1
|
Wang BC, Jeng ML, Tsai JF, Wu LW. Genome skimming for improved phylogenetics of Taiwanese phasmids (Insecta: Phasmatodea). Mol Phylogenet Evol 2025; 205:108292. [PMID: 39864640 DOI: 10.1016/j.ympev.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Taiwan, a relatively young continental island, harbors a high proportion of endemic phasmids, reflecting its unique evolutionary history. However, a comprehensive phylogenetic framework to clarify these phasmids is still lacking. In this study, we sequenced ten of eleven valid genera and two undescribed species of Taiwanese phasmids (total 16 species) using the genome-skimming approach. We also integrated these sequences with public databases to create two aligned datasets: one comprising 92 taxa (mitogenomes) and the other 606 taxa (seven nuclear and mitochondrial genes), enabling us to examine their phylogenetic relationships using longer sequences and more samples. Our analyses show that Taiwanese phasmids should be categorized into six families, with a revised number of genera to 13. Furthermore, four species require taxonomic treatments: namely Micadina honei (Günther, 1940) comb. nov., Micadina truncatum (Shiraki, 1935) comb. nov., Otraleus okunii (Shiraki, 1935) comb. nov., and Ramulus granulatus (Shiraki, 1935) syn. nov. now recognized as Ramulus artemis (Westwood, 1859). While some Taiwanese genera exhibit polyphyletic relationships, our findings highlight the importance of taxon sampling, particularly for type species in resolving these systematic issues. The genome-skimming approach has proven to be an excellent method for producing comparable sequence datasets, facilitating the investigation of highly diverse insects, even when samples are old, small, or have highly fragmented DNAs.
Collapse
Affiliation(s)
- Bo-Cheng Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Luen Jeng
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Jing-Fu Tsai
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Li-Wei Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan; Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
2
|
Stuart OP, Cleave R, Pearce K, Magrath MJL, Mikheyev AS. Purging of Highly Deleterious Mutations Through an Extreme Bottleneck. Mol Biol Evol 2025; 42:msaf079. [PMID: 40178369 PMCID: PMC12008769 DOI: 10.1093/molbev/msaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
Transitions to captivity often produce population bottlenecks. On the one hand, bottlenecks increase inbreeding and decrease effective population size, thus increasing extinction risk. On the other hand, elevated homozygosity associated with inbreeding may purge deleterious mutations. Previous empirical studies of purging in captive breeding programs have focused on phenotypic measurements. We test natural selection's ability to purge deleterious mutations following an extreme population bottleneck by analyzing patterns of genetic diversity in wild and captive-bred individuals of the Lord Howe Island stick insect, Dryococelus australis. Dryococelus australis has been bred in captivity for two decades, having passed through an extreme bottleneck-only two mating pairs with few new additions since then. The magnitude of the bottleneck together with high female fecundity but low offspring recruitment set up nearly ideal conditions for the purging of deleterious mutations. As expected, captive-bred individuals had a greater number of long runs of homozygosity compared with wild individuals, implying strong inbreeding in captivity which would facilitate purging in homozygous regions. Stop-codon mutations were preferentially depleted in captivity compared with other mutations in coding and noncoding regions. The more deleterious a mutation was predicted to be, the more likely it was found outside of runs of homozygosity, implying that inbreeding facilitates the expression and thus removal of deleterious mutations, even after such an extreme bottleneck and under the benign conditions of captivity. These data implicate inbreeding and recessive deleterious mutation load in fitness variation among captive and wild D. australis.
Collapse
Affiliation(s)
- Oliver P Stuart
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | - Kate Pearce
- Zoos Victoria, Parkville, VIC 3052, Australia
| | - Michael J L Magrath
- Zoos Victoria, Parkville, VIC 3052, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexander S Mikheyev
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
3
|
Ferrari G, Esselens L, Hart ML, Janssens S, Kidner C, Mascarello M, Peñalba JV, Pezzini F, von Rintelen T, Sonet G, Vangestel C, Virgilio M, Hollingsworth PM. Developing the Protocol Infrastructure for DNA Sequencing Natural History Collections. Biodivers Data J 2023; 11:e102317. [PMID: 38327316 PMCID: PMC10848826 DOI: 10.3897/bdj.11.e102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 02/09/2024] Open
Abstract
Intentionally preserved biological material in natural history collections represents a vast repository of biodiversity. Advances in laboratory and sequencing technologies have made these specimens increasingly accessible for genomic analyses, offering a window into the genetic past of species and often permitting access to information that can no longer be sampled in the wild. Due to their age, preparation and storage conditions, DNA retrieved from museum and herbarium specimens is often poor in yield, heavily fragmented and biochemically modified. This not only poses methodological challenges in recovering nucleotide sequences, but also makes such investigations susceptible to environmental and laboratory contamination. In this paper, we review the practical challenges associated with making the recovery of DNA sequence data from museum collections more routine. We first review key operational principles and issues to address, to guide the decision-making process and dialogue between researchers and curators about when and how to sample museum specimens for genomic analyses. We then outline the range of steps that can be taken to reduce the likelihood of contamination including laboratory set-ups, workflows and working practices. We finish by presenting a series of case studies, each focusing on protocol practicalities for the application of different mainstream methodologies to museum specimens including: (i) shotgun sequencing of insect mitogenomes, (ii) whole genome sequencing of insects, (iii) genome skimming to recover plant plastid genomes from herbarium specimens, (iv) target capture of multi-locus nuclear sequences from herbarium specimens, (v) RAD-sequencing of bird specimens and (vi) shotgun sequencing of ancient bovid bone samples.
Collapse
Affiliation(s)
- Giada Ferrari
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Lore Esselens
- Royal Museum for Central Africa, Tervuren, BelgiumRoyal Museum for Central AfricaTervurenBelgium
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Michelle L Hart
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Steven Janssens
- Meise Botanic Garden, Meise, BelgiumMeise Botanic GardenMeiseBelgium
- Leuven Plant Institute, Department of Biology, Leuven, BelgiumLeuven Plant Institute, Department of BiologyLeuvenBelgium
| | - Catherine Kidner
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | | | - Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Flávia Pezzini
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| | - Thomas von Rintelen
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, GermanyMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Gontran Sonet
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Carl Vangestel
- Royal Belgian Institute of Natural Sciences, Brussels, BelgiumRoyal Belgian Institute of Natural SciencesBrusselsBelgium
| | - Massimiliano Virgilio
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, BelgiumRoyal Museum for Central Africa, Department of African ZoologyTervurenBelgium
| | - Peter M Hollingsworth
- Royal Botanic Garden Edinburgh, Edinburgh, United KingdomRoyal Botanic Garden EdinburghEdinburghUnited Kingdom
| |
Collapse
|
4
|
Shpak M, Ghanavi HR, Lange JD, Pool JE, Stensmyr MC. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 2023; 21:e3002333. [PMID: 37824452 PMCID: PMC10569592 DOI: 10.1371/journal.pbio.3002333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Jeremy D. Lange
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marcus C. Stensmyr
- Department of Biology, Lund University, Lund, Scania, Sweden
- Max Planck Center on Next Generation Insect Chemical Ecology, Lund, Sweden
| |
Collapse
|
5
|
Bauer IL. The oral repellent - science fiction or common sense? Insects, vector-borne diseases, failing strategies, and a bold proposition. Trop Dis Travel Med Vaccines 2023; 9:7. [PMID: 37381000 DOI: 10.1186/s40794-023-00195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
Over the last decades, unimaginable amounts of money have gone into research and development of vector control measures, repellents, treatment, and vaccines for vector borne diseases. Technological progress and scientific breakthroughs allowed for ever more sophisticated and futuristic strategies. Yet, each year, millions of people still die or suffer from potentially serious consequences of malaria or dengue to more recent infections, such as zika or chikungunya, or of debilitating consequences of neglected tropical diseases. This does not seem value for money. In addition, all current vector control strategies and personal protection methods have shortcomings, some serious, that are either destructive to non-target species or unsatisfactory in their effectiveness. On the other hand, the rapid decline in insect populations and their predators reflects decades-long aggressive and indiscriminate vector control. This major disruption of biodiversity has an impact on human life not anticipated by the well-meaning killing of invertebrates. The objective of this paper is to re-examine current control methods, their effectiveness, their impact on biodiversity, human and animal health, and to call for scientific courage in the pursuit of fresh ideas. This paper brings together topics that are usually presented in isolation, thereby missing important links that offer potential solutions to long-standing problems in global health. First, it serves as a reminder of the importance of insects to human life and discusses the few that play a role in transmitting disease. Next, it examines critically the many currently employed vector control strategies and personal protection methods. Finally, based on new insights into insect chemo-sensation and attractants, this perspective makes a case for revisiting a previously abandoned idea, the oral repellent, and its use via currently successful methods of mass-application. The call is out for focused research to provide a powerful tool for public health, tropical medicine, and travel medicine.
Collapse
Affiliation(s)
- Irmgard L Bauer
- College of Healthcare Sciences, Academy - Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
6
|
Reboud EL, Nabholz B, Chevalier E, Tilak MK, Bito D, Condamine FL. Genomics, Population Divergence, and Historical Demography of the World's Largest and Endangered Butterfly, The Queen Alexandra's Birdwing. Genome Biol Evol 2023; 15:evad040. [PMID: 36896590 PMCID: PMC10101050 DOI: 10.1093/gbe/evad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The world's largest butterfly is the microendemic Papua New Guinean Ornithoptera alexandrae. Despite years of conservation efforts to protect its habitat and breed this up-to-28-cm butterfly, this species still figures as endangered in the IUCN Red List and is only known from two allopatric populations occupying a total of only ∼140 km². Here we aim at assembling reference genomes for this species to investigate its genomic diversity, historical demography and determine whether the population is structured, which could provide guidance for conservation programs attempting to (inter)breed the two populations. Using a combination of long and short DNA reads and RNA sequencing, we assembled six reference genomes of the tribe Troidini, with four annotated genomes of O. alexandrae and two genomes of related species Ornithoptera priamus and Troides oblongomaculatus. We estimated the genomic diversity of the three species, and we proposed scenarios for the historical population demography using two polymorphism-based methods taking into account the characteristics of low-polymorphic invertebrates. Indeed, chromosome-scale assemblies reveal very low levels of nuclear heterozygosity across Troidini, which appears to be exceptionally low for O. alexandrae (lower than 0.01%). Demographic analyses demonstrate low and steadily declining Ne throughout O. alexandrae history, with a divergence into two distinct populations about 10,000 years ago. These results suggest that O. alexandrae distribution has been microendemic for a long time. It should also make local conservation programs aware of the genomic divergence of the two populations, which should not be ignored if any attempt is made to cross the two populations.
Collapse
Affiliation(s)
- Eliette L Reboud
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Emmanuelle Chevalier
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marie-ka Tilak
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Darren Bito
- Pacific Adventist University, Private Mail Bag, BOROKO 111, National Capital District, Port Moresby, Papua New Guinea
| | - Fabien L Condamine
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
7
|
Bernstein JM, Ruane S. Maximizing Molecular Data From Low-Quality Fluid-Preserved Specimens in Natural History Collections. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops. Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops, and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes. A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA.Life Science Identifier (Hydrablabes periops)urn:lsid:zoobank.org:pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.
Collapse
|
8
|
Feron R, Waterhouse RM. Assessing species coverage and assembly quality of rapidly accumulating sequenced genomes. Gigascience 2022; 11:giac006. [PMID: 35217859 PMCID: PMC8881204 DOI: 10.1093/gigascience/giac006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Ambitious initiatives to coordinate genome sequencing of Earth's biodiversity mean that the accumulation of genomic data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and analysis methods mean that available data are often heterogeneous in quality. To guide forthcoming genome generation efforts and promote efficient prioritization of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data. FINDINGS Here we present an automated analysis workflow that surveys genome assemblies from the United States NCBI, assesses their completeness using the relevant BUSCO datasets, and collates the results into an interactively browsable resource. We apply our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, examine how key assembly metrics relate to gene content completeness, and compare results from using different BUSCO lineage datasets. CONCLUSIONS These results demonstrate how the workflow can be used to build a community resource that enables large-scale assessments to survey species coverage and data quality of available genome assemblies, and to guide prioritizations for ongoing and future sampling, sequencing, and genome generation initiatives.
Collapse
Affiliation(s)
- Romain Feron
- Department of Ecology and Evolution, Le Biophore UNIL-Sorge, University of Lausanne, Lausanne 1015, Switzerland
- Evolutionary-Functional Genomics Group, L'Amphipole UNIL-Sorge, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Le Biophore UNIL-Sorge, University of Lausanne, Lausanne 1015, Switzerland
- Evolutionary-Functional Genomics Group, L'Amphipole UNIL-Sorge, Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Li Y, Wang S, Zhou J, Li T, Jiang K, Zhang Y, Zheng C, Liang J, Bu W. The phylogenic position of aschiphasmatidae in euphasmatodea based on mitochondrial genomic evidence. Gene 2022; 808:145974. [PMID: 34592348 DOI: 10.1016/j.gene.2021.145974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/18/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The mitochondrial genome (mitogenome) has been regarded as significant source of data to better understand the phylogenetic relationships within the Euphasmatodea, but no mitogenome in Aschiphasmatoidea has been sequenced to date. In this study, two mitogenomes of Orthomeria smaragdinum and Nanhuaphasma hamicercum of Aschiphasmatidae were sequenced and annotated for the first time. The same mitochondrial gene rearrangement structure was present in the two mitogenomes sequenced, showing as the translocation of tRNA-Arg and tRNA-Asn, which conformed to the tandem duplication-random loss and could be used as a possible synapomorphy for Aschiphasmatidae. The phylogenetic results based on the maximum likelihood (ML) and bayesian inference (BI) methods both showed that Aschiphasmatidae and Neophasmatodea in Euphasmatodea are sister taxa. Although the monophyly of Oriophasmata, Occidophasmata, Diapheromeridae, Phasmatidae, Lonchodidae and Bacilloidea has not been solved, the monophyly of Neophasmatodea and Phyllioidea was well supported.
Collapse
Affiliation(s)
- Yanfei Li
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Shujing Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jiayue Zhou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Tianqi Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310000, PR China
| | - Kun Jiang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jingyu Liang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
10
|
Jensen EL, Díez-del-Molino D, Gilbert MTP, Bertola LD, Borges F, Cubric-Curik V, de Navascués M, Frandsen P, Heuertz M, Hvilsom C, Jiménez-Mena B, Miettinen A, Moest M, Pečnerová P, Barnes I, Vernesi C. Ancient and historical DNA in conservation policy. Trends Ecol Evol 2022; 37:420-429. [DOI: 10.1016/j.tree.2021.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
|
11
|
Setzke C, Wong C, Russello MA. Genotyping-in-Thousands by sequencing of archival fish scales reveals maintenance of genetic variation following a severe demographic contraction in kokanee salmon. Sci Rep 2021; 11:22798. [PMID: 34815428 PMCID: PMC8611073 DOI: 10.1038/s41598-021-01958-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Historical DNA analysis of archival samples has added new dimensions to population genetic studies, enabling spatiotemporal approaches for reconstructing population history and informing conservation management. Here we tested the efficacy of Genotyping-in-Thousands by sequencing (GT-seq) for collecting targeted single nucleotide polymorphism genotypic data from archival scale samples, and applied this approach to a study of kokanee salmon (Oncorhynchus nerka) in Kluane National Park and Reserve (KNPR; Yukon, Canada) that underwent a severe 12-year population decline followed by a rapid rebound. We genotyped archival scales sampled pre-crash and contemporary fin clips collected post-crash, revealing high coverage (> 90% average genotyping across all individuals) and low genotyping error (< 0.01% within-libraries, 0.60% among-libraries) despite the relatively poor quality of recovered DNA. We observed slight decreases in expected heterozygosity, allelic diversity, and effective population size post-crash, but none were significant, suggesting genetic diversity was retained despite the severe demographic contraction. Genotypic data also revealed the genetic distinctiveness of a now extirpated population just outside of KNPR, revealing biodiversity loss at the northern edge of the species distribution. More broadly, we demonstrated GT-seq as a valuable tool for collecting genome-wide data from archival samples to address basic questions in ecology and evolution, and inform applied research in wildlife conservation and fisheries management.
Collapse
Affiliation(s)
- Christopher Setzke
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | - Carmen Wong
- Parks Canada Yukon Field Unit, Suite 205 - 300 Main St, Whitehorse, YT, Y1A 2B5, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
12
|
Freelance CB, Magrath MJL, Elgar MA, Wong BBM. Long‐term captivity is associated with changes to sensory organ morphology in a critically endangered insect. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Michael J. L. Magrath
- School of BioSciences The University of Melbourne Parkville Vic. Australia
- Department of Wildlife Conservation and Science Zoos Victoria Parkville Vic. Australia
| | - Mark A. Elgar
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Bob B. M. Wong
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
13
|
Xu KK, Chen QP, Guan JY, Zhang ZY, Storey KB, Yu DN, Zhang JY. The mitochondrial genome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) and its phylogeny. Mitochondrial DNA B Resour 2021; 6:3109-3111. [PMID: 34621991 PMCID: PMC8491702 DOI: 10.1080/23802359.2021.1964403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Lonchodinae (Phasmatodea: Phasmatidae) is rich in insect species with more than 330 species of 40 genera. The phylogenetic relationships within Lonchodinae have been under debate. We successfully sequenced the complete mitogenome of Eurycantha calcarata Lucas, 1869 (Phasmatodea: Lonchodinae) with a length of 16,280 bp, which had the same genes and gene arrangements as those of various published papers on stick insects. The whole mitogenome and control region of E. calcarata had a high AT content of 78.2 and 85.9%, respectively. All PCGs used ATN as the start codon, and most PCGs used TAA/TAG as the stop codons excluding COX2 (T), COX3 (TA), and ND5 (TA). To discuss the phylogeny of Lonchodinae, we reconstructed the phylogenetic relationships of 27 species of Phasmatodea including E. calcarata and two species of Embioptera used as outgroups. In BI and ML trees, the monophyly of Lonchodinae and Necrosciinae was well supported, whereas the monophyly of Clitumninae was not recovered. These results indicated that Lonchodinae was a sister clade to Phylliinae and E. calcarata was a sister clade to Phraortes genus.
Collapse
Affiliation(s)
- Ke-Ke Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China
| | - Qing-Ping Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China
| | - Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China
| | | | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China.,Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, PR China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, PR China.,Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua, PR China
| |
Collapse
|
14
|
Xu KK, Chen QP, Ayivi SPG, Guan JY, Storey KB, Yu DN, Zhang JY. Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny. INSECTS 2021; 12:779. [PMID: 34564219 PMCID: PMC8471129 DOI: 10.3390/insects12090779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/21/2023]
Abstract
Insects of the order Phasmatodea are mainly distributed in the tropics and subtropics and are best known for their remarkable camouflage as plants. In this study, we sequenced three complete mitochondrial genomes from three different families: Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis. The lengths of the three mitochondrial genomes were 15,896 bp, 16,869 bp, and 17,005 bp, respectively, and the gene composition and structure of the three stick insects were identical to those of the most recent common ancestor of insects. The phylogenetic relationships among stick insects have been chaotic for a long time. In order to discuss the intra- and inter-ordinal relationship of Phasmatodea, we used the 13 protein-coding genes (PCGs) of 85 species for maximum likelihood (ML) and Bayesian inference (BI) analyses. Results showed that the internal topological structure of Phasmatodea had a few differences in both ML and BI trees and long-branch attraction (LBA) appeared between Embioptera and Zoraptera, which led to a non-monophyletic Phasmatodea. Consequently, after removal of the Embioptera and Zoraptera species, we re-performed ML and BI analyses with the remaining 81 species, which showed identical topology except for the position of Tectarchus ovobessus (Phasmatodea). We recovered the monophyly of Phasmatodea and the sister-group relationship between Phasmatodea and Mantophasmatodea. Our analyses also recovered the monophyly of Heteropterygidae and the paraphyly of Diapheromeridae, Phasmatidae, Lonchodidae, Lonchodinae, and Clitumninae. In this study, Peruphasma schultei (Pseudophasmatidae), Phraortes sp. YW-2014 (Lonchodidae), and species of Diapheromeridae clustered into the clade of Phasmatidae. Within Heteropterygidae, O. guangxiensis was the sister clade to O. mouhotii belonging to Dataminae, and the relationship of (Heteropteryginae + (Dataminae + Obriminae)) was recovered.
Collapse
Affiliation(s)
- Ke-Ke Xu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
| | - Qing-Ping Chen
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
| | - Sam Pedro Galilee Ayivi
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (K.-K.X.); (Q.-P.C.); (S.P.G.A.); (J.-Y.G.); (D.-N.Y.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
15
|
Miranda I, Giska I, Farelo L, Pimenta J, Zimova M, Bryk J, Dalén L, Mills LS, Zub K, Melo-Ferreira J. Museomics dissects the genetic basis for adaptive seasonal colouration in the least weasel. Mol Biol Evol 2021; 38:4388-4402. [PMID: 34157721 PMCID: PMC8476133 DOI: 10.1093/molbev/msab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dissecting the link between genetic variation and adaptive phenotypes provides outstanding opportunities to understand fundamental evolutionary processes. Here, we use a museomics approach to investigate the genetic basis and evolution of winter coat colouration morphs in least weasels (Mustela nivalis), a repeated adaptation for camouflage in mammals with seasonal pelage colour moults across regions with varying winter snow. Whole-genome sequence data was obtained from biological collections and mapped onto a newly assembled reference genome for the species. Sampling represented two replicate transition zones between nivalis and vulgaris colouration morphs in Europe, which typically develop white or brown winter coats, respectively. Population analyses showed that the morph distribution across transition zones is not a by-product of historical structure. Association scans linked a 200 kb genomic region to colouration morph, which was validated by genotyping museum specimens from inter-morph experimental crosses. Genotyping the wild populations narrowed down the association to pigmentation gene MC1R and pinpointed a candidate amino acid change co-segregating with colouration morph. This polymorphism replaces an ancestral leucine residue by lysine at the start of the first extracellular loop of the protein in the vulgaris morph. A selective sweep signature overlapped the association region in vulgaris, suggesting that past adaptation favoured winter-brown morphs and can anchor future adaptive responses to decreasing winter snow. Using biological collections as valuable resources to study natural adaptations, our study showed a new evolutionary route generating winter colour variation in mammals and that seasonal camouflage can be modulated by changes at single key genes.
Collapse
Affiliation(s)
- Inês Miranda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| | - Iwona Giska
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Liliana Farelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - João Pimenta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Jarosław Bryk
- School of Applied Sciences, University of Huddersfield, Quennsgate, Huddersfield, UK
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, SE-10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - L Scott Mills
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA.,Office of Research and Creative Scholarship, University of Montana, Missoula, MT, 59812, USA
| | - Karol Zub
- Mammal Research Institute, Polish Academy of Sciences, Stoczek 1, Białowieża 17-230, Poland
| | - José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, 4169-007, Portugal
| |
Collapse
|
16
|
Dong Z, Li J, He J, Liu G, Mao C, Zhao R, Li X. The mitochondrial genome of a leaf insect Phyllium westwoodii (Phasmatodea: Phylliidae) in Southeast Asia. Mitochondrial DNA B Resour 2021; 6:888-890. [PMID: 33796669 PMCID: PMC7971323 DOI: 10.1080/23802359.2021.1886014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
The nearly complete mitochondrial genome (mitogenome) of Phyllium westwoodii, a typical leaf mimic insect in Phasmatodea, was obtained in this study. This mitogenome is 17,222 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and almost complete control regions. All PCGs initiate with 'ATN' except for NAD4L that uses 'TTG' as the start codon, and terminate with 'TAA' except for COX2 that uses a single 'T' residue as the stop codon. The phylogenetic analysis based on the concatenated sequences of 13 PCGs and two rRNAs shows that P. westwoodii is closer to Phyllium tibetense than Phyllium giganteum.
Collapse
Affiliation(s)
- Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jun Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinwu He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an, China
| | - Guichun Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuyang Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
17
|
D'Ercole J, Prosser SWJ, Hebert PDN. A SMRT approach for targeted amplicon sequencing of museum specimens (Lepidoptera)-patterns of nucleotide misincorporation. PeerJ 2021; 9:e10420. [PMID: 33520432 PMCID: PMC7811786 DOI: 10.7717/peerj.10420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Natural history collections are a valuable resource for molecular taxonomic studies and for examining patterns of evolutionary diversification, particularly in the case of rare or extinct species. However, the recovery of sequence information is often complicated by DNA degradation. This article describes use of the Sequel platform (Pacific Biosciences) to recover the 658 bp barcode region of the mitochondrial cytochrome c oxidase I (COI) gene from 380 butterflies with an average age of 50 years. Nested multiplex PCR was employed for library preparation to facilitate sequence recovery from extracts with low concentrations of highly degraded DNA. By employing circular consensus sequencing (CCS) of short amplicons (circa 150 bp), full-length barcodes could be assembled without a reference sequence, an important advance from earlier protocols which required reference sequences to guide contig assembly. The Sequel protocol recovered COI sequences (499 bp on average) from 318 of 380 specimens (84%), much higher than for Sanger sequencing (26%). Because each read derives from a single molecule, it was also possible to quantify the incidence of substitutions arising from DNA damage. In agreement with past work on sequence changes induced by DNA degradation, the transition C/G → T/A was the most prevalent category of change, but its rate of occurrence (4.58E−4) was so low that it did not impede the recovery of reliable sequences. Because the current protocol recovers COI sequence from most museum specimens, and because sequence fidelity is unaffected by nucleotide misincorporations, large-scale sequence characterization of museum specimens is feasible.
Collapse
Affiliation(s)
- Jacopo D'Ercole
- Centre for Biodiversity Genomics, Guelph, ON, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | - Paul D N Hebert
- Centre for Biodiversity Genomics, Guelph, ON, Canada.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Affiliation(s)
- Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo Sanda City Japan
- The Museum of Nature and Human Activities, Hyogo Sanda City Japan
| |
Collapse
|
19
|
Torosin NS, Webster TH, Argibay H, Sanchez Fernandez C, Ferreyra H, Uhart M, Agostini I, Knapp LA. Positively selected variants in functionally important regions of TLR7 in Alouatta guariba clamitans with yellow fever virus exposure in Northern Argentina. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:50-60. [PMID: 32583896 DOI: 10.1002/ajpa.24086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND In 2007-2009, a major yellow fever virus (YFV) outbreak in Northern Argentina decimated the local howler monkey (Alouatta) population. AIMS To evaluate whether the surviving howler monkeys possess advantageous genetic variants inherited from monkeys alive prior to the YFV outbreak, we explored the relationship between Toll-like receptor (TLR) 7 and TLR8 gene variation and YFV susceptibility. METHODS We used samples from Alouatta individuals in Misiones, Argentina alive before the YFV outbreak, individuals that died during the outbreak, and individuals that survived the outbreak and are alive today. We measured genetic divergence between Alouatta YFV exposure groups and evaluated Alouatta-specific substitutions for functional consequences. RESULTS We did not find different allele frequencies in the post-YFV exposure Alouatta group compared to the pre-exposure group. We identified three nonsynonymous variants in TLR7 in Alouatta guariba clamitans. Two of these substitutions are under positive selection in functionally important regions of the gene. DISCUSSION AND CONCLUSIONS Our results did not indicate that surviving howler monkey spossess advantageous genetic variants at greater frequency than those alive before the YFV outbreak. However, the positively selected unique coding differences in A. guariba clamitans are in the region important in pathogen detection which may affect YFV resistance. Morework is necessary to fully explore this hypothesis.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Hernán Argibay
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), Intendente Güiraldes 2160 - Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Candelaria Sanchez Fernandez
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
| | - Hebe Ferreyra
- Global Health Program, Wildlife Conservation Society, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Ilaria Agostini
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), Consejo Nacional de Investigaciones Científcas y Técnicas (CONICET), Puerto Iguazú, Argentina
| | - Leslie A Knapp
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
McGaughran A. Effects of sample age on data quality from targeted sequencing of museum specimens: what are we capturing in time? BMC Genomics 2020; 21:188. [PMID: 32111157 PMCID: PMC7048091 DOI: 10.1186/s12864-020-6594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023] Open
Abstract
Background Next generation sequencing (NGS) can recover DNA data from valuable extant and extinct museum specimens. However, archived or preserved DNA is difficult to sequence because of its fragmented, damaged nature, such that the most successful NGS methods for preserved specimens remain sub-optimal. Improving wet-lab protocols and comprehensively determining the effects of sample age on NGS library quality are therefore of vital importance. Here, I examine the relationship between sample age and several indicators of library quality following targeted NGS sequencing of ~ 1300 loci using 271 samples of pinned moth specimens (Helicoverpa armigera) ranging in age from 5 to 117 years. Results I find that older samples have lower DNA concentrations following extraction and thus require a higher number of indexing PCR cycles during library preparation. When sequenced reads are aligned to a reference genome or to only the targeted region, older samples have a lower number of sequenced and mapped reads, lower mean coverage, and lower estimated library sizes, while the percentage of adapters in sequenced reads increases significantly as samples become older. Older samples also show the poorest capture success, with lower enrichment and a higher improved coverage anticipated from further sequencing. Conclusions Sample age has significant, measurable impacts on the quality of NGS data following targeted enrichment. However, incorporating a uracil-removing enzyme into the blunt end-repair step during library preparation could help to repair DNA damage, and using a method that prevents adapter-dimer formation may result in improved data yields.
Collapse
Affiliation(s)
- Angela McGaughran
- Australian National University, Research School of Biology, Division of Ecology and Evolution, Acton, Canberra, ACT, 2600, Australia. .,CSIRO Land and Water, Integrated Omics Team, Black Mountain Laboratories, Canberra, ACT, 2600, Australia.
| |
Collapse
|
21
|
Ballare KM, Pope NS, Castilla AR, Cusser S, Metz RP, Jha S. Utilizing field collected insects for next generation sequencing: Effects of sampling, storage, and DNA extraction methods. Ecol Evol 2019; 9:13690-13705. [PMID: 31938475 PMCID: PMC6953651 DOI: 10.1002/ece3.5756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 01/04/2023] Open
Abstract
DNA sequencing technologies continue to advance the biological sciences, expanding opportunities for genomic studies of non-model organisms for basic and applied questions. Despite these opportunities, many next generation sequencing protocols have been developed assuming a substantial quantity of high molecular weight DNA (>100 ng), which can be difficult to obtain for many study systems. In particular, the ability to sequence field-collected specimens that exhibit varying levels of DNA degradation remains largely unexplored. In this study we investigate the influence of five traditional insect capture and curation methods on Double-Digest Restriction Enzyme Associated DNA (ddRAD) sequencing success for three wild bee species. We sequenced a total of 105 specimens (between 7-13 specimens per species and treatment). We additionally investigated how different DNA quality metrics (including pre-sequence concentration and contamination) predicted downstream sequencing success, and also compared two DNA extraction methods. We report successful library preparation for all specimens, with all treatments and extraction methods producing enough highly reliable loci for population genetic analyses. Although results varied between species, we found that specimens collected by net sampling directly into 100% EtOH, or by passive trapping followed by 100% EtOH storage before pinning tended to produce higher quality ddRAD assemblies, likely as a result of rapid specimen desiccation. Surprisingly, we found that specimens preserved in propylene glycol during field sampling exhibited lower-quality assemblies. We provide recommendations for each treatment, extraction method, and DNA quality assessment, and further encourage researchers to consider utilizing a wider variety of specimens for genomic analyses.
Collapse
Affiliation(s)
- Kimberly M. Ballare
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCAUSA
| | - Nathaniel S. Pope
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Department of EntomologyPennsylvania State UniversityUniversity ParkPAUSA
| | - Antonio R. Castilla
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Centre for Applied Ecology “Prof. Baeta Neves”/INBIOInstitutoSuperior of AgronomyUniversity of LisbonLisbonPortugal
| | - Sarah Cusser
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
- Present address:
Kellogg Biological StationMichigan State UniversityHickory CornersMIUSA
| | - Richard P. Metz
- Genomics and Bioinformatics ServiceTexas A&M AgriLife ResearchCollege StationTXUSA
| | - Shalene Jha
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| |
Collapse
|
22
|
Crates R, Olah G, Adamski M, Aitken N, Banks S, Ingwersen D, Ranjard L, Rayner L, Stojanovic D, Suchan T, von Takach Dukai B, Heinsohn R. Genomic impact of severe population decline in a nomadic songbird. PLoS One 2019; 14:e0223953. [PMID: 31647830 PMCID: PMC6812763 DOI: 10.1371/journal.pone.0223953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023] Open
Abstract
Uncovering the population genetic histories of non-model organisms is increasingly possible through advances in next generation sequencing and DNA sampling of museum specimens. This new information can inform conservation of threatened species, particularly those for which historical and contemporary population data are unavailable or challenging to obtain. The critically endangered, nomadic regent honeyeater Anthochaera phrygia was abundant and widespread throughout south-eastern Australia prior to a rapid population decline and range contraction since the 1970s. A current estimated population of 250-400 individuals is distributed sparsely across 600,000 km2 from northern Victoria to southern Queensland. Using hybridization RAD (hyRAD) techniques, we obtained a SNP dataset from 64 museum specimens (date 1879-1960), 102 'recent' (1989-2012) and 52 'current' (2015-2016) wild birds sampled throughout the historical and contemporary range. We aimed to estimate population genetic structure, genetic diversity and population size of the regent honeyeater prior to its rapid decline. We then assessed the impact of the decline on recent and current population size, structure and genetic diversity. Museum sampling showed population structure in regent honeyeaters was historically low, which remains the case despite a severe fragmentation of the breeding range. Population decline has led to minimal loss of genetic diversity since the 1980's. Capacity to quantify the overall magnitude of both genetic diversity loss and population decline was limited by the poorer quality of genomic data derived from museum specimens. A rapid population decline, coupled with the regent honeyeater's high mobility, means a detectable genomic impact of this decline has not yet manifested. Extinction may occur in this nomadic species before a detectable genomic impact of small population size is realised. We discuss the implications for genetic management of endangered mobile species and enhancing the value of museum specimens in population genomic studies.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - George Olah
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Marcin Adamski
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Nicola Aitken
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sam Banks
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | | | - Louis Ranjard
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Laura Rayner
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Tomasz Suchan
- W. Szafer institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Brenton von Takach Dukai
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
23
|
Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes. Sci Rep 2019; 9:14806. [PMID: 31616005 PMCID: PMC6794255 DOI: 10.1038/s41598-019-51313-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022] Open
Abstract
Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.
Collapse
|
24
|
Hamilton CA, St Laurent RA, Dexter K, Kitching IJ, Breinholt JW, Zwick A, Timmermans MJTN, Barber JR, Kawahara AY. Phylogenomics resolves major relationships and reveals significant diversification rate shifts in the evolution of silk moths and relatives. BMC Evol Biol 2019; 19:182. [PMID: 31533606 PMCID: PMC6751749 DOI: 10.1186/s12862-019-1505-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/29/2019] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Silkmoths and their relatives constitute the ecologically and taxonomically diverse superfamily Bombycoidea, which includes some of the most charismatic species of Lepidoptera. Despite displaying spectacular forms and diverse ecological traits, relatively little attention has been given to understanding their evolution and drivers of their diversity. To begin to address this problem, we created a new Bombycoidea-specific Anchored Hybrid Enrichment (AHE) probe set and sampled up to 571 loci for 117 taxa across all major lineages of the Bombycoidea, with a newly developed DNA extraction protocol that allows Lepidoptera specimens to be readily sequenced from pinned natural history collections. RESULTS The well-supported tree was overall consistent with prior morphological and molecular studies, although some taxa were misplaced. The bombycid Arotros Schaus was formally transferred to Apatelodidae. We identified important evolutionary patterns (e.g., morphology, biogeography, and differences in speciation and extinction), and our analysis of diversification rates highlights the stark increases that exist within the Sphingidae (hawkmoths) and Saturniidae (wild silkmoths). CONCLUSIONS Our study establishes a backbone for future evolutionary, comparative, and taxonomic studies of Bombycoidea. We postulate that the rate shifts identified are due to the well-documented bat-moth "arms race". Our research highlights the flexibility of AHE to generate genomic data from a wide range of museum specimens, both age and preservation method, and will allow researchers to tap into the wealth of biological data residing in natural history collections around the globe.
Collapse
Affiliation(s)
- C A Hamilton
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
- Department of Entomology, Plant Pathology & Nematology, University of Idaho, Moscow, ID, 83844, USA.
| | - R A St Laurent
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - K Dexter
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - I J Kitching
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - J W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL, 32601, USA
| | - A Zwick
- Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT, Canberra, 2601, Australia
| | - M J T N Timmermans
- Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - J R Barber
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - A Y Kawahara
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
25
|
Sun Z, Liu Y, Wilson JJ, Chen Z, Song F, Cai W, Li H. Mitochondrial genome of Phalantus geniculatus (Hemiptera: Reduviidae): trnT duplication and phylogenetic implications. Int J Biol Macromol 2019; 129:110-115. [PMID: 30711565 DOI: 10.1016/j.ijbiomac.2019.01.205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Reduviidae is the second largest family of Heteroptera and most of them are important natural enemies of agricultural and forest pests. Most of the sequenced mitochondrial (mt) genomes in this family have the typical gene arrangement of insects and encode 37 coding genes (13 protein-coding genes, 22 tRNA genes and two rRNA genes). In the present study, we sequenced the mt genome of Phalantus geniculatus from the subfamily Peiratinae through high-throughput sequencing and encountered the duplication of tRNA genes for the first time in this subfamily. We identified 23 tRNA genes, including 22 tRNAs commonly found in insect mt genomes and an extra trnT (trnT2), which has high sequence similarity (96.9%) to trnT1. The presence of a "pseudo-trnP" in the non-coding region between trnT1 and trnT2 supports the hypothesis that the presence of an extra trnT can be explained by the tandem duplication-random loss (TDRL) model. Phylogenetic results inferred from mt genome sequences supported a sister relationship between Phymatinae and the remaining sampled subfamilies, as well as a paraphyletic Reduviinae. The present study highlights the utility of mt genomes in the phylogenetic study of Reduviidae based on the large scale taxon sampling in the future.
Collapse
Affiliation(s)
- Ziqiang Sun
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yingqi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - John-James Wilson
- Vertebrate Zoology at World Museum, National Museums Liverpool, Liverpool L3 8EN, United Kingdom; Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Zhuo Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Brand P, Lin W, Johnson BR. The Draft Genome of the Invasive Walking Stick, Medauroidea extradendata, Reveals Extensive Lineage-Specific Gene Family Expansions of Cell Wall Degrading Enzymes in Phasmatodea. G3 (BETHESDA, MD.) 2018; 8:1403-1408. [PMID: 29588379 PMCID: PMC5940134 DOI: 10.1534/g3.118.200204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95619
| | - Wei Lin
- Department of Entomology and Nematology, University of California, Davis, California 95616
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California, Davis, California 95616
| |
Collapse
|
27
|
Wu C, Twort VG, Crowhurst RN, Newcomb RD, Buckley TR. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction. BMC Genomics 2017; 18:884. [PMID: 29145825 PMCID: PMC5691397 DOI: 10.1186/s12864-017-4245-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/31/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only the genome of Timema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. RESULTS The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria, the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly. Mapping RNA-Seq reads from female and male gonadal transcriptomes onto the genome assembly resulted in the identification of 39,940 gene loci, 15.8% and 37.6% of which showed female-biased and male-biased expression, respectively. The genes that were over-expressed in females were mostly associated with molecular transportation, developmental process, oocyte growth and reproductive process; whereas, the male-biased genes were enriched in rhythmic process, molecular transducer activity and synapse. Several genes involved in the juvenile hormone synthesis pathway were also identified. CONCLUSIONS The evolution of large insect genomes such as L. migratoria and C. hookeri genomes is most likely due to the accumulation of repetitive regions and intron elongation. MITEs contributed significantly to the growth of C. hookeri genome size yet are surprisingly absent from the T. cristinae genome. Sex-biased genes identified from gonadal tissues, including genes involved in juvenile hormone synthesis, provide interesting candidates for the further study of flexible reproduction in stick insects.
Collapse
Affiliation(s)
- Chen Wu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Victoria G. Twort
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
- Department of Biology, Lund University, Lund, Sweden
| | - Ross N. Crowhurst
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Richard D. Newcomb
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- New Zealand Institute for Plant & Food Research Ltd, Auckland, New Zealand
| | - Thomas R. Buckley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Landcare Research, Auckland, New Zealand
| |
Collapse
|
28
|
Cassis G. Conservation Biology: A Walking Stick's Redux on Lord Howe Island. Curr Biol 2017; 27:R1120-R1122. [PMID: 29065295 DOI: 10.1016/j.cub.2017.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arguably the world's rarest insect - the Lord Howe Island 'tree lobster' - is being brought back from the brink. A recent study has confirmed the identity of this species using genomic data, which backstops its reintroduction to this World Heritage listed oceanic island.
Collapse
Affiliation(s)
- Gerasimos Cassis
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|