized photoreceptors in the retina produces short-lived chemical intermediates known as radical pairs whose chemistry is sensitive to tiny magnetic interactions. A potentially serious but largely ignored obstacle to this theory is how directional information derived from the Earth's magnetic field can be separated from the much stronger variations in the intensity and polarization of the incident light. Here we propose a simple solution in which these extraneous effects are cancelled by taking the ratio of the signals from two neighbouring populations of magnetoreceptors. Geometric and biological arguments are used to derive a set of conditions that make this possible. We argue that one likely location of the magnetoreceptor molecules would be in association with ordered opsin dimers in the membrane discs of the outer segments of double-cone photoreceptor cells.
Collapse
Affiliation(s)
- Susannah Worster
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
31
|
Abstract
Emily Baird and Gavin Taylor describe how you can make three-dimensional models of biological samples using x-ray micro-computed tomography.
Collapse
Affiliation(s)
- Emily Baird
- Department of Biology, Lund University, Lund 223 62, Sweden.
| | - Gavin Taylor
- Department of Biology, Lund University, Lund 223 62, Sweden.
| |
Collapse
|
32
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
33
|
Diversity and common themes in the organization of ocelli in Hymenoptera, Odonata and Diptera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:505-517. [PMID: 29582137 DOI: 10.1007/s00359-018-1258-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
We show in a comparative analysis that distinct retinal specializations in insect ocelli are much more common than previously realized and that the rhabdom organization of ocellar photoreceptors is extremely diverse. Hymenoptera, Odonata and Diptera show prominent equatorial fovea-like indentations of the ocellar retinae, where distal receptor endings are furthest removed from the lens surface and receptor densities are highest. In contrast, rhabdomere arrangements are very diverse across insect groups: in Hymenoptera, with some exceptions, pairs of ocellar retinular cells form sheet-like rhabdoms that form elongated rectangular shapes in cross-section, with highly aligned microvilli directions perpendicular to the long axis of cross-sections. This arrangement makes most ocellar retinular cells in Hymenoptera sensitive to the direction of polarized light. In dragonflies, triplets of retinular cells form a y-shaped fused rhabdom with microvilli directions oriented at 60° to each other. In Dipteran ocellar retinular cells microvilli directions are randomised, which destroys polarization sensitivity. We suggest that the differences in ocellar organization between insect groups may reflect the different head attitude control systems that have evolved in these insect groups, but possibly also differences in the mode of locomotion and in the need for celestial compass information.
Collapse
|
34
|
Abstract
The use of vision to coordinate behavior requires an efficient control design that stabilizes the world on the retina or directs the gaze towards salient features in the surroundings. With a level gaze, visual processing tasks are simplified and behaviorally relevant features from the visual environment can be extracted. No matter how simple or sophisticated the eye design, mechanisms have evolved across phyla to stabilize gaze. In this review, we describe functional similarities in eyes and gaze stabilization reflexes, emphasizing their fundamental role in transforming sensory information into motor commands that support postural and locomotor control. We then focus on gaze stabilization design in flying insects and detail some of the underlying principles. Systems analysis reveals that gaze stabilization often involves several sensory modalities, including vision itself, and makes use of feedback as well as feedforward signals. Independent of phylogenetic distance, the physical interaction between an animal and its natural environment - its available senses and how it moves - appears to shape the adaptation of all aspects of gaze stabilization.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Holger G Krapp
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
35
|
Honkanen A, Saari P, Takalo J, Heimonen K, Weckström M. The role of ocelli in cockroach optomotor performance. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:231-243. [PMID: 29192330 PMCID: PMC5799336 DOI: 10.1007/s00359-017-1235-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Insect ocelli are relatively simple eyes that have been assigned various functions not related to pictorial vision. In some species they function as sensors of ambient light intensity, from which information is relayed to various parts of the nervous system, e.g., for the control of circadian rhythms. In this work we have investigated the possibility that the ocellar light stimulation changes the properties of the optomotor performance of the cockroach Periplaneta americana. We used a virtual reality environment where a panoramic moving image is presented to the cockroach while its movements are recorded with a trackball. Previously we have shown that the optomotor reaction of the cockroach persists down to the intensity of moonless night sky, equivalent to less than 0.1 photons/s being absorbed by each compound eye photoreceptor. By occluding the compound eyes, the ocelli, or both, we show that the ocellar stimulation can change the intensity dependence of the optomotor reaction, indicating involvement of the ocellar visual system in the information processing of movement. We also measured the cuticular transmission, which, although relatively large, is unlikely to contribute profoundly to ocellar function, but may be significant in determining the mean activity level of completely blinded cockroaches.
Collapse
Affiliation(s)
- Anna Honkanen
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland. .,Vision Group, Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Paulus Saari
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Jouni Takalo
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland.,Centre for Cognition in Small Brains, Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kyösti Heimonen
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Matti Weckström
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
36
|
Palmer BA, Taylor GJ, Brumfeld V, Gur D, Shemesh M, Elad N, Osherov A, Oron D, Weiner S, Addadi L. The image-forming mirror in the eye of the scallop. Science 2017; 358:1172-1175. [DOI: 10.1126/science.aam9506] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/25/2017] [Accepted: 10/23/2017] [Indexed: 11/02/2022]
|
37
|
Ramirez-Esquivel F, Ribi WA, Narendra A. Techniques for Investigating the Anatomy of the Ant Visual System. J Vis Exp 2017. [PMID: 29286364 DOI: 10.3791/56339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This article outlines a suite of techniques in light microscopy (LM) and electron microscopy (EM) which can be used to study the internal and external eye anatomy of insects. These include traditional histological techniques optimized for work on ant eyes and adapted to work in concert with other techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These techniques, although vastly useful, can be difficult for the novice microscopist, so great emphasis has been placed in this article on troubleshooting and optimization for different specimens. We provide information on imaging techniques for the entire specimen (photo-microscopy and SEM) and discuss their advantages and disadvantages. We highlight the technique used in determining lens diameters for the entire eye and discuss new techniques for improvement. Lastly, we discuss techniques involved in preparing samples for LM and TEM, sectioning, staining, and imaging these samples. We discuss the hurdles that one might come across when preparing samples and how best to navigate around them.
Collapse
Affiliation(s)
| | - Willi A Ribi
- Research School of Biology, Australian National University
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University;
| |
Collapse
|
38
|
Stowasser A, Owens M, Buschbeck EK. Giving invertebrates an eye exam: an ophthalmoscope that utilizes the autofluorescence of photoreceptors. J Exp Biol 2017; 220:4095-4100. [DOI: 10.1242/jeb.166629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022]
Abstract
ABSTRACT
One of the most important functional features of eyes is focusing light, as both nearsightedness and farsightedness have major functional implications. Accordingly, refractive errors are frequently assessed in vertebrates, but not in the very small invertebrate eyes. We describe a micro-ophthalmoscope that takes advantage of autofluorescent properties of invertebrate photoreceptors and test the device on the relatively well-understood eyes of jumping spiders and flies. In each case, our measurements confirmed previous findings with a greater degree of accuracy. For example, we could precisely resolve the layering of the anterior median eyes and could map out the extensive retina of the anterior lateral eyes of the spider. Measurements also confirmed that fly ommatidia are focused into infinity, but showed that their focal plane is situated slightly below the receptor surface. In contrast to other approaches, this device does not rely on reflective tapeta and allows for precise optical assessment of diverse invertebrate eyes.
Collapse
Affiliation(s)
- Annette Stowasser
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Madeline Owens
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
39
|
Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1342519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kadir Erol
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
- Hitit University, Osmancık Ömer Derindere Vocational School, Çorum, Turkey
| | - Lokman Uzun
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
40
|
Ribi W, Zeil J. Three-dimensional visualization of ocellar interneurons of the orchid beeEuglossa imperialisusing micro X-ray computed tomography. J Comp Neurol 2017; 525:3581-3595. [PMID: 28608425 DOI: 10.1002/cne.24260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Willi Ribi
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| |
Collapse
|
41
|
Ogawa Y, Ribi W, Zeil J, Hemmi JM. Regional differences in the preferred e-vector orientation of honeybee ocellar photoreceptors. ACTA ACUST UNITED AC 2017; 220:1701-1708. [PMID: 28213397 DOI: 10.1242/jeb.156109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/15/2017] [Indexed: 11/20/2022]
Abstract
In addition to compound eyes, honeybees (Apis mellifera) possess three single-lens eyes called ocelli located on the top of the head. Ocelli are involved in head-attitude control and in some insects have been shown to provide celestial compass information. Anatomical and early electrophysiological studies have suggested that UV and blue-green photoreceptors in ocelli are polarization sensitive. However, their retinal distribution and receptor characteristics have not been documented. Here, we used intracellular electrophysiology to determine the relationship between the spectral and polarization sensitivity of the photoreceptors and their position within the visual field of the ocelli. We first determined a photoreceptor's spectral response through a series of monochromatic flashes (340-600 nm). We found UV and green receptors, with peak sensitivities at 360 and 500 nm, respectively. We subsequently measured polarization sensitivity at the photoreceptor's peak sensitivity wavelength by rotating a polarizer with monochromatic flashes. Polarization sensitivity (PS) values were significantly higher in UV receptors (3.8±1.5, N=61) than in green receptors (2.1±0.6, N=60). Interestingly, most receptors with receptive fields below 35 deg elevation were sensitive to vertically polarized light while the receptors with visual fields above 35 deg were sensitive to a wide range of polarization angles. These results agree well with anatomical measurements showing differences in rhabdom orientations between dorsal and ventral retinae. We discuss the functional significance of the distribution of polarization sensitivities across the visual field of ocelli by highlighting the information the ocelli are able to extract from the bee's visual environment.
Collapse
Affiliation(s)
- Yuri Ogawa
- School of Biological Sciences and UWA Oceans Institute (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia .,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Jan M Hemmi
- School of Biological Sciences and UWA Oceans Institute (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
42
|
A quantitative comparison of micro-CT preparations in Dipteran flies. Sci Rep 2016; 6:39380. [PMID: 28000717 PMCID: PMC5175214 DOI: 10.1038/srep39380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
X-ray-based 3D-imaging techniques have gained fundamental significance in research areas ranging from taxonomy to bioengineering. There is demand for the characterisation of species-specific morphological adaptations, micro-CT (μCT) being the method of choice in small-scale animals. This has driven the development of suitable staining techniques to improve absorption-based tissue contrast. A quantitative account on the limits of current staining protocols for preparing μCT specimen, however, is still missing. Here we present a study that quantifies results obtained by combining a variety of different contrast agents and fixative treatments that provides general guidance for μCT applications, particularly suitable for insect species. Using a blowfly model system (Calliphora), we enhanced effective spatial resolution and, in particular, optimised tissue contrast enabling semi-automated segmentation of soft and hard tissue from μCT data. We introduce a novel probabilistic measure of the contrast between tissues: PTC. Our results show that a strong iodine solution provides the greatest overall increase in tissue contrast, however phosphotungstic acid offers better inter-tissue discriminability. We further show that using paraformaldehyde as a fixative as opposed to ethanol, slows down the uptake of a staining solution by approximately a factor of two.
Collapse
|
43
|
Abstract
The visual world is rich in linearly polarized light stimuli, which are hidden from the human eye. But many invertebrate species make use of polarized light as a source of valuable visual information. However, exploiting light polarization does not necessarily imply that the electric (e)-vector orientation of polarized light can be perceived as a separate modality of light. In this Review, I address the question of whether invertebrates can detect specific e-vector orientations in a manner similar to that of humans perceiving spectral stimuli as specific hues. To analyze e-vector orientation, the signals of at least three polarization-sensitive sensors (analyzer channels) with different e-vector tuning axes must be compared. The object-based, imaging polarization vision systems of cephalopods and crustaceans, as well as the water-surface detectors of flying backswimmers, use just two analyzer channels. Although this excludes the perception of specific e-vector orientations, a two-channel system does provide a coarse, categoric analysis of polarized light stimuli, comparable to the limited color sense of dichromatic, 'color-blind' humans. The celestial compass of insects employs three or more analyzer channels. However, that compass is multimodal, i.e. e-vector information merges with directional information from other celestial cues, such as the solar azimuth and the spectral gradient in the sky, masking e-vector information. It seems that invertebrate organisms take no interest in the polarization details of visual stimuli, but polarization vision grants more practical benefits, such as improved object detection and visual communication for cephalopods and crustaceans, compass readings to traveling insects, or the alert 'water below!' to water-seeking bugs.
Collapse
Affiliation(s)
- Thomas Labhart
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, Zürich CH 8057, Switzerland
| |
Collapse
|