1
|
Liu Q, Zan M, Huang H, Su H, Zhang W, Ma L, Zhang G, Zhang Z, Zhang J, Niu J, Xu M. Structure based release kinetics analysis of doxazosin mesylate sustained-release tablets using micro-computed tomography. Asian J Pharm Sci 2024; 19:100966. [PMID: 39640054 PMCID: PMC11617939 DOI: 10.1016/j.ajps.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 12/07/2024] Open
Abstract
The structures of solid dosage forms determine their release behaviors and are critical attributes for the design and evaluation of the solid dosage forms. Here, the 3D structures of doxazosin mesylate sustained-release tablets were parallelly assessed by micro-computed tomography (micro-CT). There were no significant differences observed in the release profiles between the RLD and the generic formulation in the conventional dissolution, but the generic preparation released slightly faster in media with ethanol during an alcohol-induced dose-dumping test. With their 3D structures obtained via micro-CT determination, the unique release behaviors of both RLD and the generic were investigated to reveal the effects of internal fine structure on the release kinetics. The structural parameters for both preparations were similar in conventional dissolution test, while the dissolutions in ethanol media showed some distinctions between RLD and generic preparations due to their static and dynamic structures. Furthermore, the findings revealed that the presence of ethanol accelerated dissolution and induced changes in internal structure of both RLD and generic preparations. Moreover, structure parameters like volume and area of outer contour, remaining solid volume and cavity volume were not equivalent between the two formulations in 40 % ethanol. In conclusion, the structure data obtained from this study provided valuable insights into the diverse release behaviors observed in various modified-release formulations in drug development and quality control.
Collapse
Affiliation(s)
- Qian Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Mengqing Zan
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
- China Pharmaceutical University, Nanjing 210009, China
| | - Hanhan Huang
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
- China Pharmaceutical University, Nanjing 210009, China
| | - Hai Su
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
- China Pharmaceutical University, Nanjing 210009, China
| | - Wenjing Zhang
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
- China Pharmaceutical University, Nanjing 210009, China
| | - Lingyun Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Guangchao Zhang
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zunjian Zhang
- China Pharmaceutical University, Nanjing 210009, China
| | - Jiwen Zhang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianzhao Niu
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Mingdi Xu
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
2
|
Laguna-Castro S, Salminen A, Arponen O, Hannula M, Rinta-Kiikka I, Hyttinen J, Tolonen T. Micro-computed Tomography in the Evaluation of Eosin-stained Axillary Lymph Node Biopsies of Females Diagnosed with Breast Cancer. Sci Rep 2024; 14:28237. [PMID: 39548163 PMCID: PMC11568233 DOI: 10.1038/s41598-024-79060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Histopathological investigation of metastasis in core needle axillary lymph node (ALN) biopsies is crucial for the prognosis and treatment planning of breast cancer patients. Biopsies are typically sliced and evaluated as two-dimensional (2D) images. Biopsy sampling errors and the limited view provided by 2D histology are leading factors contributing to false-negative results in the preoperative detection of metastatic lymph nodes and underestimation of metastatic foci.In this proof-of-concept study, we aim to explore the technical feasibility and the potential capacities of tridimensional (3D) X-ray micro-computed tomography imaging to expedite error detection, enhancement of histopathological accuracy, and precise measurement of metastatic lesion on ALN core needle biopsies of two breast cancer patients. Our self-developed micro-CT protocol uses eosin for the first time, a common histological dye, to enhance 3D architecture of ALNs. Performed analysis on the images of the ALN biopsies involves cancer tissue segmentation, swift biopsy evaluation, and measurement of the metastatic longest diameter and deposit volume.The eosin micro-CT protocol shows potential for an improved tumor deposit estimates, offering additional clinical value compared to standard 2D histology, however, further studies for validating this method are needed.
Collapse
Affiliation(s)
- Santiago Laguna-Castro
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland.
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland.
| | - Annukka Salminen
- Department of Radiology, Tampere University Hospital, Tampere, 33520, Finland
| | - Otso Arponen
- Department of Radiology, Tampere University Hospital, Tampere, 33520, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Irina Rinta-Kiikka
- Department of Radiology, Tampere University Hospital, Tampere, 33520, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Teemu Tolonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
- Department of Pathology, Fimlab Laboratories, Tampere, 33520, Finland
| |
Collapse
|
3
|
Gignac PM, Valdez D, Morhardt AC, Lynch LM. Buffered Lugol's Iodine Preserves DNA Fragment Lengths. Integr Org Biol 2024; 6:obae017. [PMID: 38887427 PMCID: PMC11182668 DOI: 10.1093/iob/obae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Museum collections play a pivotal role in the advancement of biological science by preserving phenotypic and genotypic history and variation. Recently, contrast-enhanced X-ray computed tomography (CT) has aided these advances by allowing improved visualization of internal soft tissues. However, vouchered specimens could be at risk if staining techniques are destructive. For instance, the pH of unbuffered Lugol's iodine (I2KI) may be low enough to damage deoxyribonucleic acid (DNA). The extent of this risk is unknown due to a lack of rigorous evaluation of DNA quality between control and experimental samples. Here, we used formalin-fixed mice to document DNA concentrations and fragment lengths in nonstained, ethanol-preserved controls and 3 iodine-based staining preparations: (1) 1.25% weight-by-volume (wt/vol.) alcoholic iodine (I2E); (2) 3.75% wt/vol. I2KI; and (3) 3.75% wt/vol. buffered I2KI. We tested a null hypothesis of no significant difference in DNA concentrations and fragment lengths between control and treatment samples. We found that DNA concentration decreases because of staining-potentially an effect of measuring intact double-stranded DNA only. Fragment lengths, however, were significantly higher for buffered I2KI and control samples, which were not, themselves, significantly different. Our results implicate buffered I2KI as the appropriate choice for contrast-enhanced CT imaging of museum wet collections to safely maximize their potential for understanding genetic and phenotypic diversity.
Collapse
Affiliation(s)
- P M Gignac
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - D Valdez
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| | - A C Morhardt
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - L M Lynch
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
4
|
Hao Y, Wang Q, Wen C, Wen J. Comparison of Fine Structure of the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus brandti Adults. INSECTS 2023; 14:699. [PMID: 37623409 PMCID: PMC10455913 DOI: 10.3390/insects14080699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
Eucryptorrhynchus scrobiculatus and E. brandti are the main borers of Ailanthus altissima, causing serious economic and ecological losses. The external morphology and internal ultrastructure of the compound eyes of two related weevils were investigated with light microscopy, scanning electron microscopy, and transmission electron microscopy. E. scrobiculatus and E. brandti possess a pair of reniform apposition compound eyes and contain about 550 ommatidia per eye. The interommatidial angle of E. scrobiculatus and E. brandti are 7.08 ± 0.31° and 4.84 ± 0.49°, respectively. The corneal thickness, rhabdom length, and ommatidium length of E. scrobiculatus are significantly greater than those of E. brandti. Under light-adapted conditions, the pigment granules are mainly distributed at the junction of the cone and the rhabdom, and the diameter and the cross-sectional area of the middle end of the rhabdom is increased in the two weevil species. Under dark-adapted conditions, the pigment granules shift longitudinally and are evenly distributed on both sides of the cone and the rhabdom, and the diameter and cross-sectional area of the middle end of the rhabdom are decreased. The discrepancy in visual structure is beneficial for adaptation to niche differentiation of the two related species. The present results suggest that the two weevils possess different visual organ structures to perceive visual information in the external environment.
Collapse
Affiliation(s)
- Yingying Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Qi Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chao Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Junbao Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; (Y.H.); (Q.W.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Currea JP, Sondhi Y, Kawahara AY, Theobald J. Measuring compound eye optics with microscope and microCT images. Commun Biol 2023; 6:246. [PMID: 36882636 PMCID: PMC9992655 DOI: 10.1038/s42003-023-04575-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
With a great variety of shapes and sizes, compound eye morphologies give insight into visual ecology, development, and evolution, and inspire novel engineering. In contrast to our own camera-type eyes, compound eyes reveal their resolution, sensitivity, and field of view externally, provided they have spherical curvature and orthogonal ommatidia. Non-spherical compound eyes with skewed ommatidia require measuring internal structures, such as with MicroCT (µCT). Thus far, there is no efficient tool to characterize compound eye optics, from either 2D or 3D data, automatically. Here we present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data. We validate these algorithms on images, images of replicas, and µCT eye scans from ants, fruit flies, moths, and a bee.
Collapse
Affiliation(s)
- John Paul Currea
- Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095, USA.
| | - Yash Sondhi
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Nurrachman AS, Azhari A, Epsilawati L, Pramanik F. Temporal Pattern of micro-CT Angiography Vascular Parameters and VEGF mRNA Expression in Fracture Healing: a Radiograph and Molecular Comparison. Eur J Dent 2023. [PMID: 36716788 DOI: 10.1055/s-0042-1757466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis plays an important role in fracture healing with vascular endothelial growth factor (VEGF) as the main protein involved. Micro-computed tomography (CT) angiography may be used to analyze this revascularization with several parameters such as number of branches, total volume, and diameter. This systematic review is aimed to assess available studies on the temporal pattern of vascular imaging on micro-CT angiographs, especially in terms of the number of branches, total volume, and diameter as well as the temporal pattern of VEGF mRNA expression as the molecular comparison during bone fracture healing. This review was conducted according to the PRISMA guidelines. Electronic database searches were performed using PubMed, ProQuest, ScienceDirect, EBSCOhost, Taylor & Francis Online, and hand searching. The search strategy and keywords were adjusted to each database using the Boolean operators and other available limit functions to identify most relevant articles based on our inclusion and exclusion criteria. Screening and filtration were done in several stages by removing the duplicates and analyzing each title, abstract, and full-text in all included entries. Data extraction was done for syntheses to summarize the temporal pattern of each parameter. A total of 28 articles were eligible and met all criteria, 11 articles were synthesized in its angiograph's analysis, 16 articles were synthesized in its VEGF mRNA expression analysis, and 1 article had both parameters analyzed. The overall temporal pattern of both three micro-CT angiographic parameters and VEGF mRNA expression was in line qualitatively. The number of branches, total volume, and diameter of the blood vessels in micro-CT angiography showed an exponential rise at week 2 and decline at week 3 of fracture healing, with the VEGF mRNA expression concurrently showing a consistent pattern in the phase.
Collapse
Affiliation(s)
- Aga Satria Nurrachman
- Department of Oral and Maxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Azhari Azhari
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Lusi Epsilawati
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| | - Farina Pramanik
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Padjadjaran University, Bandung, West Java, Indonesia
| |
Collapse
|
8
|
Relationship between physical changes in the coffee bean due to roasting profiles and the sensory attributes of the coffee beverage. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Stöckl A, Grittner R, Taylor G, Rau C, Bodey AJ, Kelber A, Baird E. Allometric scaling of a superposition eye optimizes sensitivity and acuity in large and small hawkmoths. Proc Biol Sci 2022; 289:20220758. [PMID: 35892218 PMCID: PMC9326294 DOI: 10.1098/rspb.2022.0758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Animals vary widely in body size within and across species. This has consequences for the function of organs and body parts in both large and small individuals. How these scale, in relation to body size, reveals evolutionary investment strategies, often resulting in trade-offs between functions. Eyes exemplify these trade-offs, as they are limited by their absolute size in two key performance features: sensitivity and spatial acuity. Due to their size polymorphism, insect compound eyes are ideal models for studying the allometric scaling of eye performance. Previous work on apposition compound eyes revealed that allometric scaling led to poorer spatial resolution and visual sensitivity in small individuals, across a range of insect species. Here, we used X-ray microtomography to investigate allometric scaling in superposition compound eyes-the second most common eye type in insects-for the first time. Our results reveal a novel strategy to cope with the trade-off between sensitivity and spatial acuity, as we show that the eyes of the hummingbird hawkmoth retain an optimal balance between these performance measures across all body sizes.
Collapse
Affiliation(s)
- Anna Stöckl
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Rebecca Grittner
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Würzburg, Germany
| | - Gavin Taylor
- Institute for Globally Distributed Open Research and Education (IGDORE), Ribeirão Preto, Brazil
| | - Christoph Rau
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Andrew J. Bodey
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Almut Kelber
- Department of Biology, Lund University, Lund, Sweden
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Wlodkowic D, Bownik A, Leitner C, Stengel D, Braunbeck T. Beyond the behavioural phenotype: Uncovering mechanistic foundations in aquatic eco-neurotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154584. [PMID: 35306067 DOI: 10.1016/j.scitotenv.2022.154584] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
During the last decade, there has been an increase in awareness of how anthropogenic pollution can alter behavioural traits of diverse aquatic organisms. Apart from understanding profound ecological implications, alterations in neuro-behavioural indices have emerged as sensitive and physiologically integrative endpoints in chemical risk assessment. Accordingly, behavioural ecotoxicology and broader eco-neurotoxicology are becoming increasingly popular fields of research that span a plethora of fundamental laboratory experimentations as well as applied field-based studies. Despite mounting interest in aquatic behavioural ecotoxicology studies, there is, however, a considerable paucity in deciphering the mechanistic foundations underlying behavioural alterations upon exposure to pollutants. The behavioural phenotype is indeed the highest-level integrative neurobiological phenomenon, but at its core lie myriads of intertwined biochemical, cellular, and physiological processes. Therefore, the mechanisms that underlie changes in behavioural phenotypes can stem among others from dysregulation of neurotransmitter pathways, electrical signalling, and cell death of discrete cell populations in the central and peripheral nervous systems. They can, however, also be a result of toxicity to sensory organs and even metabolic dysfunctions. In this critical review, we outline why behavioural phenotyping should be the starting point that leads to actual discovery of fundamental mechanisms underlying actions of neurotoxic and neuromodulating contaminants. We highlight potential applications of the currently existing and emerging neurobiology and neurophysiology analytical strategies that should be embraced and more broadly adopted in behavioural ecotoxicology. Such strategies can provide new mechanistic discoveries instead of only observing the end sum phenotypic effects.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Laboratory, School of Science, RMIT University, Melbourne, Australia.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences, Lublin, Poland
| | - Carola Leitner
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Daniel Stengel
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany
| |
Collapse
|
11
|
Characterisation of Grains and Flour Fractions from Field Grown Transgenic Oil-Accumulating Wheat Expressing Oat WRI1. PLANTS 2022; 11:plants11070889. [PMID: 35406869 PMCID: PMC9002947 DOI: 10.3390/plants11070889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Wheat (Triticum aestivum L.) is one of the major staple crops in the world and is used to prepare a range of foods. The development of new varieties with wider variation in grain composition could broaden their use. We characterized grains and flours from oil-accumulating transgenic wheat expressing the oat (Avena sativa L.) endosperm WRINKLED1 (AsWRI1) grown under field conditions. Lipid and starch accumulation was determined in developing caryopses of AsWRI1-wheat and X-ray microtomography was used to study grain morphology. The developing caryopses of AsWRI1-wheat grains had increased triacylglycerol content and decreased starch content compared to the control. Mature AsWRI1-wheat grains also had reduced weight, were wrinkled and had a shrunken endosperm and X-ray tomography revealed that the proportion of endosperm was decreased while that of the aleurone was increased. Grains were milled to produce two white flours and one bran fraction. Mineral and lipid analyses showed that the flour fractions from the AsWRI1-wheat were contaminated with bran, due to the effects of the changed morphology on milling. This study gives a detailed analysis of grains from field grown transgenic wheat that expresses a gene that plays a central regulatory role in carbon allocation and significantly affects grain composition.
Collapse
|
12
|
Tichit P, Zhou T, Kjer HM, Dahl VA, Dahl AB, Baird E. InSegtCone: interactive segmentation of crystalline cones in compound eyes. BMC ZOOL 2022; 7:10. [PMID: 37170292 PMCID: PMC10127308 DOI: 10.1186/s40850-021-00101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Understanding the diversity of eyes is crucial to unravel how different animals use vision to interact with their respective environments. To date, comparative studies of eye anatomy are scarce because they often involve time-consuming or inefficient methods. X-ray micro-tomography (micro-CT) is a promising high-throughput imaging technique that enables to reconstruct the 3D anatomy of eyes, but powerful tools are needed to perform fast conversions of anatomical reconstructions into functional eye models.
Results
We developed a computing method named InSegtCone to automatically segment the crystalline cones in the apposition compound eyes of arthropods. Here, we describe the full auto-segmentation process, showcase its application to three different insect compound eyes and evaluate its performance. The auto-segmentation could successfully label the full individual shapes of 60-80% of the crystalline cones and is about as accurate and 250 times faster than manual labelling of the individual cones.
Conclusions
We believe that InSegtCone can be an important tool for peer scientists to measure the orientation, size and dynamics of crystalline cones, leading to the accurate optical modelling of the diversity of arthropod eyes with micro-CT.
Collapse
|
13
|
Rigosi E, Warrant EJ, O’Carroll DC. A new, fluorescence-based method for visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of honeybees and other insects. Sci Rep 2021; 11:21267. [PMID: 34711871 PMCID: PMC8553845 DOI: 10.1038/s41598-021-00407-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Recent interest in applying novel imaging techniques to infer optical resolution in compound eyes underscores the difficulty of obtaining direct measures of acuity. A widely used technique exploits the principal pseudopupil, a dark spot on the eye surface representing the ommatidial gaze direction and the number of detector units (ommatidia) viewing that gaze direction. However, dark-pigmented eyes, like those of honeybees, lack a visible pseudopupil. Attempts over almost a century to estimate optical acuity in this species are still debated. Here, we developed a method to visualize a stable, reliable pseudopupil by staining the photoreceptors with fluorescent dyes. We validated this method in several species and found it to outperform the dark pseudopupil for this purpose, even in pale eyes, allowing more precise location of the gaze centre. We then applied this method to estimate the sampling resolution in the frontal part of the eye of the honeybee forager. We found a broad frontal acute zone with interommatidial angles below 2° and a minimum interommatidial angle of 1.3°, a broader, sharper frontal acute zone than previously reported. Our study provides a new method to directly measure the sampling resolution in most compound eyes of living animals.
Collapse
Affiliation(s)
- Elisa Rigosi
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - David C. O’Carroll
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
14
|
Roche i Morgó O, Vittoria F, Endrizzi M, Olivo A, Hagen CK. Technical Note: Practical implementation strategies of cycloidal computed tomography. Med Phys 2021; 48:6524-6530. [PMID: 34169514 PMCID: PMC11497279 DOI: 10.1002/mp.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Cycloidal computed tomography is a novel imaging concept which combines a highly structured x-ray beam, offset lateral under-sampling, and mathematical data recovery to obtain high-resolution images efficiently and flexibly, even with relatively large source focal spots and detector pixels. The method reduces scanning time and, potentially, delivered dose compared to other sampling schemes. This study aims to present and discuss several implementation strategies for cycloidal computed tomography (CT) in order to increase its ease of use and facilitate uptake within the imaging community. METHODS The different implementation strategies presented are step-and-shoot, continuous unidirectional, continuous back-and-forth, and continuous pixel-wise scanning. In step-and-shoot scans the sample remains stationary while frames are acquired, whereas in all other cases the sample moves through the scanner continuously. The difference between the continuous approaches is the trajectory by which the sample moves within the field of view. RESULTS All four implementation strategies are compatible with a standard table-top x-ray setup. With the experimental setup applied here, step-and-shoot acquisitions yield the best spatial resolution (around 30 µm), but are the most time-consuming (1.4 h). Continuous unidirectional and back-and-forth images have resolution between 30 and 40 µm, and are faster (35 min). Continuous pixel-wise images are equally time-efficient, although technical challenges caused a small loss in image quality with a resolution of about 50 µm. CONCLUSION The authors show that cycloidal CT can be implemented in a variety of ways with high quality results. They believe this posits cycloidal CT as a powerful imaging alternative to more time-consuming and less flexible methods in the field.
Collapse
Affiliation(s)
- Oriol Roche i Morgó
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabio Vittoria
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- ENEA Radiation Protection InstituteBolognaItaly
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Charlotte K. Hagen
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| |
Collapse
|
15
|
Rother L, Kraft N, Smith DB, El Jundi B, Gill RJ, Pfeiffer K. A micro-CT-based standard brain atlas of the bumblebee. Cell Tissue Res 2021; 386:29-45. [PMID: 34181089 PMCID: PMC8526489 DOI: 10.1007/s00441-021-03482-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nadine Kraft
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Basil El Jundi
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
16
|
Assessment of the Density Loss in Anobiid Infested Pine Using X-ray Micro-Computed Tomography. BUILDINGS 2021. [DOI: 10.3390/buildings11040173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study aims at evaluating the impact of anobiid damage on pine timber elements. Anobiid attack produces a diffuse damage of the elements with a set of tunnels in random directions and sizes, thus confusing quantification. Therefore, a method was developed based on X-ray micro-computed tomography (μ-XCT) to obtain, for naturally infested timber samples, an empirical correlation between lost material percentage (consumed by beetles) and timber apparent density (original, before degradation—OTD and residual, after degradation—RTD). The quantified density loss can then be used in further assessment of the structure. The results of the tests performed showed high correlation between original apparent density and lost material percentage (r2 = 0.60) and between residual apparent density and lost material percentage (r2 = 0.83), which confirms μ-XCT as a valuable tool to the required quantification. The loss of density results can be further applied on the definition of an assessment method for the evaluation of the residual strength of anobiids infested timber, thus contributing to reducing unnecessary replacement. The optimized procedure of the μ-XCT study for infested Maritime pine (Pinus pinaster) is presented and discussed in this article.
Collapse
|
17
|
Romell J, Jie VW, Miettinen A, Baird E, Hertz HM. Laboratory phase-contrast nanotomography of unstained Bombus terrestris compound eyes. J Microsc 2021; 283:29-40. [PMID: 33822371 DOI: 10.1111/jmi.13005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
Imaging the visual systems of bumblebees and other pollinating insects may increase understanding of their dependence on specific habitats and how they will be affected by climate change. Current high-resolution imaging methods are either limited to two dimensions (light- and electron microscopy) or have limited access (synchrotron radiation x-ray tomography). For x-ray imaging, heavy metal stains are often used to increase contrast. Here, we present micron-resolution imaging of compound eyes of buff-tailed bumblebees (Bombus terrestris) using a table-top x-ray nanotomography (nano-CT) system. By propagation-based phase-contrast imaging, the use of stains was avoided and the microanatomy could more accurately be reconstructed than in samples stained with phosphotungstic acid or osmium tetroxide. The findings in the nano-CT images of the compound eye were confirmed by comparisons with light- and transmission electron microscopy of the same sample and finally, comparisons to synchrotron radiation tomography as well as to a commercial micro-CT system were done.
Collapse
Affiliation(s)
- Jenny Romell
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Vun Wen Jie
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Arttu Miettinen
- Institute for Biomedical Engineering, Zurich University and ETH Zurich, Zurich, Switzerland.,Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland.,Arttu Miettinen, Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Emily Baird
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hans M Hertz
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
Jahanbakhsh A, Wlodarczyk KL, Hand DP, Maier RRJ, Maroto-Valer MM. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. SENSORS 2020; 20:s20144030. [PMID: 32698501 PMCID: PMC7412536 DOI: 10.3390/s20144030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely “fluid flow in porous media”, “flow in heterogeneous rocks and fractures”, “reactive transport, solute and colloid transport”, and finally “porous media characterization”. In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.
Collapse
Affiliation(s)
- Amir Jahanbakhsh
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Correspondence:
| | - Krystian L. Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Duncan P. Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Robert R. J. Maier
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
| |
Collapse
|
19
|
Zikmundová E, Zikmund T, Sládek V, Kaiser J. Non-destructive lock-picking of a historical treasure chest by means of X-ray computed tomography. PLoS One 2020; 15:e0235316. [PMID: 32628704 PMCID: PMC7337312 DOI: 10.1371/journal.pone.0235316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
An innovative approach to a non-destructive lock mechanism examination by means of X-ray computed tomography (CT) was involved in a careful opening of a locked 19th century chest missing the key, as an interdisciplinary cooperation with the restorers. In regard of the exploration and conservation of such locked objects, their opening is important to the restorers. However, the opening may be complicated, if not impossible, without damaging the object when the key is missing. Moreover, the historical locks might be equipped with protective mechanisms. Despite the exceeding dimensions and the weight of the steel chest, a CT analysis was performed, which enabled a detailed exploration of the lock based on a system of levers and bolts handled by a single key, located in a case on the inside of the chest lid, including the dimensions essential for manufacturing of a new key copy. Moreover, two secret protective mechanisms were revealed, as well as all the damages of the object.
Collapse
Affiliation(s)
- Eva Zikmundová
- Central European Institute of Technology, Brno University of Technology (CEITEC BUT), Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology (CEITEC BUT), Brno, Czech Republic
| | - Vladimír Sládek
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology (CEITEC BUT), Brno, Czech Republic
- * E-mail:
| |
Collapse
|
20
|
严 玉, 潘 新, 林 博, 林 冠, 殷 国. [Effect of natural hirudin on revascularization of ischemic skin flaps in rats by Micro-CT]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:382-386. [PMID: 32174087 PMCID: PMC8171649 DOI: 10.7507/1002-1892.201907030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/06/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the effect of natural hirudin on revascularization of ischemic skin flap in rats using Micro-CT and three-dimensional (3D) reconstruction. METHODS Thirty-two Sprague Dawley rats were prepared a ischemic skin flap (8.0 cm×1.8 cm) model on the back and randomly divided into hirudin group and control group (16 rats in each group). At immediate and within 3 days after operation, the rats were treated with hypodermic injection of natural hirudin 0.3 mL (including natural hirudin 6 ATU) every day in hirudin group and the equal amount of normal saline in control group. At 6 days after operation, the survival rate of skin flap was evaluated, histological changes were observed by HE staining, and the volemia, length of blood vessels, and number of blood vessels were analyzed with Micro-CT 3D reconstruction. RESULTS Both groups of rats survived to the end of the experiment without infection. Different degrees of necrosis occurred in the distal part of the skin flaps in both groups at 6 days after operation, but the flap survival rate of the hirudin group (72.11%±8.97%) was significantly higher than that of control group (58.94%±4.02%) ( t=3.280, P=0.008). Histological observation showed that the histological hierarchy of the hirudin group was clearer than that of the control group, with more microangiogenesis and less inflammatory response and inflammatory cell infiltration. Micro-CT 3D reconstruction showed that the flap vessels in the hirudin group were more and denser, and the volemia, length of blood vessels, and number of blood vessels were significantly higher than those in the control group ( P<0.05). CONCLUSION Natural hirudin can reduce the inflammation of tissue, promote the regeneration and recanalization of blood vessels in ischemic skin flap, so as to improve the survival rate of the flap.
Collapse
Affiliation(s)
- 玉勇 严
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 新元 潘
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 博杰 林
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 冠宇 林
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 国前 殷
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
- 广西壮族自治区人民医院整形美容激光中心(南宁 530021)Department of Cosmetology and Plastic Surgery Center, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning Guangxi, 530021, P.R.China
| |
Collapse
|
21
|
Smith DB, Arce AN, Ramos Rodrigues A, Bischoff PH, Burris D, Ahmed F, Gill RJ. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc Biol Sci 2020; 287:20192442. [PMID: 32126960 DOI: 10.1098/rspb.2019.2442] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction.
Collapse
Affiliation(s)
- Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Philipp H Bischoff
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daisy Burris
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Farah Ahmed
- Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
22
|
Taylor GJ, Hall SA, Gren JA, Baird E. Exploring the visual world of fossilized and modern fungus gnat eyes (Diptera: Keroplatidae) with X-ray microtomography. J R Soc Interface 2020; 17:20190750. [PMID: 32019468 PMCID: PMC7061697 DOI: 10.1098/rsif.2019.0750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Animal eyes typically possess specialized regions for guiding different behavioural tasks within their specific visual habitat. These specializations, and evolutionary changes to them, can be crucial for understanding an animal's ecology. Here, we explore how the visual systems of some of the smallest flying insects, fungus gnats, have adapted to different types of forest habitat over time (approx. 30 Myr to today). Unravelling how behavioural, environmental and phylogenetic factors influence the evolution of visual specializations is difficult, however, because standard quantitative techniques often require fresh tissue and/or provide data in eye-centric coordinates that prevent reliable comparisons between species with different eye morphologies. Here, we quantify the visual world of three gnats from different time periods and habitats using X-ray microtomography to create high-resolution three-dimensional models of the compound eyes of specimens in different preservation states—fossilized in amber, dried or stored in ethanol. We present a method for analysing the geometric details of individual corneal facets and for estimating and comparing the sensitivity, spatial resolution and field of view of species across geographical space and evolutionary time. Our results indicate that, despite their miniature size, fungus gnats do have variations in visual properties across their eyes. We also find some indication that these visual specializations vary across species and may represent adaptations to their different forest habitats. Overall, the findings demonstrate how such investigations can be used to study the evolution of visual specializations—and sensory ecology in general—across a range of insect taxa from different geographical locations and across time.
Collapse
Affiliation(s)
| | - Stephen A Hall
- Division of Solid Mechanics, Lund University, Lund, Sweden
| | - Johan A Gren
- Department of Geology, Lund University, Lund, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Ito T. Effects of different segmentation methods on geometric morphometric data collection from primate skulls. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsuyoshi Ito
- Department of Evolution and Phylogeny, Primate Research Institute Kyoto University Inuyama Aichi Japan
| |
Collapse
|
24
|
Wilby D, Aarts T, Tichit P, Bodey A, Rau C, Taylor G, Baird E. Using micro-CT techniques to explore the role of sex and hair in the functional morphology of bumblebee (Bombus terrestris) ocelli. Vision Res 2019; 158:100-108. [PMID: 30826353 DOI: 10.1016/j.visres.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/27/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022]
Affiliation(s)
- David Wilby
- Department of Biology, Lund University, Lund, Sweden
| | - Tobio Aarts
- Department of Biology, Lund University, Lund, Sweden; Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, Netherlands
| | - Pierre Tichit
- Department of Biology, Lund University, Lund, Sweden
| | - Andrew Bodey
- Diamond Light Source, Oxfordshire, United Kingdom
| | | | - Gavin Taylor
- Department of Biology, Lund University, Lund, Sweden
| | - Emily Baird
- Department of Biology, Lund University, Lund, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
25
|
Taylor GJ, Tichit P, Schmidt MD, Bodey AJ, Rau C, Baird E. Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife 2019; 8:40613. [PMID: 30803484 PMCID: PMC6391067 DOI: 10.7554/elife.40613] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022] Open
Abstract
The quality of visual information that is available to an animal is limited by the size of its eyes. Differences in eye size can be observed even between closely related individuals, yet we understand little about how this affects vision. Insects are good models for exploring the effects of size on visual systems because many insect species exhibit size polymorphism. Previous work has been limited by difficulties in determining the 3D structure of eyes. We have developed a novel method based on x-ray microtomography to measure the 3D structure of insect eyes and to calculate predictions of their visual capabilities. We used our method to investigate visual allometry in the bumblebee Bombus terrestris and found that size affects specific aspects of vision, including binocular overlap, optical sensitivity, and dorsofrontal visual resolution. This reveals that differential scaling between eye areas provides flexibility that improves the visual capabilities of larger bumblebees. Bees fly through complex environments in search of nectar from flowers. They are aided in this quest by excellent eyesight. Scientists have extensively studied the eyesight of honeybees to learn more about how such tiny eyes work and how they process and learn visual information. Less is known about the honeybee’s larger cousins, the bumblebees, which are also important pollinators. Bumblebees come in different sizes and one question scientists have is how eye size affects vision. Bigger bumblebees are known to have bigger eyes, and bigger eyes are usually better. But which aspects of vision are improved in larger eyes is not clear. For example, does the size of a bee’s eyes affect how large their field of view is, or how sensitive they are to light? Or does it impact their visual acuity, a measurement of the smallest objects the eye can see? Scaling up an eye would likely improve all these aspects of sight slightly, but changes in a small area of the eye might more drastically improve some parts of vision. Now, Taylor et al. show that larger bumblebees with bigger eyes have better vision than their smaller counterparts. In the experiments, a technique called microtomography was used to measure the 3D structure of bumblebee eyes. The measurements were then applied to build 3D models of the bumblebee eyes, and computational geometry was used to calculate the sensitivity, acuity, and viewing direction across the entire surface of each model eye. Taylor et al. found that larger bees had improved ability to see small objects in front or slightly above them. They had a bigger area of overlap between the sight in both eyes when they looked forward and up. They were also more sensitive to light across the eye. The experiments show that improvements in eyesight with larger size are very specific and likely help larger bees to adapt to their environment. Behavioral studies could help scientists better understand how these changes help bigger bees and how the traits evolved. These findings might also help engineers trying to design miniature cameras to help small, flying autonomous vehicles navigate. Bees fly through complex environments and face challenges similar to those small flying vehicles would face. Emulating the design of bee eyes and how they change with size might lead to the development of better cameras for these vehicles.
Collapse
Affiliation(s)
| | - Pierre Tichit
- Department of Biology, Lund University, Lund, Sweden
| | - Marie D Schmidt
- Department of Biology, Lund University, Lund, Sweden.,Westphalian University of Applied Sciences, Bocholt, Germany
| | | | | | - Emily Baird
- Department of Biology, Lund University, Lund, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Toolbox for In Vivo Imaging of Host-Parasite Interactions at Multiple Scales. Trends Parasitol 2019; 35:193-212. [PMID: 30745251 DOI: 10.1016/j.pt.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology.
Collapse
|
27
|
du Plessis A, Broeckhoven C. Looking deep into nature: A review of micro-computed tomography in biomimicry. Acta Biomater 2019; 85:27-40. [PMID: 30543937 DOI: 10.1016/j.actbio.2018.12.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Albert Einstein once said "look deep into nature, and then you will understand everything better". Looking deep into nature has in the last few years become much more achievable through the use of high-resolution X-ray micro-computed tomography (microCT). The non-destructive nature of microCT, combined with three-dimensional visualization and analysis, allows for the most complete internal and external "view" of natural materials and structures at both macro- and micro-scale. This capability brings with it the possibility to learn from nature at an unprecedented level of detail in full three dimensions, allowing us to improve our current understanding of structures, learn from them and apply them to solve engineering problems. The use of microCT in the fields of biomimicry, biomimetic engineering and bioinspiration is growing rapidly and holds great promise. MicroCT images and three-dimensional data can be used as generic bio-inspiration, or may be interpreted as detailed blueprints for specific engineering applications, i.e., reverse-engineering nature. In this review, we show how microCT has been used in bioinspiration and biomimetic studies to date, including investigations of multifunctional structures, hierarchical structures and the growing use of additive manufacturing and mechanical testing of 3D printed models in combination with microCT. The latest microCT capabilities and developments which might support biomimetic studies are described and the unique synergy between microCT and biomimicry is demonstrated. STATEMENT OF SIGNIFICANCE: This review highlights the growing use of X-ray micro computed tomography in biomimetic research. We feel the timing of this paper is excellent as there is a significant growth and interest in biomimetic research, also coupled with additive manufacturing, but still no review of the use of microCT in this field. The use of microCT for structural biomimetic and biomaterials research has huge potential but is still under-utilized, partly due to lack of knowledge of the capabilities and how it can be used in this field. We hope this review fills this gap and fuels further advances in this field using microCT.
Collapse
|