1
|
Ouardouz M, Jasinski P, Khalife M, Mahoney JM, Hernan AE, Scott RC. Hippocampal-prefrontal functional neural networks in a rat model of fragile X syndrome are poorly organized with limited resiliency. Sci Rep 2025; 15:16089. [PMID: 40341845 PMCID: PMC12062414 DOI: 10.1038/s41598-025-99408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Fragile X Syndrome (FXS) is a common cause of autism spectrum symptoms. The genetic mutation results in multiple molecular alterations that are hypothesized to negatively impact neural circuit development although the nature of any functional neural dynamic consequences remain unclear. Therefore, the characteristics of hippocampal-prefrontal (H-PFC) network dysfunction were investigated in a rat model of FXS. FMR-KO and control rats underwent behavioral tests assessing sociability, memory, and anxiety to validate and replicate previously recognized deficits. Single-unit electrophysiology in the H-PFC circuit during exploration was used to measure patterns of action potential firing that were then compared between groups using generalized linear mixed models. FMR-KO rats demonstrated significant behavioral deficits in sociability, spatial learning, and anxiety. These rats also exhibited abnormal firing patterns outside of times when specific behavioral tasks were being performed. The network firing is less precise, more fragmented and with poor H-PFC communication in FXS. These findings suggest that disruptions in 'exploration' neural network dynamics impair the ability of networks to be appropriately engaged during specific behavioral tasks, leading to the observed deficits in social behavior, memory, and anxiety.
Collapse
Affiliation(s)
- Mohamed Ouardouz
- Nemours Children's Hospital, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Patrick Jasinski
- Nemours Children's Hospital, 1600 Rockland Road, Wilmington, DE, 19803, USA
| | - Mohamed Khalife
- Nemours Children's Hospital, 1600 Rockland Road, Wilmington, DE, 19803, USA
- University of Delaware, 210 South College Street, Newark, DE, 19716, USA
| | | | - Amanda E Hernan
- Nemours Children's Hospital, 1600 Rockland Road, Wilmington, DE, 19803, USA
- University of Delaware, 210 South College Street, Newark, DE, 19716, USA
| | - Rod C Scott
- Nemours Children's Hospital, 1600 Rockland Road, Wilmington, DE, 19803, USA.
- University of Delaware, 210 South College Street, Newark, DE, 19716, USA.
- Sidney Kimmel College of Medicine, Thomas Jefferson University, 1035 Walnut Street, Philadelphia, PA, 19107, USA.
- Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
2
|
Ouardouz M, Jasinski P, Khalife M, Mahoney JM, Hernan AE, Scott RC. Disrupted Hippocampal-Prefrontal Networks in a Rat Model of Fragile X Syndrome: A Study Linking Neural Dynamics to Autism-Like Behavioral Impairments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.617900. [PMID: 39464036 PMCID: PMC11507762 DOI: 10.1101/2024.10.15.617900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Fragile X Syndrome (FXS) is associated with autism spectrum disorder (ASD) symptoms that are associated with cognitive, learning, and behavioral challenges. We investigated how known molecular disruptions in the Fmr1 knockout (FMR-KO) rat model of FXS negatively impact hippocampal-prefrontal cortex (H-PFC) neural network activity and consequent behavior. Methods FMR-KO and control rats underwent a battery of behavioral tests assessing sociability, memory, and anxiety. Single-unit electrophysiology recordings were then conducted to measure patterns of neural activity in H-PFC circuit. Advanced mathematical models were used to characterize the patterns that were then compared between groups using generalized linear mixed models. Results FMR-KO rats demonstrated significant behavioral deficits in sociability, spatial learning, and anxiety, aligning with symptoms of ASD. At the neural level, these rats exhibited abnormal firing patterns in the H-PFC circuit that is critical for learning, memory, and social behavior. The neural networks in FMR-KO rats were also less densely connected and more fragmented, particularly in hippocampal-PFC correlated firing. These findings suggest that disruptions in neural network dynamics underlie the observed behavioral impairments in FMR-KO rats. Conclusion FMR-KO significantly disrupts several characteristics of action potential firing in the H-PFC network, leading to deficits in social behavior, memory, and anxiety, as seen in FXS. This disruption is characterized by less organized and less resilient hippocampal-PFC networks. These findings suggest that therapeutic strategies aimed at normalizing neural dynamics, such as with brain stimulation, could potentially improve behavior and cognitive functions in autistic individuals. HIGHLIGHTS Fragile X Syndrome is associated with autism, cognitive challenges and anxietyThe loss of Fmr1 protein disrupts processes involved in building neural networksThe consequence is abnormal neural dynamics in hippocampal-prefrontal cortex networksNormalization of dynamics could improve outcomes in FXS and ASD.
Collapse
|
3
|
Miles KD, Barker CM, Russell KP, Appel BH, Doll CA. Electrical Synapses Mediate Embryonic Hyperactivity in a Zebrafish Model of Fragile X Syndrome. J Neurosci 2024; 44:e2275232024. [PMID: 38969506 PMCID: PMC11293453 DOI: 10.1523/jneurosci.2275-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
Collapse
Affiliation(s)
- Kaleb D Miles
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Chase M Barker
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristen P Russell
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Bruce H Appel
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| | - Caleb A Doll
- Section of Developmental Biology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
4
|
Sweat SC, Cheetham CEJ. Deficits in olfactory system neurogenesis in neurodevelopmental disorders. Genesis 2024; 62:e23590. [PMID: 38490949 PMCID: PMC10990073 DOI: 10.1002/dvg.23590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
The role of neurogenesis in neurodevelopmental disorders (NDDs) merits much attention. The complex process by which stem cells produce daughter cells that in turn differentiate into neurons, migrate various distances, and form synaptic connections that are then refined by neuronal activity or experience is integral to the development of the nervous system. Given the continued postnatal neurogenesis that occurs in the mammalian olfactory system, it provides an ideal model for understanding how disruptions in distinct stages of neurogenesis contribute to the pathophysiology of various NDDs. This review summarizes and discusses what is currently known about the disruption of neurogenesis within the olfactory system as it pertains to attention-deficit/hyperactivity disorder, autism spectrum disorder, Down syndrome, Fragile X syndrome, and Rett syndrome. Studies included in this review used either human subjects, mouse models, or Drosophila models, and lay a compelling foundation for continued investigation of NDDs by utilizing the olfactory system.
Collapse
Affiliation(s)
- Sean C Sweat
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire E J Cheetham
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
6
|
Yu X, Wang Y. Peripheral Fragile X messenger ribonucleoprotein is required for the timely closure of a critical period for neuronal susceptibility in the ventral cochlear nucleus. Front Cell Neurosci 2023; 17:1186630. [PMID: 37305436 PMCID: PMC10248243 DOI: 10.3389/fncel.2023.1186630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Alterations in neuronal plasticity and critical periods are common across neurodevelopmental diseases, including Fragile X syndrome (FXS), the leading single-gene cause of autism. Characterized with sensory dysfunction, FXS is the result of gene silencing of Fragile X messenger ribonucleoprotein 1 (FMR1) and loss of its product, Fragile X messenger ribonucleoprotein (FMRP). The mechanisms underlying altered critical period and sensory dysfunction in FXS are obscure. Here, we performed genetic and surgical deprivation of peripheral auditory inputs in wildtype and Fmr1 knockout (KO) mice across ages and investigated the effects of global FMRP loss on deafferentation-induced neuronal changes in the ventral cochlear nucleus (VCN) and auditory brainstem responses. The degree of neuronal cell loss during the critical period was unchanged in Fmr1 KO mice. However, the closure of the critical period was delayed. Importantly, this delay was temporally coincidental with reduced hearing sensitivity, implying an association with sensory inputs. Functional analyses further identified early-onset and long-lasting alterations in signal transmission from the spiral ganglion to the VCN, suggesting a peripheral site of FMRP action. Finally, we generated conditional Fmr1 KO (cKO) mice with selective deletion of FMRP in spiral ganglion but not VCN neurons. cKO mice recapitulated the delay in the VCN critical period closure in Fmr1 KO mice, confirming an involvement of cochlear FMRP in shaping the temporal features of neuronal critical periods in the brain. Together, these results identify a novel peripheral mechanism of neurodevelopmental pathogenesis.
Collapse
Affiliation(s)
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
7
|
Fabian B, Sachse S. Experience-dependent plasticity in the olfactory system of Drosophila melanogaster and other insects. Front Cell Neurosci 2023; 17:1130091. [PMID: 36923450 PMCID: PMC10010147 DOI: 10.3389/fncel.2023.1130091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
It is long known that the nervous system of vertebrates can be shaped by internal and external factors. On the other hand, the nervous system of insects was long assumed to be stereotypic, although evidence for plasticity effects accumulated for several decades. To cover the topic comprehensively, this review recapitulates the establishment of the term "plasticity" in neuroscience and introduces its original meaning. We describe the basic composition of the insect olfactory system using Drosophila melanogaster as a representative example and outline experience-dependent plasticity effects observed in this part of the brain in a variety of insects, including hymenopterans, lepidopterans, locusts, and flies. In particular, we highlight recent advances in the study of experience-dependent plasticity effects in the olfactory system of D. melanogaster, as it is the most accessible olfactory system of all insect species due to the genetic tools available. The partly contradictory results demonstrate that morphological, physiological and behavioral changes in response to long-term olfactory stimulation are more complex than previously thought. Different molecular mechanisms leading to these changes were unveiled in the past and are likely responsible for this complexity. We discuss common problems in the study of experience-dependent plasticity, ways to overcome them, and future directions in this area of research. In addition, we critically examine the transferability of laboratory data to natural systems to address the topic as holistically as possible. As a mechanism that allows organisms to adapt to new environmental conditions, experience-dependent plasticity contributes to an animal's resilience and is therefore a crucial topic for future research, especially in an era of rapid environmental changes.
Collapse
Affiliation(s)
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
8
|
Barker CM, Miles KD, Doll CA. Fmrp regulates neuronal balance in embryonic motor circuit formation. Front Neurosci 2022; 16:962901. [PMID: 36408418 PMCID: PMC9669763 DOI: 10.3389/fnins.2022.962901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Motor behavior requires the balanced production and integration of a variety of neural cell types. Motor neurons are positioned in discrete locations in the spinal cord, targeting specific muscles to drive locomotive contractions. Specialized spinal interneurons modulate and synchronize motor neuron activity to achieve coordinated motor output. Changes in the ratios and connectivity of spinal interneurons could drastically alter motor output by tipping the balance of inhibition and excitation onto target motor neurons. Importantly, individuals with Fragile X syndrome (FXS) and associated autism spectrum disorders often have significant motor challenges, including repetitive behaviors and epilepsy. FXS stems from the transcriptional silencing of the gene Fragile X Messenger Ribonucleoprotein 1 (FMR1), which encodes an RNA binding protein that is implicated in a multitude of crucial neurodevelopmental processes, including cell specification. Our work shows that Fmrp regulates the formation of specific interneurons and motor neurons that comprise early embryonic motor circuits. We find that zebrafish fmr1 mutants generate surplus ventral lateral descending (VeLD) interneurons, an early-born cell derived from the motor neuron progenitor domain (pMN). As VeLD interneurons are hypothesized to act as central pattern generators driving the earliest spontaneous movements, this imbalance could influence the formation and long-term function of motor circuits driving locomotion. fmr1 embryos also show reduced expression of proteins associated with inhibitory synapses, including the presynaptic transporter vGAT and the postsynaptic scaffold Gephyrin. Taken together, we show changes in embryonic motor circuit formation in fmr1 mutants that could underlie persistent hyperexcitability.
Collapse
Affiliation(s)
- Chase M. Barker
- Section of Developmental Biology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kaleb D. Miles
- Section of Developmental Biology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
- Biomedical Sciences and Biotechnology Program, Graduate School, University of Colorado, Aurora, CO, United States
| | - Caleb A. Doll
- Section of Developmental Biology, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
9
|
Hayashi TT, MacKenzie AJ, Ganguly I, Ellis KE, Smihula HM, Jacob MS, Litwin-Kumar A, Caron SJC. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr Biol 2022; 32:4000-4012.e5. [PMID: 35977547 PMCID: PMC9533768 DOI: 10.1016/j.cub.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Associative brain centers, such as the insect mushroom body, need to represent sensory information in an efficient manner. In Drosophila melanogaster, the Kenyon cells of the mushroom body integrate inputs from a random set of olfactory projection neurons, but some projection neurons-namely those activated by a few ethologically meaningful odors-connect to Kenyon cells more frequently than others. This biased and random connectivity pattern is conceivably advantageous, as it enables the mushroom body to represent a large number of odors as unique activity patterns while prioritizing the representation of a few specific odors. How this connectivity pattern is established remains largely unknown. Here, we test whether the mechanisms patterning the connections between Kenyon cells and projection neurons depend on sensory activity or whether they are hardwired. We mapped a large number of mushroom body input connections in partially anosmic flies-flies lacking the obligate odorant co-receptor Orco-and in wild-type flies. Statistical analyses of these datasets reveal that the random and biased connectivity pattern observed between Kenyon cells and projection neurons forms normally in the absence of most olfactory sensory activity. This finding supports the idea that even comparatively subtle, population-level patterns of neuronal connectivity can be encoded by fixed genetic programs and are likely to be the result of evolved prioritization of ecologically and ethologically salient stimuli.
Collapse
Affiliation(s)
- Tatsuya Tatz Hayashi
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander John MacKenzie
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Kaitlyn Elizabeth Ellis
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Hayley Marie Smihula
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Sophie Jeanne Cécile Caron
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022; 10:934662. [PMID: 35880195 PMCID: PMC9307498 DOI: 10.3389/fcell.2022.934662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023] Open
Abstract
Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, School of Medicine, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
11
|
Heckman EL, Doe CQ. Presynaptic contact and activity opposingly regulate postsynaptic dendrite outgrowth. eLife 2022; 11:82093. [PMID: 36448675 PMCID: PMC9728994 DOI: 10.7554/elife.82093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The organization of neural circuits determines nervous system function. Variability can arise during neural circuit development (e.g. neurite morphology, axon/dendrite position). To ensure robust nervous system function, mechanisms must exist to accommodate variation in neurite positioning during circuit formation. Previously, we developed a model system in the Drosophila ventral nerve cord to conditionally induce positional variability of a proprioceptive sensory axon terminal, and used this model to show that when we altered the presynaptic position of the sensory neuron, its major postsynaptic interneuron partner modified its dendritic arbor to match the presynaptic contact, resulting in functional synaptic input (Sales et al., 2019). Here, we investigate the cellular mechanisms by which the interneuron dendrites detect and match variation in presynaptic partner location and input strength. We manipulate the presynaptic sensory neuron by (a) ablation; (b) silencing or activation; or (c) altering its location in the neuropil. From these experiments we conclude that there are two opposing mechanisms used to establish functional connectivity in the face of presynaptic variability: presynaptic contact stimulates dendrite outgrowth locally, whereas presynaptic activity inhibits postsynaptic dendrite outgrowth globally. These mechanisms are only active during an early larval critical period for structural plasticity. Collectively, our data provide new insights into dendrite development, identifying mechanisms that allow dendrites to flexibly respond to developmental variability in presynaptic location and input strength.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
12
|
Doll CA, Scott K, Appel B. Fmrp regulates oligodendrocyte lineage cell specification and differentiation. Glia 2021; 69:2349-2361. [PMID: 34110049 DOI: 10.1002/glia.24041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022]
Abstract
Neurodevelopment requires the precise integration of a wide variety of neuronal and glial cell types. During early embryonic development, motor neurons and then oligodendrocyte precursor cells (OPCs) are specified from neural progenitors residing in the periventricular pMN progenitor domain of the spinal cord. Following gliogenesis, OPCs can differentiate as oligodendrocytes (OLs)-the myelinating glial cells of the central nervous system-or remain as OPCs. To generate unique cell types capable of highly divergent functions, these specification and differentiation events require specialized gene expression programs. RNA binding proteins (RBPs) regulate mRNA localization and translation in the developing nervous system and are linked to many neurodevelopmental disorders. One example is Fragile X syndrome (FXS), caused by the loss of the RBP fragile X mental retardation protein (FMRP). Importantly, infants with FXS have reduced white matter and we previously showed that zebrafish Fmrp is autonomously required in OLs to promote myelin sheath growth. We now find that Fmrp regulates cell specification in pMN progenitor cells such that fmr1 mutant zebrafish generate fewer motor neurons and excess OPCs. Fmrp subsequently promotes differentiation of OPCs, leading to fewer differentiating OLs in the developing spinal cord of fmr1 larvae. Although the early patterning of spinal progenitor domains appears largely normal in fmr1 mutants during early embryogenesis, Shh signaling is greatly diminished. Taken together, these results suggest cell stage-specific requirements for Fmrp in the specification and differentiation of oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
13
|
Specchia V, Bozzetti MP. The Role of HSP90 in Preserving the Integrity of Genomes Against Transposons Is Evolutionarily Conserved. Cells 2021; 10:cells10051096. [PMID: 34064379 PMCID: PMC8147803 DOI: 10.3390/cells10051096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The HSP90 protein is a molecular chaperone intensively studied for its role in numerous cellular processes both under physiological and stress conditions. This protein acts on a wide range of substrates with a well-established role in cancer and neurological disorders. In this review, we focused on the involvement of HSP90 in the silencing of transposable elements and in the genomic integrity maintenance. The common feature of transposable elements is the potential jumping in new genomic positions, causing chromosome structure rearrangements, gene mutations, and influencing gene expression levels. The role of HSP90 in the control of these elements is evolutionarily conserved and opens new perspectives in the HSP90-related mechanisms underlying human disorders. Here, we discuss the hypothesis that its role in the piRNA pathway regulating transposons may be implicated in the onset of neurological diseases.
Collapse
|
14
|
Neuron-Specific FMRP Roles in Experience-Dependent Remodeling of Olfactory Brain Innervation during an Early-Life Critical Period. J Neurosci 2021; 41:1218-1241. [PMID: 33402421 DOI: 10.1523/jneurosci.2167-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.
Collapse
|
15
|
Puñal VM, Ahmed M, Thornton-Kolbe EM, Clowney EJ. Untangling the wires: development of sparse, distributed connectivity in the mushroom body calyx. Cell Tissue Res 2021; 383:91-112. [PMID: 33404837 PMCID: PMC9835099 DOI: 10.1007/s00441-020-03386-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 01/16/2023]
Abstract
Appropriate perception and representation of sensory stimuli pose an everyday challenge to the brain. In order to represent the wide and unpredictable array of environmental stimuli, principle neurons of associative learning regions receive sparse, combinatorial sensory inputs. Despite the broad role of such networks in sensory neural circuits, the developmental mechanisms underlying their emergence are not well understood. As mammalian sensory coding regions are numerically complex and lack the accessibility of simpler invertebrate systems, we chose to focus this review on the numerically simpler, yet functionally similar, Drosophila mushroom body calyx. We bring together current knowledge about the cellular and molecular mechanisms orchestrating calyx development, in addition to drawing insights from literature regarding construction of sparse wiring in the mammalian cerebellum. From this, we formulate hypotheses to guide our future understanding of the development of this critical perceptual center.
Collapse
Affiliation(s)
- Vanessa M. Puñal
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Ahmed
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma M. Thornton-Kolbe
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA,Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Josephine Clowney
- Department of Molecular, Cellular & Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Dombrovski M, Condron B. Critical periods shaping the social brain: A perspective from Drosophila. Bioessays 2020; 43:e2000246. [PMID: 33215730 DOI: 10.1002/bies.202000246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Many sensory processing regions of the central brain undergo critical periods of experience-dependent plasticity. During this time ethologically relevant information shapes circuit structure and function. The mechanisms that control critical period timing and duration are poorly understood, and this is of special importance for those later periods of development, which often give rise to complex cognitive functions such as social behavior. Here, we review recent findings in Drosophila, an organism that has some unique experimental advantages, and introduce novel views for manipulating plasticity in the post-embryonic brain. Critical periods in larval and young adult flies resemble classic vertebrate models with distinct onset and termination, display clear connections with complex behaviors, and provide opportunities to control the time course of plasticity. These findings may extend our knowledge about mechanisms underlying extension and reopening of critical periods, a concept that has great relevance to many human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Barry Condron
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Sears JC, Broadie K. FMRP-PKA Activity Negative Feedback Regulates RNA Binding-Dependent Fibrillation in Brain Learning and Memory Circuitry. Cell Rep 2020; 33:108266. [PMID: 33053340 PMCID: PMC7590955 DOI: 10.1016/j.celrep.2020.108266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) promotes cyclic AMP (cAMP) signaling. Using an in vivo protein kinase A activity sensor (PKA-SPARK), we find that Drosophila FMRP (dFMRP) and human FMRP (hFMRP) enhance PKA activity in a central brain learning and memory center. Increasing neuronal PKA activity suppresses FMRP in Kenyon cells, demonstrating an FMRP-PKA negative feedback loop. A patient-derived R140Q FMRP point mutation mislocalizes PKA-SPARK activity, whereas deletion of the RNA-binding argi-nine-glycine-glycine (RGG) box (hFMRP-ΔRGG) produces fibrillar PKA-SPARK assemblies colocalizing with ribonucleoprotein (RNP) and aggregation (thioflavin T) markers, demonstrating fibrillar partitioning of cytosolic protein aggregates. hFMRP-ΔRGG reduces dFMRP levels, indicating RGG-independent regulation. Short-term hFMRP-ΔRGG induction produces activated PKA-SPARK puncta, whereas long induction drives fibrillar assembly. Elevated temperature disassociates hFMRP-ΔRGG aggregates and blocks activated PKA-SPARK localization. These results suggest that FMRP regulates compartmentalized signaling via complex assembly, directing PKA activity localization, with FMRP RGG box RNA binding restricting separation via low-complexity interactions. FMRP is required for brain cAMP induction and cAMP-dependent PKA activation, but the FMRP mechanism is uncharacterized. Sears and Broadie test FXS patient-derived and FMRP domain-deficient mutants to reveal conserved FMRP functions regulating PKA activation, subcellular localization, and reversible partitioning into elongated fibrillar assemblies in brain learning/ memory circuit neurons.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37235, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
18
|
Ocker GK, Buice MA. Flexible neural connectivity under constraints on total connection strength. PLoS Comput Biol 2020; 16:e1008080. [PMID: 32745134 PMCID: PMC7425997 DOI: 10.1371/journal.pcbi.1008080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/13/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Neural computation is determined by neurons’ dynamics and circuit connectivity. Uncertain and dynamic environments may require neural hardware to adapt to different computational tasks, each requiring different connectivity configurations. At the same time, connectivity is subject to a variety of constraints, placing limits on the possible computations a given neural circuit can perform. Here we examine the hypothesis that the organization of neural circuitry favors computational flexibility: that it makes many computational solutions available, given physiological constraints. From this hypothesis, we develop models of connectivity degree distributions based on constraints on a neuron’s total synaptic weight. To test these models, we examine reconstructions of the mushroom bodies from the first instar larva and adult Drosophila melanogaster. We perform a Bayesian model comparison for two constraint models and a random wiring null model. Overall, we find that flexibility under a homeostatically fixed total synaptic weight describes Kenyon cell connectivity better than other models, suggesting a principle shaping the apparently random structure of Kenyon cell wiring. Furthermore, we find evidence that larval Kenyon cells are more flexible earlier in development, suggesting a mechanism whereby neural circuits begin as flexible systems that develop into specialized computational circuits. High-throughput electron microscopic anatomical experiments have begun to yield detailed maps of neural circuit connectivity. Uncovering the principles that govern these circuit structures is a major challenge for systems neuroscience. Healthy neural circuits must be able to perform computational tasks while satisfying physiological constraints. Those constraints can restrict a neuron’s possible connectivity, and thus potentially restrict its computation. Here we examine simple models of constraints on total synaptic weights, and calculate the number of circuit configurations they allow: a simple measure of their computational flexibility. We propose probabilistic models of connectivity that weight the number of synaptic partners according to computational flexibility under a constraint and test them using recent wiring diagrams from a learning center, the mushroom body, in the fly brain. We compare constraints that fix or bound a neuron’s total connection strength to a simple random wiring null model. Of these models, the fixed total connection strength matched the overall connectivity best in mushroom bodies from both larval and adult flies. We also provide evidence suggesting that neural circuits are more flexible in early stages of development and lose this flexibility as they grow towards specialized function.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Allen Institute for Brain Science, Seattle, Washington, United States of America
- * E-mail:
| | - Michael A. Buice
- Allen Institute for Brain Science, Seattle, Washington, United States of America
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Kennedy T, Rinker D, Broadie K. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model. BMC Biol 2020; 18:94. [PMID: 32731855 PMCID: PMC7392683 DOI: 10.1186/s12915-020-00817-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.
Collapse
Affiliation(s)
- Tyler Kennedy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - David Rinker
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN, 37235, USA.
| |
Collapse
|
20
|
Apostolopoulou AA, Lin AC. Mechanisms underlying homeostatic plasticity in the Drosophila mushroom body in vivo. Proc Natl Acad Sci U S A 2020; 117:16606-16615. [PMID: 32601210 PMCID: PMC7368247 DOI: 10.1073/pnas.1921294117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural network function requires an appropriate balance of excitation and inhibition to be maintained by homeostatic plasticity. However, little is known about homeostatic mechanisms in the intact central brain in vivo. Here, we study homeostatic plasticity in the Drosophila mushroom body, where Kenyon cells receive feedforward excitation from olfactory projection neurons and feedback inhibition from the anterior paired lateral neuron (APL). We show that prolonged (4-d) artificial activation of the inhibitory APL causes increased Kenyon cell odor responses after the artificial inhibition is removed, suggesting that the mushroom body compensates for excess inhibition. In contrast, there is little compensation for lack of inhibition (blockade of APL). The compensation occurs through a combination of increased excitation of Kenyon cells and decreased activation of APL, with differing relative contributions for different Kenyon cell subtypes. Our findings establish the fly mushroom body as a model for homeostatic plasticity in vivo.
Collapse
Affiliation(s)
- Anthi A Apostolopoulou
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Andrew C Lin
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom;
- Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
21
|
Yu X, Wang X, Sakano H, Zorio DAR, Wang Y. Dynamics of the fragile X mental retardation protein correlates with cellular and synaptic properties in primary auditory neurons following afferent deprivation. J Comp Neurol 2020; 529:481-500. [PMID: 32449186 DOI: 10.1002/cne.24959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Afferent activity dynamically regulates neuronal properties and connectivity in the central nervous system. The Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates cellular and synaptic properties in an activity-dependent manner. Whether and how FMRP level and localization are regulated by afferent input remains sparsely examined and how such regulation is associated with neuronal response to changes in sensory input is unknown. We characterized changes in FMRP level and localization in the chicken nucleus magnocellularis (NM), a primary cochlear nucleus, following afferent deprivation by unilateral cochlea removal. We observed rapid (within 2 hr) aggregation of FMRP immunoreactivity into large granular structures in a subset of deafferented NM neurons. Neurons that exhibited persistent FMRP aggregation at 12-24 hr eventually lost cytoplasmic Nissl substance, indicating cell death. A week later, FMRP expression in surviving neurons regained its homeostasis, with a slightly reduced immunostaining intensity and enhanced heterogeneity. Correlation analyses under the homeostatic status (7-14 days) revealed that neurons expressing relatively more FMRP had a higher capability of maintaining cell body size and ribosomal activity, as well as a better ability to detach inactive presynaptic terminals. Additionally, the intensity of an inhibitory postsynaptic protein, gephyrin, was reduced following deafferentation and was positively correlated with FMRP intensity, implicating an involvement of FMRP in synaptic dynamics in response to reduced afferent inputs. Collectively, this study demonstrates that afferent input regulates FMRP expression and localization in ways associated with multiple types of neuronal responses and synaptic rearrangements.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Xiaoyu Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA.,Division of Histology & Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou, China
| | - Hitomi Sakano
- Department of Otolaryngology, Bloedel Hearing Research Center, University of Washington, Seattle, Washington, USA.,Department of Otolaryngology, University of Rochester, Rochester, New York, USA
| | - Diego A R Zorio
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Yuan Wang
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
22
|
Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord 2020; 12:13. [PMID: 32359368 PMCID: PMC7196229 DOI: 10.1186/s11689-020-09310-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/13/2020] [Indexed: 01/27/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common single gene cause of autism and intellectual disabilities. Humans with FXS exhibit increased anxiety, sensory hypersensitivity, seizures, repetitive behaviors, cognitive inflexibility, and social behavioral impairments. The main purpose of this review is to summarize developmental studies of FXS in humans and in the mouse model, the Fmr1 knockout mouse. The literature presents considerable evidence that a number of early developmental deficits can be identified and that these early deficits chart a course of altered developmental experience leading to symptoms well characterized in adolescents and adults. Nevertheless, a number of critical issues remain unclear or untested regarding the development of symptomology and underlying mechanisms. First, what is the role of FMRP, the protein product of Fmr1 gene, during different developmental ages? Does the absence of FMRP during early development lead to irreversible changes, or could reintroduction of FMRP or therapeutics aimed at FMRP-interacting proteins/pathways hold promise when provided in adults? These questions have implications for clinical trial designs in terms of optimal treatment windows, but few studies have systematically addressed these issues in preclinical and clinical work. Published studies also point to complex trajectories of symptom development, leading to the conclusion that single developmental time point studies are unlikely to disambiguate effects of genetic mutation from effects of altered developmental experience and compensatory plasticity. We conclude by suggesting a number of experiments needed to address these major gaps in the field.
Collapse
Affiliation(s)
- Khaleel A Razak
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, USA
| | - Kelli C Dominick
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA. .,Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 4002, Cincinnati, OH, 45229, USA.
| |
Collapse
|
23
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
24
|
Trebels B, Dippel S, Schaaf M, Balakrishnan K, Wimmer EA, Schachtner J. Adult neurogenesis in the mushroom bodies of red flour beetles (Tribolium castaneum, HERBST) is influenced by the olfactory environment. Sci Rep 2020; 10:1090. [PMID: 31974446 PMCID: PMC6978414 DOI: 10.1038/s41598-020-57639-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Several studies showed adult persisting neurogenesis in insects, including the red flour beetle Tribolium castaneum, while it is absent in honeybees, carpenter ants, and vinegar flies. In our study, we focus on cell proliferation in the adult mushroom bodies of T. castaneum. We reliably labelled the progenies of the adult persisting mushroom body neuroblasts and determined the proliferation rate under several olfactory conditions within the first week after adult eclosion. We found at least two phases of Kenyon cell proliferation in the early adult beetle. Our results suggest that the generation of Kenyon cells during the first three days after adult eclosion is mainly genetically predetermined and a continuation of the developmental processes (nature), whereas from day four on proliferation seems to be mainly dependent on the odour environment (nurture). Considering that the mushroom bodies are linked to learning and memory, neurogenesis in the mushroom bodies is part of the remodelling of neuronal circuits leading to the adaption to the environment and optimization of behaviour.
Collapse
Affiliation(s)
- Björn Trebels
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Stefan Dippel
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Magdalina Schaaf
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Karthi Balakrishnan
- Department of Forest Zoology and Forest Conservation, Georg-August-University Göttingen, Büsgen-Institute, Büsgenweg 3, Göttingen, 37077, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Georg-August-University Göttingen, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Göttingen, 37077, Germany
| | - Joachim Schachtner
- Philipps-University Marburg, Department of Biology, Animal Physiology, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany.
- Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678, Clausthal-Zellerfeld, Germany.
| |
Collapse
|
25
|
Doll CA, Yergert KM, Appel BH. The RNA binding protein fragile X mental retardation protein promotes myelin sheath growth. Glia 2019; 68:495-508. [PMID: 31626382 DOI: 10.1002/glia.23731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022]
Abstract
During development, oligodendrocytes in the central nervous system extend a multitude of processes that wrap axons with myelin. The highly polarized oligodendrocytes generate myelin sheaths on many different axons, which are far removed from the cell body. Neurons use RNA binding proteins to transport, stabilize, and locally translate mRNA in distal domains of neurons. Local synthesis of synaptic proteins during neurodevelopment facilitates the rapid structural and functional changes underlying neural plasticity and avoids extensive protein transport. We hypothesize that RNA binding proteins also regulate local mRNA regulation in oligodendrocytes to promote myelin sheath growth. Fragile X mental retardation protein (FMRP), an RNA binding protein that plays essential roles in the growth and maturation of neurons, is also expressed in oligodendrocytes. To determine whether oligodendrocytes require FMRP for myelin sheath development, we examined fmr1-/- mutant zebrafish and drove FMR1 expression specifically in oligodendrocytes. We found oligodendrocytes in fmr1-/- mutants developed myelin sheaths of diminished length, a phenotype that can be autonomously rescued in oligodendrocytes with FMR1 expression. Myelin basic protein (Mbp), an essential myelin protein, was reduced in myelin tracts of fmr1-/- mutants, but loss of FMRP function did not impact the localization of mbpa transcript in myelin. Finally, expression of FMR1-I304N, a missense allele that abrogates FMRP association with ribosomes, failed to rescue fmr1-/- mutant sheath growth and induced short myelin sheaths in oligodendrocytes of wild-type larvae. Taken together, these data suggest that FMRP promotes sheath growth through local regulation of translation.
Collapse
Affiliation(s)
- Caleb A Doll
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Katie M Yergert
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Bruce H Appel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
26
|
Felgerolle C, Hébert B, Ardourel M, Meyer-Dilhet G, Menuet A, Pinto-Morais K, Bizot JC, Pichon J, Briault S, Perche O. Visual Behavior Impairments as an Aberrant Sensory Processing in the Mouse Model of Fragile X Syndrome. Front Behav Neurosci 2019; 13:228. [PMID: 31680892 PMCID: PMC6797836 DOI: 10.3389/fnbeh.2019.00228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/12/2019] [Indexed: 12/02/2022] Open
Abstract
Fragile X Syndrome (FXS), the most common inherited form of human intellectual disability (ID) associated with autistic-like behaviors, is characterized by dys-sensitivity to sensory stimuli, especially vision. In the absence of Fragile Mental Retardation Protein (FMRP), both retinal and cerebral structures of the visual pathway are impaired, suggesting that perception and integration of visual stimuli are altered. However, behavioral consequences of these defects remain unknown. In this study, we used male Fmr1−/y mice to further define visual disturbances from a behavioral perspective by focusing on three traits characterizing visual modality: perception of depth, contrasts and movements. We performed specific tests (Optomotor Drum, Visual Cliff) to evaluate these visual modalities, their evolution from youth to adulthood, and to assess their involvement in a cognitive task. We show that Fmr1−/y mice exhibit alteration in their visual skills, displaying impaired perspective perception, a drop in their ability to understand a moving contrasted pattern, and a defect in contrasts discrimination. Interestingly, Fmr1−/y phenotypes remain stable over time from adolescence to late adulthood. Besides, we report that color and shape are meaningful for the achievement of a cognitive test involving object recognition. Altogether, these results underline the significance of visual behavior alterations in FXS conditions and relevance of assessing visual skills in neuropsychiatric models before performing behavioral tasks, such as cognitive assessments, that involve visual discrimination.
Collapse
Affiliation(s)
- Chloé Felgerolle
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Betty Hébert
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Maryvonne Ardourel
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Géraldine Meyer-Dilhet
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Arnaud Menuet
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Kimberley Pinto-Morais
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | | | - Jacques Pichon
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Sylvain Briault
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.,Department of Genetics, Regional Hospital, Orléans, France
| | - Olivier Perche
- UMR7355, CNRS, Orléans, France.,Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.,Department of Genetics, Regional Hospital, Orléans, France
| |
Collapse
|
27
|
Verma V, Paul A, Amrapali Vishwanath A, Vaidya B, Clement JP. Understanding intellectual disability and autism spectrum disorders from common mouse models: synapses to behaviour. Open Biol 2019; 9:180265. [PMID: 31185809 PMCID: PMC6597757 DOI: 10.1098/rsob.180265] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Normal brain development is highly dependent on the timely coordinated actions of genetic and environmental processes, and an aberration can lead to neurodevelopmental disorders (NDDs). Intellectual disability (ID) and autism spectrum disorders (ASDs) are a group of co-occurring NDDs that affect between 3% and 5% of the world population, thus presenting a great challenge to society. This problem calls for the need to understand the pathobiology of these disorders and to design new therapeutic strategies. One approach towards this has been the development of multiple analogous mouse models. This review discusses studies conducted in the mouse models of five major monogenic causes of ID and ASDs: Fmr1, Syngap1, Mecp2, Shank2/3 and Neuroligins/Neurnexins. These studies reveal that, despite having a diverse molecular origin, the effects of these mutations converge onto similar or related aetiological pathways, consequently giving rise to the typical phenotype of cognitive, social and emotional deficits that are characteristic of ID and ASDs. This convergence, therefore, highlights common pathological nodes that can be targeted for therapy. Other than conventional therapeutic strategies such as non-pharmacological corrective methods and symptomatic alleviation, multiple studies in mouse models have successfully proved the possibility of pharmacological and genetic therapy enabling functional recovery.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Anjali Amrapali Vishwanath
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - Bhupesh Vaidya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur, Bengaluru 560 064, Karnataka, India
| |
Collapse
|
28
|
Bodaleo F, Tapia-Monsalves C, Cea-Del Rio C, Gonzalez-Billault C, Nunez-Parra A. Structural and Functional Abnormalities in the Olfactory System of Fragile X Syndrome Models. Front Mol Neurosci 2019; 12:135. [PMID: 31191246 PMCID: PMC6548058 DOI: 10.3389/fnmol.2019.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability. It is produced by mutation of the Fmr1 gene that encodes for the Fragile Mental Retardation Protein (FMRP), an important RNA-binding protein that regulates the expression of multiple proteins located in neuronal synapses. Individuals with FXS exhibit abnormal sensory information processing frequently leading to hypersensitivity across sensory modalities and consequently a wide array of behavioral symptoms. Insects and mammals engage primarily their sense of smell to create proper representations of the external world and guide adequate decision-making processes. This feature in combination with the exquisitely organized neuronal circuits found throughout the olfactory system (OS) and the wide expression of FMRP in brain regions that process olfactory information makes it an ideal model to study sensory alterations in FXS models. In the last decade several groups have taken advantage of these features and have used the OS of fruit fly and rodents to understand neuronal alteration giving rise to sensory perception issues. In this review article, we will discuss molecular, morphological and physiological aspects of the olfactory information processing in FXS models. We will highlight the decreased inhibitory/excitatory synaptic balance and the diminished synaptic plasticity found in this system resulting in behavioral alteration of individuals in the presence of odorant stimuli.
Collapse
Affiliation(s)
- Felipe Bodaleo
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Christian Cea-Del Rio
- Laboratory of Neurophysiopathology, Centro de Investigacion Biomedica y Aplicada (CIBAP), School of Medicine, Universidad de Santiago de Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Alexia Nunez-Parra
- Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile.,Cell Physiology Center, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Golovin RM, Vest J, Vita DJ, Broadie K. Activity-Dependent Remodeling of Drosophila Olfactory Sensory Neuron Brain Innervation during an Early-Life Critical Period. J Neurosci 2019; 39:2995-3012. [PMID: 30755492 PMCID: PMC6468095 DOI: 10.1523/jneurosci.2223-18.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Critical periods are windows of development when the environment has a pronounced effect on brain circuitry. Models of neurodevelopmental disorders, including autism spectrum disorders, intellectual disabilities, and schizophrenia, are linked to disruption of critical period remodeling. Critical periods open with the onset of sensory experience; however, it remains unclear exactly how sensory input modifies brain circuits. Here, we examine olfactory sensory neuron (OSN) innervation of the Drosophila antennal lobe of both sexes as a genetic model of this question. We find that olfactory sensory experience during an early-use critical period drives loss of OSN innervation of antennal lobe glomeruli and subsequent axon retraction in a dose-dependent mechanism. This remodeling does not result from olfactory receptor loss or OSN degeneration, but rather from rapid synapse elimination and axon pruning in the target olfactory glomerulus. Removal of the odorant stimulus only during the critical period leads to OSN reinnervation, demonstrating that remodeling is transiently reversible. We find that this synaptic refinement requires the OSN-specific olfactory receptor and downstream activity. Conversely, blocking OSN synaptic output elevates glomeruli remodeling. We find that GABAergic neurotransmission has no detectable role, but that glutamatergic signaling via NMDA receptors is required for OSN synaptic refinement. Together, these results demonstrate that OSN inputs into the brain manifest robust, experience-dependent remodeling during an early-life critical period, which requires olfactory reception, OSN activity, and NMDA receptor signaling. This work reveals a pathway linking initial olfactory sensory experience to glutamatergic neurotransmission in the activity-dependent remodeling of brain neural circuitry in an early-use critical period.SIGNIFICANCE STATEMENT Neurodevelopmental disorders manifest symptoms at specific developmental milestones that suggest an intersection between early sensory experience and brain neural circuit remodeling. One classic example is Fragile X syndrome caused by loss of an RNA-binding translation regulator of activity-dependent synaptic refinement. As a model, Drosophila olfactory circuitry is well characterized, genetically tractable, and rapidly developing, and thus ideally suited to probe underlying mechanisms. Here, we find olfactory sensory neurons are dramatically remodeled by heightened sensory experience during an early-life critical period. We demonstrate removing the olfactory stimulus during the critical period can reverse the connectivity changes. We find that this remodeling requires neural activity and NMDA receptor-mediated glutamatergic transmission. This improved understanding may help us design treatments for neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Vanderbilt Brain Institute,
- Department of Biological Sciences, and
- Department of Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
30
|
Nixon KC, Rousseau J, Stone MH, Sarikahya M, Ehresmann S, Mizuno S, Matsumoto N, Miyake N, Baralle D, McKee S, Izumi K, Ritter AL, Heide S, Héron D, Depienne C, Titheradge H, Kramer JM, Campeau PM, Campeau PM. A Syndromic Neurodevelopmental Disorder Caused by Mutations in SMARCD1, a Core SWI/SNF Subunit Needed for Context-Dependent Neuronal Gene Regulation in Flies. Am J Hum Genet 2019; 104:596-610. [PMID: 30879640 DOI: 10.1016/j.ajhg.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Philippe M Campeau
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, University of Montreal, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
31
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
32
|
Sears JC, Choi WJ, Broadie K. Fragile X Mental Retardation Protein positively regulates PKA anchor Rugose and PKA activity to control actin assembly in learning/memory circuitry. Neurobiol Dis 2019; 127:53-64. [PMID: 30771457 DOI: 10.1016/j.nbd.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Woong Jae Choi
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Vanderbilt Brain Institute, Departments of Biological Sciences, Cell and Developmental Biology, and Pharmacology, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
33
|
Sugie A, Marchetti G, Tavosanis G. Structural aspects of plasticity in the nervous system of Drosophila. Neural Dev 2018; 13:14. [PMID: 29960596 PMCID: PMC6026517 DOI: 10.1186/s13064-018-0111-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
Neurons extend and retract dynamically their neurites during development to form complex morphologies and to reach out to their appropriate synaptic partners. Their capacity to undergo structural rearrangements is in part maintained during adult life when it supports the animal's ability to adapt to a changing environment or to form lasting memories. Nonetheless, the signals triggering structural plasticity and the mechanisms that support it are not yet fully understood at the molecular level. Here, we focus on the nervous system of the fruit fly to ask to which extent activity modulates neuronal morphology and connectivity during development. Further, we summarize the evidence indicating that the adult nervous system of flies retains some capacity for structural plasticity at the synaptic or circuit level. For simplicity, we selected examples mostly derived from studies on the visual system and on the mushroom body, two regions of the fly brain with extensively studied neuroanatomy.
Collapse
Affiliation(s)
- Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, 951-8585 Japan
- Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | | | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
34
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
35
|
Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 2018; 10:440. [PMID: 29375303 PMCID: PMC5770364 DOI: 10.3389/fnmol.2017.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.
Collapse
Affiliation(s)
- James C. Sears
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|