1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Mukhopadhyay A, Kumar L, Sran K, Thangaraj K, Thelma BK. Unique demographic history and population substructure among the Coorgs of Southern India. Commun Biol 2025; 8:698. [PMID: 40325185 PMCID: PMC12053767 DOI: 10.1038/s42003-025-08073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
The fascinating genetic architecture of today's Indian population is the result of thousands of years of population mixing and eventual isolation. The Coorgs are one such small and religiously/socioculturally homogeneous community in Karnataka, India, whose origins and demographic history are much debated due to their stark sociocultural contrast with surrounding populations. Here, we analyzed Coorgs using both autosomal (n = 70) and uniparental markers (n = 144). Our analyses suggest population substructure among Coorgs and showed significant population drift in Coorg3 in both allele frequency and haplotype-based analysis methods. Further sharing of haplotype and identity by descent suggests a shared genetic history of Coorg1 with the Palliyar population, and founder event analysis clearly indicates that the founder event in Coorg1 was around 40 GBP (Generations Before Present). The demographic models based on fastGlobeTrotter and Moments highlighted the recent admixture of Coorg3 with the northwest Indian Sikh Jatt population (~23 GBP); and also showed that Coorg2 was formed by mixing Coorg1 and Coorg3 at ~11 GBP, explaining their current sociocultural homogeneity. F-statistics-based admixture graph models suggest an as yet unknown lineage in Coorg3. mtDNA analysis revealed about 40% South Asia-specific mitochondrial lineages in Coorgs; while Y chromosome analysis revealed a predominance of Eurasian, Middle Eastern, and Indian-specific haplogroups, suggesting male-mediated migration and eventual assimilation with native females. These insights into ancient and diverse genealogies among Coorgs not only explain their unique status in the Indian diaspora but also encourage further research to identify unknown migrations to the Indian subcontinent and thus further unravel its unique demography.
Collapse
Affiliation(s)
| | - Lomous Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Kiran Sran
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | | | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
3
|
Tsutaya T, Sawafuji R, Taurozzi AJ, Fagernäs Z, Patramanis I, Troché G, Mackie M, Gakuhari T, Oota H, Tsai CH, Olsen JV, Kaifu Y, Chang CH, Cappellini E, Welker F. A male Denisovan mandible from Pleistocene Taiwan. Science 2025; 388:176-180. [PMID: 40208980 DOI: 10.1126/science.ads3888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/26/2025] [Indexed: 04/12/2025]
Abstract
Denisovans are an extinct hominin group defined by ancient genomes of Middle to Late Pleistocene fossils from southern Siberia. Although genomic evidence suggests their widespread distribution throughout eastern Asia and possibly Oceania, so far only a few fossils from the Altai and Tibet are confidently identified molecularly as Denisovan. We identified a hominin mandible (Penghu 1) from Taiwan (10,000 to 70,000 years ago or 130,000 to 190,000 years ago) as belonging to a male Denisovan by applying ancient protein analysis. We retrieved 4241 amino acid residues and identified two Denisovan-specific variants. The increased fossil sample of Denisovans demonstrates their wider distribution, including warm and humid regions, as well as their shared distinct robust dentognathic traits that markedly contrast with their sister group, Neanderthals.
Collapse
Affiliation(s)
- Takumi Tsutaya
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
| | - Rikai Sawafuji
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI), Kanagawa, Japan
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | | | - Zandra Fagernäs
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Gaudry Troché
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Meaghan Mackie
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- School of Archaeology, University College Dublin, Dublin, Ireland
- Archaeobiomics, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Takashi Gakuhari
- Kitasato University School of Medicine, Kanagawa, Japan
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Ishikawa, Japan
| | - Hiroki Oota
- Kitasato University School of Medicine, Kanagawa, Japan
- Graduate School of Science, The University of Tokyo
| | - Cheng-Hsiu Tsai
- Department of Life Science and Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Geology, National Museum of Nature and Science, Tsukuba, Japan
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Yousuke Kaifu
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Chun-Hsiang Chang
- Center of Science, National Museum of Natural Science, Taichung, Taiwan
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | | | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Abood S, Oota H. Human dispersal into East Eurasia: ancient genome insights and the need for research on physiological adaptations. J Physiol Anthropol 2025; 44:5. [PMID: 39953642 PMCID: PMC11829451 DOI: 10.1186/s40101-024-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/25/2024] [Indexed: 02/17/2025] Open
Abstract
Humans have long pondered their genesis. The answer to the great question of where Homo sapiens come from has evolved in conjunction with biotechnologies that have allowed us to more brightly illuminate our distant past. The "Multiregional Evolution" model was once the hegemonic theory of Homo sapiens origins, but in the last 30 years, it has been supplanted by the "Out of Africa" model. Here, we review the major findings that have resulted in this paradigmatic shift. These include hominin brain expansion, classical insight from the mitochondrial genome (mtDNA) regarding the timing of the divergence point between Africans and non-Africans, and next-generation sequencing (NGS) of the Neanderthal and Denisovan genomes. These findings largely bolstered the "Out of Africa" model, although they also revealed a small degree of introgression of the Neanderthal and Denisovan genomes into those of non-African Homo sapiens. We also review paleogenomic studies for which migration route, north or south, early migrants to East Eurasia most likely traversed. Whichever route was taken, the migrants moved to higher latitudes, which necessitated adaptation for lower light conditions, colder clines, and pro-adipogenic mechanisms to counteract food scarcity. Further genetic and epigenetic investigations of these physiological adaptations constitute an integral aspect of the story of human origins and human migration to East Asia.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences, Graduate School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
5
|
Liu J, Liu Y, Zhao Y, Zhu C, Wang T, Zeng W, Sun B, Wang F, Han H, Li Z, Feng X, Cao P, Luan F, Liu F, Dai Q, Guo J, Wang Z, Wei C, Wei Q, Yang R, Hou W, Ping W, Bai F, Miao B, Wang W, Yang MA, Fu Q. East Asian Gene flow bridged by northern coastal populations over past 6000 years. Nat Commun 2025; 16:1322. [PMID: 39900598 PMCID: PMC11791043 DOI: 10.1038/s41467-025-56555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
Coastal areas of northern East Asia in the ShanDong region, which show complex cultural transitions in the last 10,000 years, have helped to facilitate population interactions between more inland regions of mainland East Asia and islands such as those in the Japanese archipelago. To examine how ShanDong populations changed over time and interacted with island and inland East Asian populations, we sequenced 85 individuals from 11 ancient sites in the ShanDong region dating to ~6000-1500 BP. We found that ancestry related to ShanDong populations likely explains the mainland East Asian ancestry observed in post-Yayoi populations from the Japanese archipelago, particularly recent populations who lived in the Ryukyu Islands after ~2800 BP. In the ShanDong region, we observed gene flow from populations to the north and south of this region by at least ~7700 BP, and two waves of gene flow associated with the inland Yellow River populations into the ShanDong region during the DaWenKou cultural period (6000-4600 BP) and in the early dynastic period (3500-1500 BP). Reconstructing the genetic history of the Neolithic, Bronze, and Iron Age populations of coastal northern East Asia shows gene flow on both a north-south and an east-west (inland-coastal-island) scale.
Collapse
Affiliation(s)
- Juncen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Zhao
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Chao Zhu
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zeng
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Bo Sun
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Fen Wang
- School of Archaeology, Shandong University, Jinan, China
| | - Hui Han
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Zhenguang Li
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Fengshi Luan
- School of Archaeology, Shandong University, Jinan, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Guo
- Jinan Municipal Institute of Archaeology, Jinan, China
| | - Zimeng Wang
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Chengmin Wei
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Qiaowei Wei
- Department of History, Shanghai University, Shanghai, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Science and Technology Archaeology, National Centre for Archaeology, Beijing, China
| | - Melinda A Yang
- Department of Biology, University of Richmond, Richmond, VA, USA.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sümer AP, Rougier H, Villalba-Mouco V, Huang Y, Iasi LNM, Essel E, Bossoms Mesa A, Furtwaengler A, Peyrégne S, de Filippo C, Rohrlach AB, Pierini F, Mafessoni F, Fewlass H, Zavala EI, Mylopotamitaki D, Bianco RA, Schmidt A, Zorn J, Nickel B, Patova A, Posth C, Smith GM, Ruebens K, Sinet-Mathiot V, Stoessel A, Dietl H, Orschiedt J, Kelso J, Zeberg H, Bos KI, Welker F, Weiss M, McPherron SP, Schüler T, Hublin JJ, Velemínský P, Brůžek J, Peter BM, Meyer M, Meller H, Ringbauer H, Hajdinjak M, Prüfer K, Krause J. Earliest modern human genomes constrain timing of Neanderthal admixture. Nature 2025; 638:711-717. [PMID: 39667410 PMCID: PMC11839475 DOI: 10.1038/s41586-024-08420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Modern humans arrived in Europe more than 45,000 years ago, overlapping at least 5,000 years with Neanderthals1-4. Limited genomic data from these early modern humans have shown that at least two genetically distinct groups inhabited Europe, represented by Zlatý kůň, Czechia3 and Bacho Kiro, Bulgaria2. Here we deepen our understanding of early modern humans by analysing one high-coverage genome and five low-coverage genomes from approximately 45,000-year-old remains from Ilsenhöhle in Ranis, Germany4, and a further high-coverage genome from Zlatý kůň. We show that distant familial relationships link the Ranis and Zlatý kůň individuals and that they were part of the same small, isolated population that represents the deepest known split from the Out-of-Africa lineage. Ranis genomes harbour Neanderthal segments that originate from a single admixture event shared with all non-Africans that we date to approximately 45,000-49,000 years ago. This implies that ancestors of all non-Africans sequenced so far resided in a common population at this time, and further suggests that modern human remains older than 50,000 years from outside Africa represent different non-African populations.
Collapse
Affiliation(s)
- Arev P Sümer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Hélène Rougier
- California State University Northridge, Northridge, CA, USA
| | - Vanessa Villalba-Mouco
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Yilei Huang
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Computer Science, Universität Leipzig, Leipzig, Germany
| | - Leonardo N M Iasi
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elena Essel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alba Bossoms Mesa
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anja Furtwaengler
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Stéphane Peyrégne
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cesare de Filippo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Federica Pierini
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Helen Fewlass
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Francis Crick Institute, London, UK
- University of Bristol, Bristol, UK
| | - Elena I Zavala
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of California, Berkeley, CA, USA
| | - Dorothea Mylopotamitaki
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
| | - Raffaela A Bianco
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Schmidt
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Zorn
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anna Patova
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology, University of Reading, Reading, UK
| | - Karen Ruebens
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
- Department of Archaeology, University of Reading, Reading, UK
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Bordeaux, CNRS, Ministère de la Culture, PACEA, Pessac, France
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248 and Bordeaux Proteome Platform, Bordeaux, France
| | - Alexander Stoessel
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Zoology and Evolutionary Research, Jena, Germany
| | - Holger Dietl
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
| | - Jörg Orschiedt
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
- Prähistorische Archäologie, Freie Universität, Berlin, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Karolinska Institutet, Stockholm, Sweden
| | - Kirsten I Bos
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Marcel Weiss
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Ur- und Frühgeschichte, Erlangen, Germany
| | | | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology, Weimar, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB, Collège de France, Paris, France
| | | | | | - Benjamin M Peter
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Rochester, Rochester, NY, USA
| | - Matthias Meyer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Meller
- Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, Halle, Germany
| | - Harald Ringbauer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
7
|
Piffer D. Directional Selection and Evolution of Polygenic Traits in Eastern Eurasia: Insights from Ancient DNA. Twin Res Hum Genet 2025:1-20. [PMID: 39881595 DOI: 10.1017/thg.2024.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245 ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits such as IQ, EA and autism spectrum disorder (ASD), alongside negative selection for anxiety and depression. The results for height were mixed and showed nonlinear relationships with Years Before Present (BP). These trends were partially mediated by genetic components linked to distinct ancestral populations. Regression models incorporating admixture, geography, and temporal variables were used to account for biases in population composition over time. Latitude showed a positive effect on ASD PGS, EA and height, while it had a negative effect on skin pigmentation scores. Additionally, latitude exhibited significant nonlinear effects on multiple phenotypes. The observed patterns highlight the influence of climate-mediated selection pressures on trait evolution. Spline regression revealed that several polygenic scores had nonlinear relationships with years BP. The findings provide evidence for complex evolutionary dynamics, with distinct selective pressures shaping phenotypic diversity across different timescales and environments.
Collapse
|
8
|
Kim J, Mizuno F, Matsushita T, Matsushita M, Aoto S, Ishiya K, Kamio M, Naka I, Hayashi M, Kurosaki K, Ueda S, Ohashi J. Genetic analysis of a Yayoi individual from the Doigahama site provides insights into the origins of immigrants to the Japanese Archipelago. J Hum Genet 2025; 70:47-57. [PMID: 39402381 DOI: 10.1038/s10038-024-01295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 01/07/2025]
Abstract
Mainland Japanese have been recognized as having dual ancestry, originating from indigenous Jomon people and immigrants from continental East Eurasia. Although migration from the continent to the Japanese Archipelago continued from the Yayoi to the Kofun period, our understanding of these immigrants, particularly their origins, remains insufficient due to the lack of high-quality genome samples from the Yayoi period, complicating predictions about the admixture process. To address this, we sequenced the whole nuclear genome of a Yayoi individual from the Doigahama site in Yamaguchi prefecture, Japan. A comprehensive population genetic analysis of the Doigahama Yayoi individual, along with ancient and modern populations in East Asia and Northeastern Eurasia, revealed that the Doigahama Yayoi individual, similar to Kofun individuals and modern Mainland Japanese, had three distinct genetic ancestries: Jomon-related, East Asian-related, and Northeastern Siberian-related. Among non-Japanese populations, the Korean population, possessing both East Asian-related and Northeastern Siberian-related ancestries, exhibited the highest degree of genetic similarity to the Doigahama Yayoi individual. The analysis of admixture modeling for Yayoi individuals, Kofun individuals, and modern Japanese respectively supported a two-way admixture model assuming Jomon-related and Korean-related ancestries. These results suggest that between the Yayoi and Kofun periods, the majority of immigrants to the Japanese Archipelago originated primarily from the Korean Peninsula.
Collapse
Affiliation(s)
- Jonghyun Kim
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Fuzuki Mizuno
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan.
| | | | - Masami Matsushita
- The Doigahama Site Anthropological Museum, Yamaguchi, 759-6121, Japan
| | - Saki Aoto
- Medical Genome Center, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Koji Ishiya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Mami Kamio
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Michiko Hayashi
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Kunihiko Kurosaki
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Shintaroh Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Legal Medicine, Toho University School of Medicine, Tokyo, 143-8540, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Iasi LNM, Chintalapati M, Skov L, Mesa AB, Hajdinjak M, Peter BM, Moorjani P. Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans. Science 2024; 386:eadq3010. [PMID: 39666853 DOI: 10.1126/science.adq3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024]
Abstract
Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection-positive and negative-on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
Collapse
Affiliation(s)
- Leonardo N M Iasi
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Manjusha Chintalapati
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Laurits Skov
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Alba Bossoms Mesa
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- The Francis Crick Institute, London, UK
| | - Benjamin M Peter
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biology, University of Rochester, Rochester NY, USA
| | - Priya Moorjani
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
Yamamoto K, Namba S, Sonehara K, Suzuki K, Sakaue S, Cooke NP, Higashiue S, Kobayashi S, Afuso H, Matsuura K, Mitsumoto Y, Fujita Y, Tokuda T, Matsuda K, Gakuhari T, Yamauchi T, Kadowaki T, Nakagome S, Okada Y. Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations. Nat Commun 2024; 15:9780. [PMID: 39532881 PMCID: PMC11558008 DOI: 10.1038/s41467-024-54052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The tripartite ancestral structure is a recently proposed model for the genetic origin of modern Japanese, comprising indigenous Jomon hunter-gatherers and two additional continental ancestors from Northeast Asia and East Asia. To investigate the impact of the tripartite structure on genetic and phenotypic variation today, we conducted biobank-scale analyses by merging Biobank Japan (BBJ; n = 171,287) with ancient Japanese and Eurasian genomes (n = 22). We demonstrate the applicability of the tripartite model to Japanese populations throughout the archipelago, with an extremely strong correlation between Jomon ancestry and genomic variation among individuals. We also find that the genetic legacy of Jomon ancestry underlies an elevated body mass index (BMI). Genome-wide association analysis with rigorous adjustments for geographical and ancestral substructures identifies 132 variants that are informative for predicting individual Jomon ancestry. This prediction model is validated using independent Japanese cohorts (Nagahama cohort, n = 2993; the second cohort of BBJ, n = 72,695). We further confirm the phenotypic association between Jomon ancestry and BMI using East Asian individuals from UK Biobank (n = 2286). Our extensive analysis of ancient and modern genomes, involving over 250,000 participants, provides valuable insights into the genetic legacy of ancient hunter-gatherers in contemporary populations.
Collapse
Affiliation(s)
- Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Children's health and Genetics, Division of Health Sciences, Osaka University Graduate School of Medicine, Suite, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ken Suzuki
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Saori Sakaue
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Niall P Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Shuzo Kobayashi
- Tokushukai Group, Tokyo, Japan
- Department of Kidney Disease & Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | | | | | | | | | | | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan.
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Premium Research Institute for Human Metaverse (WPI-PRIMe), Osaka University, Suita, Japan.
| |
Collapse
|
11
|
Liu Y, Miao B, Li W, Hu X, Bai F, Abuduresule Y, Liu Y, Zheng Z, Wang W, Chen Z, Zhu S, Feng X, Cao P, Ping W, Yang R, Dai Q, Liu F, Tian C, Yang Y, Fu Q. Bronze Age cheese reveals human-Lactobacillus interactions over evolutionary history. Cell 2024; 187:5891-5900.e8. [PMID: 39326418 DOI: 10.1016/j.cell.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/01/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024]
Abstract
Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (∼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi 830000, China
| | - Xingjun Hu
- Research Center for Governance of China's Northwest Frontier in the Historical Periods, School of History, Xinjiang University, Ürümqi 830046, China
| | - Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yalin Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zequan Zheng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; Science and Technology Archaeology, National Centre for Archaeology, Beijing 100013, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Yimin Yang
- Department of Archaeology and Anthropology, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100035, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Bai F, Liu Y, Wangdue S, Wang T, He W, Xi L, Tsho Y, Tsering T, Cao P, Dai Q, Liu F, Feng X, Zhang M, Ran J, Ping W, Payon D, Mao X, Tong Y, Tsring T, Chen Z, Fu Q. Ancient genomes revealed the complex human interactions of the ancient western Tibetans. Curr Biol 2024; 34:2594-2605.e7. [PMID: 38781957 DOI: 10.1016/j.cub.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.
Collapse
Affiliation(s)
- Fan Bai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi'an 710054, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tashi Tsering
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Jingkun Ran
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Danzin Payon
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing 100044, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Gill H, Lee J, Jeong C. Reconstructing the Genetic Relationship between Ancient and Present-Day Siberian Populations. Genome Biol Evol 2024; 16:evae063. [PMID: 38526010 PMCID: PMC10999361 DOI: 10.1093/gbe/evae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Human populations across a vast area in northern Eurasia, from Fennoscandia to Chukotka, share a distinct genetic component often referred to as the Siberian ancestry. Most enriched in present-day Samoyedic-speaking populations such as Nganasans, its origins and history still remain elusive despite the growing list of ancient and present-day genomes from Siberia. Here, we reanalyze published ancient and present-day Siberian genomes focusing on the Baikal and Yakutia, resolving key questions regarding their genetic history. First, we show a long-term presence of a unique genetic profile in southern Siberia, up to 6,000 yr ago, which distinctly shares a deep ancestral connection with Native Americans. Second, we provide plausible historical models tracing genetic changes in West Baikal and Yakutia in fine resolution. Third, the Middle Neolithic individual from Yakutia, belonging to the Belkachi culture, serves as the best source so far available for the spread of the Siberian ancestry into Fennoscandia and Greenland. These findings shed light on the genetic legacy of the Siberian ancestry and provide insights into the complex interplay between different populations in northern Eurasia throughout history.
Collapse
Affiliation(s)
- Haechan Gill
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Juhyeon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
15
|
Martiniano R, Haber M, Almarri MA, Mattiangeli V, Kuijpers MCM, Chamel B, Breslin EM, Littleton J, Almahari S, Aloraifi F, Bradley DG, Lombard P, Durbin R. Ancient genomes illuminate Eastern Arabian population history and adaptation against malaria. CELL GENOMICS 2024; 4:100507. [PMID: 38417441 PMCID: PMC10943591 DOI: 10.1016/j.xgen.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
The harsh climate of Arabia has posed challenges in generating ancient DNA from the region, hindering the direct examination of ancient genomes for understanding the demographic processes that shaped Arabian populations. In this study, we report whole-genome sequence data obtained from four Tylos-period individuals from Bahrain. Their genetic ancestry can be modeled as a mixture of sources from ancient Anatolia, Levant, and Iran/Caucasus, with variation between individuals suggesting population heterogeneity in Bahrain before the onset of Islam. We identify the G6PD Mediterranean mutation associated with malaria resistance in three out of four ancient Bahraini samples and estimate that it rose in frequency in Eastern Arabia from 5 to 6 kya onward, around the time agriculture appeared in the region. Our study characterizes the genetic composition of ancient Arabians, shedding light on the population history of Bahrain and demonstrating the feasibility of studies of ancient DNA in the region.
Collapse
Affiliation(s)
- Rui Martiniano
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK.
| | - Marc Haber
- Institute of Cancer and Genomic Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Mohamed A Almarri
- Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates; College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Berenice Chamel
- Institut Français du Proche-Orient (MEAE/CNRS), Beirut, Lebanon
| | - Emily M Breslin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Judith Littleton
- School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Salman Almahari
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain
| | - Fatima Aloraifi
- Mersey and West Lancashire Teaching Hospitals NHS Trust, Whiston Hospital, Warrington Road, Prescot, L35 5DR Liverpool, UK
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Pierre Lombard
- Bahrain Authority for Culture and Antiquities, Manama, Kingdom of Bahrain; Archéorient UMR 5133, CNRS, Université Lyon 2, Maison de l'Orient et de la Méditerranée - Jean Pouilloux, Lyon, France
| | - Richard Durbin
- Department of Genetics, University of Cambridge, CB2 3EH Cambridge, UK.
| |
Collapse
|
16
|
Gao Y, Zhang X, Chen H, Lu Y, Ma S, Yang Y, Zhang M, Xu S. Reconstructing the ancestral gene pool to uncover the origins and genetic links of Hmong-Mien speakers. BMC Biol 2024; 22:59. [PMID: 38475771 PMCID: PMC10935854 DOI: 10.1186/s12915-024-01838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Hmong-Mien (HM) speakers are linguistically related and live primarily in China, but little is known about their ancestral origins or the evolutionary mechanism shaping their genomic diversity. In particular, the lack of whole-genome sequencing data on the Yao population has prevented a full investigation of the origins and evolutionary history of HM speakers. As such, their origins are debatable. RESULTS Here, we made a deep sequencing effort of 80 Yao genomes, and our analysis together with 28 East Asian populations and 968 ancient Asian genomes suggested that there is a strong genetic basis for the formation of the HM language family. We estimated that the most recent common ancestor dates to 5800 years ago, while the genetic divergence between the HM and Tai-Kadai speakers was estimated to be 8200 years ago. We proposed that HM speakers originated from the Yangtze River Basin and spread with agricultural civilization. We identified highly differentiated variants between HM and Han Chinese, in particular, a deafness-related missense variant (rs72474224) in the GJB2 gene is in a higher frequency in HM speakers than in others. CONCLUSIONS Our results indicated complex gene flow and medically relevant variants involved in the HM speakers' evolution history.
Collapse
Affiliation(s)
- Yang Gao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoxi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sen Ma
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Menghan Zhang
- Institute of Modern Languages and Linguistics, and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
18
|
Peyrégne S, Slon V, Kelso J. More than a decade of genetic research on the Denisovans. Nat Rev Genet 2024; 25:83-103. [PMID: 37723347 DOI: 10.1038/s41576-023-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 09/20/2023]
Abstract
Denisovans, a group of now extinct humans who lived in Eastern Eurasia in the Middle and Late Pleistocene, were first identified from DNA sequences just over a decade ago. Only ten fragmentary remains from two sites have been attributed to Denisovans based entirely on molecular information. Nevertheless, there has been great interest in using genetic data to understand Denisovans and their place in human history. From the reconstruction of a single high-quality genome, it has been possible to infer their population history, including events of admixture with other human groups. Additionally, the identification of Denisovan DNA in the genomes of present-day individuals has provided insights into the timing and routes of dispersal of ancient modern humans into Asia and Oceania, as well as the contributions of archaic DNA to the physiology of present-day people. In this Review, we synthesize more than a decade of research on Denisovans, reconcile controversies and summarize insights into their population history and phenotype. We also highlight how our growing knowledge about Denisovans has provided insights into our own evolutionary history.
Collapse
Affiliation(s)
- Stéphane Peyrégne
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Viviane Slon
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anatomy and Anthropology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Dan David Center for Human Evolution and Biohistory Research, Tel Aviv University, Tel Aviv, Israel
| | - Janet Kelso
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
19
|
He G, Wang P, Chen J, Liu Y, Sun Y, Hu R, Duan S, Sun Q, Tang R, Yang J, Wang Z, Yun L, Hu L, Yan J, Nie S, Wei L, Liu C, Wang M. Differentiated genomic footprints suggest isolation and long-distance migration of Hmong-Mien populations. BMC Biol 2024; 22:18. [PMID: 38273256 PMCID: PMC10809681 DOI: 10.1186/s12915-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The underrepresentation of Hmong-Mien (HM) people in Asian genomic studies has hindered our comprehensive understanding of the full landscape of their evolutionary history and complex trait architecture. South China is a multi-ethnic region and indigenously settled by ethnolinguistically diverse HM, Austroasiatic (AA), Tai-Kadai (TK), Austronesian (AN), and Sino-Tibetan (ST) people, which is regarded as East Asia's initial cradle of biodiversity. However, previous fragmented genetic studies have only presented a fraction of the landscape of genetic diversity in this region, especially the lack of haplotype-based genomic resources. The deep characterization of demographic history and natural-selection-relevant genetic architecture of HM people was necessary. RESULTS We reported one HM-specific genomic resource and comprehensively explored the fine-scale genetic structure and adaptative features inferred from the genome-wide SNP data of 440 HM individuals from 33 ethnolinguistic populations, including previously unreported She. We identified solid genetic differentiation between HM people and Han Chinese at 7.64‒15.86 years ago (kya) and split events between southern Chinese inland (Miao/Yao) and coastal (She) HM people in the middle Bronze Age period and the latter obtained more gene flow from Ancient Northern East Asians. Multiple admixture models further confirmed that extensive gene flow from surrounding ST, TK, and AN people entangled in forming the gene pool of Chinese coastal HM people. Genetic findings of isolated shared unique ancestral components based on the sharing alleles and haplotypes deconstructed that HM people from the Yungui Plateau carried the breadth of previously unknown genomic diversity. We identified a direct and recent genetic connection between Chinese inland and Southeast Asian HM people as they shared the most extended identity-by-descent fragments, supporting the long-distance migration hypothesis. Uniparental phylogenetic topology and network-based phylogenetic relationship reconstruction found ancient uniparental founding lineages in southwestern HM people. Finally, the population-specific biological adaptation study identified the shared and differentiated natural selection signatures among inland and coastal HM people associated with physical features and immune functions. The allele frequency spectrum of cancer susceptibility alleles and pharmacogenomic genes showed significant differences between HM and northern Chinese people. CONCLUSIONS Our extensive genetic evidence combined with the historical documents supported the view that ancient HM people originated from the Yungui regions associated with ancient "Three-Miao tribes" descended from the ancient Daxi-Qujialing-Shijiahe people. Then, some have recently migrated rapidly to Southeast Asia, and some have migrated eastward and mixed respectively with Southeast Asian indigenes, Liangzhu-related coastal ancient populations, and incoming southward ST people. Generally, complex population migration, admixture, and adaptation history contributed to the complicated patterns of population structure of geographically diverse HM people.
Collapse
Affiliation(s)
- Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| | - Peixin Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Medical Information, Chongqing Medical University, Chongqing, 400331, China
| | - Jing Chen
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Yan Liu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntao Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Rong Hu
- School of Sociology and Anthropology, Xiamen University, Xiamen, 361005, China
| | - Shuhan Duan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Qiuxia Sun
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400331, China
| | - Junbao Yang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, 637000, China
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhiyong Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Libing Yun
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Liping Hu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030001, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Lanhai Wei
- School of Ethnology and Anthropology, Inner Mongolia Normal University, Inner Mongolia, 010028, China
| | - Chao Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610041, China.
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China.
- Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, China.
- Research Center for Genomic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
20
|
Carlhoff S, Kutanan W, Rohrlach AB, Posth C, Stoneking M, Nägele K, Shoocongdej R, Krause J. Genomic portrait and relatedness patterns of the Iron Age Log Coffin culture in northwestern Thailand. Nat Commun 2023; 14:8527. [PMID: 38135688 PMCID: PMC10746721 DOI: 10.1038/s41467-023-44328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Iron Age of highland Pang Mapha, northwestern Thailand, is characterised by a mortuary practice known as Log Coffin culture. Dating between 2300 and 1000 years ago, large coffins carved from individual teak trees have been discovered in over 40 caves and rock shelters. While previous studies focussed on the cultural development of the Log Coffin-associated sites, the origins of the practice, connections with other wooden coffin-using groups in Southeast Asia, and social structure within the region remain understudied. Here, we present genome-wide data from 33 individuals from five Log Coffin culture sites to study genetic ancestry profiles and genetic interconnectedness. The Log Coffin-associated genomes can be modelled as an admixture between Hòabìnhian hunter-gatherer-, Yangtze River farmer-, and Yellow River farmer-related ancestry. This indicates different influence spheres from Bronze and Iron Age individuals from northeastern Thailand as reflected by cultural practices. Our analyses also identify close genetic relationships within the sites and more distant connections between sites in the same and different river valleys. In combination with high mitochondrial haplogroup diversity and genome-wide homogeneity, the Log Coffin-associated groups from northwestern Thailand seem to have been a large, well-connected community, where genetic relatedness played a significant role in the mortuary ritual.
Collapse
Affiliation(s)
- Selina Carlhoff
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cosimo Posth
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rasmi Shoocongdej
- Department of Archaeology, Silpakorn University, Bangkok, Thailand.
- The Prehistoric Population and Cultural Dynamics in Highland Pang Mapha Project, Princess Maha Chakri Sirindhorn Anthropology Centre, Bangkok, Thailand.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
21
|
Olalde I, Carrión P, Mikić I, Rohland N, Mallick S, Lazaridis I, Mah M, Korać M, Golubović S, Petković S, Miladinović-Radmilović N, Vulović D, Alihodžić T, Ash A, Baeta M, Bartík J, Bedić Ž, Bilić M, Bonsall C, Bunčić M, Bužanić D, Carić M, Čataj L, Cvetko M, Drnić I, Dugonjić A, Đukić A, Đukić K, Farkaš Z, Jelínek P, Jovanovic M, Kaić I, Kalafatić H, Krmpotić M, Krznar S, Leleković T, M de Pancorbo M, Matijević V, Milošević Zakić B, Osterholtz AJ, Paige JM, Tresić Pavičić D, Premužić Z, Rajić Šikanjić P, Rapan Papeša A, Paraman L, Sanader M, Radovanović I, Roksandic M, Šefčáková A, Stefanović S, Teschler-Nicola M, Tončinić D, Zagorc B, Callan K, Candilio F, Cheronet O, Fernandes D, Kearns A, Lawson AM, Mandl K, Wagner A, Zalzala F, Zettl A, Tomanović Ž, Keckarević D, Novak M, Harper K, McCormick M, Pinhasi R, Grbić M, Lalueza-Fox C, Reich D. A genetic history of the Balkans from Roman frontier to Slavic migrations. Cell 2023; 186:5472-5485.e9. [PMID: 38065079 PMCID: PMC10752003 DOI: 10.1016/j.cell.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
The rise and fall of the Roman Empire was a socio-political process with enormous ramifications for human history. The Middle Danube was a crucial frontier and a crossroads for population and cultural movement. Here, we present genome-wide data from 136 Balkan individuals dated to the 1st millennium CE. Despite extensive militarization and cultural influence, we find little ancestry contribution from peoples of Italic descent. However, we trace a large-scale influx of people of Anatolian ancestry during the Imperial period. Between ∼250 and 550 CE, we detect migrants with ancestry from Central/Northern Europe and the Steppe, confirming that "barbarian" migrations were propelled by ethnically diverse confederations. Following the end of Roman control, we detect the large-scale arrival of individuals who were genetically similar to modern Eastern European Slavic-speaking populations, who contributed 30%-60% of the ancestry of Balkan people, representing one of the largest permanent demographic changes anywhere in Europe during the Migration Period.
Collapse
Affiliation(s)
- Iñigo Olalde
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Ikerbasque-Basque Foundation of Science, Bilbao, Spain; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abigail Ash
- Department of Archaeology, Durham University, Durham, UK
| | - Miriam Baeta
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Juraj Bartík
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Željka Bedić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | - Clive Bonsall
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, UK
| | - Maja Bunčić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Domagoj Bužanić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Mario Carić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Lea Čataj
- Division for Archaeological Heritage, Croatian Conservation Institute, Zagreb, Croatia
| | - Mirna Cvetko
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Ivan Drnić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | | | - Ana Đukić
- Archaeological Museum in Zagreb, Zagreb, Croatia
| | - Ksenija Đukić
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zdeněk Farkaš
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | - Pavol Jelínek
- Slovak National Museum-Archaeological Museum, Bratislava, Slovak Republic
| | | | - Iva Kaić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Marijana Krmpotić
- Department for Archaeology, Croatian Conservation Institute, Zagreb, Croatia
| | | | - Tino Leleković
- Archaeology Division, Croatian Academy of Sciences and Arts, Zagreb, Croatia
| | - Marian M de Pancorbo
- BIOMICs Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Vinka Matijević
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Anna J Osterholtz
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Starkville, MS, USA
| | - Julianne M Paige
- Department of Anthropology, University of Nevada, Las Vegas, NV, USA
| | | | | | - Petra Rajić Šikanjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | | | | | - Mirjana Sanader
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | | | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada
| | - Alena Šefčáková
- Department of Anthropology, Slovak National Museum-Natural History Museum, Bratislava, Slovak Republic
| | - Sofia Stefanović
- Laboratory for Bioarchaeology, Faculty of Philosophy, University of Belgrade, Belgrade, Serbia
| | - Maria Teschler-Nicola
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Domagoj Tončinić
- Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Aisling Kearns
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Anna Wagner
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Anna Zettl
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Željko Tomanović
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Kyle Harper
- Department of Classics and Letters, University of Oklahoma, Norman, OK, USA; Santa Fe Institute, Santa Fe, NM, USA
| | - Michael McCormick
- Department of History, Harvard University, Cambridge, MA, USA; Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | - Miodrag Grbić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia; Department of Biology, University of Western Ontario, London, ON, Canada; Department of Agriculture and Food, Universidad de La Rioja, Logroño, Spain
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain; Museu de Ciències Naturals de Barcelona, Barcelona, Spain.
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Kumar L, Chowdhari A, Sequeira JJ, Mustak MS, Banerjee M, Thangaraj K. Genetic Affinities and Adaptation of the South-West Coast Populations of India. Genome Biol Evol 2023; 15:evad225. [PMID: 38079532 PMCID: PMC10745260 DOI: 10.1093/gbe/evad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Evolutionary event has not only altered the genetic structure of human populations but also associated with social and cultural transformation. South Asian populations were the result of migration and admixture of genetically and culturally diverse groups. Most of the genetic studies pointed to large-scale admixture events between Ancestral North Indian (ANI) and Ancestral South Indian (ASI) groups, also additional layers of recent admixture. In the present study, we have analyzed 213 individuals inhabited in South-west coast India with traditional warriors and feudal lord status and historically associated with migratory events from North/North West India and possible admixture with West Eurasian populations, whose genetic links are still missing. Analysis of autosomal Single Nucleotide Polymorphism (SNP) markers suggests that these groups possibly derived their ancestry from some groups of North West India having additional Middle Eastern genetic components. Higher distribution of West Eurasian mitochondrial haplogroups also points to female-mediated admixture. Estimation of Effective Migration Surface (EEMS) analysis indicates Central India and Godavari basin as a crucial transition zone for population migration from North and North West India to South-west coastal India. Selection screen using 3 distinct outlier-based approaches revealed genetic signatures related to Immunity and protection from Viral infections. Thus, our study suggests that the South-west coastal groups with traditional warriors and feudal lords' status are of a distinct lineage compared to Dravidian and Gangetic plain Indo-Europeans and are remnants of very early migrations from North West India following the Godavari basin to Karnataka and Kerala.
Collapse
Affiliation(s)
- Lomous Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Anuhya Chowdhari
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Jaison J Sequeira
- Department of Applied Zoology, Mangalore University, Mangalore 574199, India
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalore 574199, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | | |
Collapse
|
23
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
24
|
Ferraz T, Suarez Villagran X, Nägele K, Radzevičiūtė R, Barbosa Lemes R, Salazar-García DC, Wesolowski V, Lopes Alves M, Bastos M, Rapp Py-Daniel A, Pinto Lima H, Mendes Cardoso J, Estevam R, Liryo A, Guimarães GM, Figuti L, Eggers S, Plens CR, Azevedo Erler DM, Valadares Costa HA, da Silva Erler I, Koole E, Henriques G, Solari A, Martin G, Serafim Monteiro da Silva SF, Kipnis R, Müller LM, Ferreira M, Carvalho Resende J, Chim E, da Silva CA, Borella AC, Tomé T, Müller Plumm Gomes L, Barros Fonseca D, Santos da Rosa C, de Moura Saldanha JD, Costa Leite L, Cunha CMS, Viana SA, Ozorio Almeida F, Klokler D, Fernandes HLA, Talamo S, DeBlasis P, Mendonça de Souza S, de Paula Moraes C, Elias Oliveira R, Hünemeier T, Strauss A, Posth C. Genomic history of coastal societies from eastern South America. Nat Ecol Evol 2023; 7:1315-1330. [PMID: 37524799 PMCID: PMC10406606 DOI: 10.1038/s41559-023-02114-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 06/08/2023] [Indexed: 08/02/2023]
Abstract
Sambaqui (shellmound) societies are among the most intriguing archaeological phenomena in pre-colonial South America, extending from approximately 8,000 to 1,000 years before present (yr BP) across 3,000 km on the Atlantic coast. However, little is known about their connection to early Holocene hunter-gatherers, how this may have contributed to different historical pathways and the processes through which late Holocene ceramists came to rule the coast shortly before European contact. To contribute to our understanding of the population history of indigenous societies on the eastern coast of South America, we produced genome-wide data from 34 ancient individuals as early as 10,000 yr BP from four different regions in Brazil. Early Holocene hunter-gatherers were found to lack shared genetic drift among themselves and with later populations from eastern South America, suggesting that they derived from a common radiation and did not contribute substantially to later coastal groups. Our analyses show genetic heterogeneity among contemporaneous Sambaqui groups from the southeastern and southern Brazilian coast, contrary to the similarity expressed in the archaeological record. The complex history of intercultural contact between inland horticulturists and coastal populations becomes genetically evident during the final horizon of Sambaqui societies, from around 2,200 yr BP, corroborating evidence of cultural change.
Collapse
Affiliation(s)
- Tiago Ferraz
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Renan Barbosa Lemes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Domingo C Salazar-García
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Verônica Wesolowski
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Marcony Lopes Alves
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Murilo Bastos
- Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jéssica Mendes Cardoso
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, UMR 5563, CNRS, Toulouse, France
| | - Renata Estevam
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Andersen Liryo
- National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geovan M Guimarães
- Grupo de Pesquisa em Educação Patrimonial e Arqueologia (Grupep), Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Levy Figuti
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Cláudia R Plens
- Laboratory of Archaeological Studies, Department of History, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Ana Solari
- Fundação Museu do Homem Americano, Piauí, Brazil
| | | | | | | | - Letícia Morgana Müller
- Scientia Consultoria Científica, São Paulo, Brazil
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Mariane Ferreira
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
- Scientia Consultoria Científica, São Paulo, Brazil
| | - Janine Carvalho Resende
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Eliane Chim
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | - Ana Claudia Borella
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | - Tiago Tomé
- Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lisiane Müller Plumm Gomes
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - João Darcy de Moura Saldanha
- Universidade de Évora, Évora, Portugal
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Lúcio Costa Leite
- Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA), Macapá, Brazil
| | - Claudia M S Cunha
- Federal University of Piauí, Piauí, Brazil
- Centro de Investigação em Antropologia e Saúde, Universidade de Coimbra, Coimbra, Portugal
| | - Sibeli Aparecida Viana
- Instituto Goiano de Pré-história e Arqueologia, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Fernando Ozorio Almeida
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Arqueologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Klokler
- Programa de Pós-Graduação em Arqueologia, Universidade Federal de Sergipe, Sergipe, Brazil
- Departamento de Antropologia e Arqueologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henry Luydy Abraham Fernandes
- Programa de Pós-Graduação em Arqueologia e Patrimônio Cultural, Universidade Federal do Recôncavo da Bahia, Bahia, Brazil
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paulo DeBlasis
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil
| | | | | | - Rodrigo Elias Oliveira
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil
| | - Tábita Hünemeier
- Institute of Biosciences, Genetics Department, University of São Paulo, São Paulo, Brazil.
- Institut de Biologia Evolutiva, CSIC/Universitat Pompeu Fabra, Barcelona, Spain.
| | - André Strauss
- Museum of Archaeology and Ethnology, University of São Paulo, São Paulo, Brazil.
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Kasai K, Bradley DG, Gakuhari T, Nakagome S. Genomic insights into a tripartite ancestry in the Southern Ryukyu Islands. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e23. [PMID: 37587935 PMCID: PMC10426068 DOI: 10.1017/ehs.2023.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Abstract
A tripartite structure for the genetic origin of Japanese populations states that present-day populations are descended from three main ancestors: (1) the indigenous Jomon hunter-gatherers; (2) a Northeast Asian component that arrived during the agrarian Yayoi period; and (3) a major influx of East Asian ancestry in the imperial Kofun period. However, the genetic heterogeneity observed in different regions of the Japanese archipelago highlights the need to assess the applicability and suitability of this model. Here, we analyse historic genomes from the southern Ryukyu Islands, which have unique cultural and historical backgrounds compared with other parts of Japan. Our analysis supports the tripartite structure as the best fit in this region, with significantly higher estimated proportions of Jomon ancestry than mainland Japanese. Unlike the main islands, where each continental ancestor was directly brought by immigrants from the continent, those who already possessed the tripartite ancestor migrated to the southern Ryukyu Islands and admixed with the prehistoric people around the eleventh century AD, coinciding with the emergence of the Gusuku period. These results reaffirm the tripartite model in the southernmost extremes of the Japanese archipelago and show variability in how the structure emerged in diverse geographic regions.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
26
|
Freidline SE, Westaway KE, Joannes-Boyau R, Duringer P, Ponche JL, Morley MW, Hernandez VC, McAllister-Hayward MS, McColl H, Zanolli C, Gunz P, Bergmann I, Sichanthongtip P, Sihanam D, Boualaphane S, Luangkhoth T, Souksavatdy V, Dosseto A, Boesch Q, Patole-Edoumba E, Aubaile F, Crozier F, Suzzoni E, Frangeul S, Bourgon N, Zachwieja A, Dunn TE, Bacon AM, Hublin JJ, Shackelford L, Demeter F. Early presence of Homo sapiens in Southeast Asia by 86-68 kyr at Tam Pà Ling, Northern Laos. Nat Commun 2023; 14:3193. [PMID: 37311788 DOI: 10.1038/s41467-023-38715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/12/2023] [Indexed: 06/15/2023] Open
Abstract
The timing of the first arrival of Homo sapiens in East Asia from Africa and the degree to which they interbred with or replaced local archaic populations is controversial. Previous discoveries from Tam Pà Ling cave (Laos) identified H. sapiens in Southeast Asia by at least 46 kyr. We report on a recently discovered frontal bone (TPL 6) and tibial fragment (TPL 7) found in the deepest layers of TPL. Bayesian modeling of luminescence dating of sediments and U-series and combined U-series-ESR dating of mammalian teeth reveals a depositional sequence spanning ~86 kyr. TPL 6 confirms the presence of H. sapiens by 70 ± 3 kyr, and TPL 7 extends this range to 77 ± 9 kyr, supporting an early dispersal of H. sapiens into Southeast Asia. Geometric morphometric analyses of TPL 6 suggest descent from a gracile immigrant population rather than evolution from or admixture with local archaic populations.
Collapse
Affiliation(s)
- Sarah E Freidline
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Orlando, FL, USA
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Kira E Westaway
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Renaud Joannes-Boyau
- Geoarchaeology and Archaeometry Research Group (GARG), Southern Cross University, Lismore, NSW, Australia
- Centre for Anthropological Research, University of Johannesburg, Johannesburg, Gauteng Province, South Africa
| | - Philippe Duringer
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Ponche
- Université de Strasbourg, Laboratoire Image, Ville Environnement, UMR, 7362, UdS CNRS, Strasbourg, France
| | - Mike W Morley
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Vito C Hernandez
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Meghan S McAllister-Hayward
- Flinders Microarchaeology Laboratory, Archaeology, College of Humanities, Arts and Social Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, Australia
| | - Hugh McColl
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, 33600, Pessac, France
| | - Philipp Gunz
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | - Inga Bergmann
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
| | | | - Daovee Sihanam
- Ministry of Information, Culture and Tourism, Vientiane, PDR, Laos
| | | | | | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric & Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Quentin Boesch
- Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe de Strasbourg (IPGS), UMR 7516 CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Françoise Aubaile
- Eco-anthropologie (EA), Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France
| | | | - Eric Suzzoni
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Sébastien Frangeul
- Spitteurs Pan, Technical Cave Supervision and Exploration, La Chapelle en Vercors, France
| | - Nicolas Bourgon
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Applied and Analytical Palaeontology, Institute of Geosciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Alexandra Zachwieja
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Tyler E Dunn
- Anatomical Sciences Education Center, Oregon Health & Sciences University, Portland, OR, USA
| | | | - Jean-Jacques Hublin
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France. 11, Place Marcelin-Berthelot, 75231, Paris, Cedex 05, France
| | - Laura Shackelford
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016, Paris, France.
| |
Collapse
|
27
|
Rigaud S, Rybin EP, Khatsenovich AM, Queffelec A, Paine CH, Gunchinsuren B, Talamo S, Marchenko DV, Bolorbat T, Odsuren D, Gillam JC, Izuho M, Fedorchenko AY, Odgerel D, Shelepaev R, Hublin JJ, Zwyns N. Symbolic innovation at the onset of the Upper Paleolithic in Eurasia shown by the personal ornaments from Tolbor-21 (Mongolia). Sci Rep 2023; 13:9545. [PMID: 37308668 PMCID: PMC10261033 DOI: 10.1038/s41598-023-36140-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Figurative depictions in art first occur ca. 50,000 years ago in Europe, Africa, and Southeast Asia. Considered by most as an advanced form of symbolic behavior, they are restricted to our species. Here, we report a piece of ornament interpreted as a phallus-like representation. It was found in a 42,000 ca.-year-old Upper Paleolithic archaeological layer at the open-air archaeological site of Tolbor-21, in Mongolia. Mineralogical, microscopic, and rugosimetric analyses points toward the allochthonous origin of the pendant and a complex functional history. Three-dimensional phallic pendants are unknown in the Paleolithic record, and this discovery predates the earliest known sexed anthropomorphic representation. It attests that hunter-gatherer communities used sex anatomical attributes as symbols at a very early stage of their dispersal in the region. The pendant was produced during a period that overlaps with age estimates for early introgression events between Homo sapiens and Denisovans, and in a region where such encounters are plausible.
Collapse
Grants
- CNRS International Associate Laboratory ARTEMIR “Multidisciplinary Research on Prehistoric Art in Eurasia” and the French National Research Agency (ANR) in the frame of the Programme IdEx Bordeaux (ANR-10-IDEX-03-02, Emergence NETAWA project). This research benefited from the scientific framework of the University of Bordeaux's IdEx "Investments for the Future" program / GPR "Human Past".
- The Russian Scientific Foundation supports ER, AMK and DM for field research and lithic analysis (project #19-18-00198) and faunal and spatial analysis (project #19-78-10112). The National Scientific Foundation (#1560784) supports NZ field research in the Ikh-Tulberiin-Gol.
- the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution-erc/en)
- Grant in-Aid for Scientific Research on Innovative Areas (Grant No. 1802 for FY2016-2020 led by Y. Nishiaki) from the Ministry of Education, Culture, Sports, Science and Technology, Japan
- the Leakey Foundation, the Max Planck Society, the UC-Davis Department of Anthropology and the UC-Davis Academic Senate, and the Hellman Foundation
Collapse
Affiliation(s)
- Solange Rigaud
- CNRS, Université de Bordeaux, UMR5199 PACEA Bâtiment B2 Allée Geoffroy Saint Hilaire, 33615, Pessac, France.
| | - Evgeny P Rybin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090.
| | - Arina M Khatsenovich
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | - Alain Queffelec
- CNRS, Université de Bordeaux, UMR5199 PACEA Bâtiment B2 Allée Geoffroy Saint Hilaire, 33615, Pessac, France
| | - Clea H Paine
- Archaeology Institute, University of the Highlands and Islands, Kirkwall, UK
| | - Byambaa Gunchinsuren
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Daria V Marchenko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | - Tsedendorj Bolorbat
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | - Davaakhuu Odsuren
- Institute of Archaeology, Mongolian Academy of Sciences, Peace Avenue, Ulaanbaatar, 13330, Mongolia
| | | | - Masami Izuho
- Faculty of Social Sciences and Humanities, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Alexander Yu Fedorchenko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, 17 Lavrentiev Ave., Novosibirsk, Russia, 630090
| | | | - Roman Shelepaev
- V.S. Sobolev's Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Science, Ak. Koptyug Avenue 3, Novosibirsk, Russia, 630090
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Chaire de Paléoanthropologie, Collège de France, 75005, Paris, France
| | - Nicolas Zwyns
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Department of Anthropology, University of California-Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
28
|
Lee J, Miller BK, Bayarsaikhan J, Johannesson E, Ventresca Miller A, Warinner C, Jeong C. Genetic population structure of the Xiongnu Empire at imperial and local scales. SCIENCE ADVANCES 2023; 9:eadf3904. [PMID: 37058560 PMCID: PMC10104459 DOI: 10.1126/sciadv.adf3904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The Xiongnu established the first nomadic imperial power, controlling the Eastern Eurasian steppe from ca. 200 BCE to 100 CE. Recent archaeogenetic studies identified extreme levels of genetic diversity across the empire, corroborating historical records of the Xiongnu Empire being multiethnic. However, it has remained unknown how this diversity was structured at the local community level or by sociopolitical status. To address this, we investigated aristocratic and local elite cemeteries at the western frontier of the empire. Analyzing genome-wide data from 18 individuals, we show that genetic diversity within these communities was comparable to the empire as a whole, and that high diversity was also observed within extended families. Genetic heterogeneity was highest among the lowest-status individuals, implying diverse origins, while higher-status individuals harbored less genetic diversity, suggesting that elite status and power was concentrated within specific subsets of the broader Xiongnu population.
Collapse
Affiliation(s)
- Juhyeon Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bryan K. Miller
- Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
- History of Art, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamsranjav Bayarsaikhan
- Max Planck Institute for the Science of Human History, Jena 07745, Germany
- National Museum of Mongolia, Ulaanbaatar, Mongolia
| | | | - Alicia Ventresca Miller
- Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Museum of Anthropological Archaeology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christina Warinner
- Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Villalba-Mouco V, van de Loosdrecht MS, Rohrlach AB, Fewlass H, Talamo S, Yu H, Aron F, Lalueza-Fox C, Cabello L, Cantalejo Duarte P, Ramos-Muñoz J, Posth C, Krause J, Weniger GC, Haak W. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat Ecol Evol 2023; 7:597-609. [PMID: 36859553 PMCID: PMC10089921 DOI: 10.1038/s41559-023-01987-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023]
Abstract
Human populations underwent range contractions during the Last Glacial Maximum (LGM) which had lasting and dramatic effects on their genetic variation. The genetic ancestry of individuals associated with the post-LGM Magdalenian technocomplex has been interpreted as being derived from groups associated with the pre-LGM Aurignacian. However, both these ancestries differ from that of central European individuals associated with the chronologically intermediate Gravettian. Thus, the genomic transition from pre- to post-LGM remains unclear also in western Europe, where we lack genomic data associated with the intermediate Solutrean, which spans the height of the LGM. Here we present genome-wide data from sites in Andalusia in southern Spain, including from a Solutrean-associated individual from Cueva del Malalmuerzo, directly dated to ~23,000 cal yr BP. The Malalmuerzo individual carried genetic ancestry that directly connects earlier Aurignacian-associated individuals with post-LGM Magdalenian-associated ancestry in western Europe. This scenario differs from Italy, where individuals associated with the transition from pre- and post-LGM carry different genetic ancestries. This suggests different dynamics in the proposed southern refugia of Ice Age Europe and posits Iberia as a potential refugium for western European pre-LGM ancestry. More, individuals from Cueva Ardales, which were thought to be of Palaeolithic origin, date younger than expected and, together with individuals from the Andalusian sites Caserones and Aguilillas, fall within the genetic variation of the Neolithic, Chalcolithic and Bronze Age individuals from southern Iberia.
Collapse
Affiliation(s)
- Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain.
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Marieke S van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Natural Sciences Museum of Barcelona (MCNB), Barcelona, Spain
| | - Lidia Cabello
- University of Málaga and Grupo HUM-440 University of Cádiz, Cádiz, Spain
| | | | - José Ramos-Muñoz
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
30
|
Posth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, et alPosth C, Yu H, Ghalichi A, Rougier H, Crevecoeur I, Huang Y, Ringbauer H, Rohrlach AB, Nägele K, Villalba-Mouco V, Radzeviciute R, Ferraz T, Stoessel A, Tukhbatova R, Drucker DG, Lari M, Modi A, Vai S, Saupe T, Scheib CL, Catalano G, Pagani L, Talamo S, Fewlass H, Klaric L, Morala A, Rué M, Madelaine S, Crépin L, Caverne JB, Bocaege E, Ricci S, Boschin F, Bayle P, Maureille B, Le Brun-Ricalens F, Bordes JG, Oxilia G, Bortolini E, Bignon-Lau O, Debout G, Orliac M, Zazzo A, Sparacello V, Starnini E, Sineo L, van der Plicht J, Pecqueur L, Merceron G, Garcia G, Leuvrey JM, Garcia CB, Gómez-Olivencia A, Połtowicz-Bobak M, Bobak D, Le Luyer M, Storm P, Hoffmann C, Kabaciński J, Filimonova T, Shnaider S, Berezina N, González-Rabanal B, González Morales MR, Marín-Arroyo AB, López B, Alonso-Llamazares C, Ronchitelli A, Polet C, Jadin I, Cauwe N, Soler J, Coromina N, Rufí I, Cottiaux R, Clark G, Straus LG, Julien MA, Renhart S, Talaa D, Benazzi S, Romandini M, Amkreutz L, Bocherens H, Wißing C, Villotte S, de Pablo JFL, Gómez-Puche M, Esquembre-Bebia MA, Bodu P, Smits L, Souffi B, Jankauskas R, Kozakaitė J, Cupillard C, Benthien H, Wehrberger K, Schmitz RW, Feine SC, Schüler T, Thevenet C, Grigorescu D, Lüth F, Kotula A, Piezonka H, Schopper F, Svoboda J, Sázelová S, Chizhevsky A, Khokhlov A, Conard NJ, Valentin F, Harvati K, Semal P, Jungklaus B, Suvorov A, Schulting R, Moiseyev V, Mannermaa K, Buzhilova A, Terberger T, Caramelli D, Altena E, Haak W, Krause J. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 2023; 615:117-126. [PMID: 36859578 PMCID: PMC9977688 DOI: 10.1038/s41586-023-05726-0] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/12/2023] [Indexed: 03/03/2023]
Abstract
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Collapse
Affiliation(s)
- Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany.
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hélène Rougier
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, California State University Northridge, Northridge, CA, USA
| | | | - Yilei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Harald Ringbauer
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain
| | - Rita Radzeviciute
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Alexander Stoessel
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute of Zoology and Evolutionary Research, University of Jena, Jena, Germany
| | - Rezeda Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Excellence 'Archaeometry', Kazan Federal University, Kazan, Russia
| | - Dorothée G Drucker
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John's College, University of Cambridge, Cambridge, UK
| | - Giulio Catalano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Laurent Klaric
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - André Morala
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Mathieu Rué
- Paléotime, Villard-de-Lans, France
- UMR 5140 CNRS, Archéologie des Sociétés Méditerranéennes, Université Paul-Valéry, Montpellier, France
| | - Stéphane Madelaine
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Musée National de Préhistoire, Les Eyzies de Tayac, France
| | - Laurent Crépin
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
| | - Jean-Baptiste Caverne
- Association APRAGE (Approches pluridisciplinaires de recherche archéologique du Grand-Est), Besançon, France
- Inrap GE, Metz, France
| | - Emmy Bocaege
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Stefano Ricci
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
| | - Francesco Boschin
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
- Accademia dei Fisiocritici, Siena, Italy
- Centro Studi sul Quaternario ODV, Sansepolcro, Italy
| | - Priscilla Bayle
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | - Bruno Maureille
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
| | | | | | - Gregorio Oxilia
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Human Ecology and Archaeology (HUMANE), Department of Archaeology and Anthropology, Institució Milà i Fontanals de Investigación en Humanidades, Consejo Superior de Investigaciones Científicas (IMF - CSIC), Barcelona, Spain
| | - Olivier Bignon-Lau
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Grégory Debout
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Michel Orliac
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Antoine Zazzo
- UMR 7209-Archéozoologie et Archéobotanique-Sociétés, Pratiques et Environnements, Muséum National d'Histoire Naturelle, Paris, France
| | - Vitale Sparacello
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Sezione di Neuroscienze e Antropologia, Università Degli Studi di Cagliari, Cittadella Monserrato, Cagliari, Italy
| | | | - Luca Sineo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | | | - Laure Pecqueur
- Inrap CIF, Croissy-Beaubourg, France
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
| | - Gildas Merceron
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
| | - Géraldine Garcia
- PALEVOPRIM Lab UMR 7262 CNRS-INEE, University of Poitiers, Poitiers, France
- Centre de Valorisation des Collections Scientifiques, Université de Poitiers, Mignaloux Beauvoir, France
| | | | | | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
- Sociedad de Ciencias Aranzadi, Donostia-San Sebastian, Spain
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Madrid, Spain
| | | | - Dariusz Bobak
- Foundation for Rzeszów Archaeological Centre, Rzeszów, Poland
| | - Mona Le Luyer
- Université de Bordeaux, CNRS, MC, PACEA UMR 5199, Pessac, France
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paul Storm
- Groninger Instituut voor Archeologie, Groningen University, Groningen, The Netherlands
| | | | - Jacek Kabaciński
- Institute of Archaeology and Ethnology, Polish Academy of Science, Poznań, Poland
| | | | - Svetlana Shnaider
- ArchaeoZOOlogy in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Institute of Archaeology SB RAS, Novosibirsk, Russia
| | - Natalia Berezina
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Borja González-Rabanal
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel R González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (IIIPC), Universidad de Cantabria-Gobierno de Cantabria-Banco Santander, Santander, Spain
| | - Ana B Marín-Arroyo
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Belén López
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Annamaria Ronchitelli
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, U.R. Preistoria e Antropologia, Università degli Studi di Siena, Siena, Italy
| | - Caroline Polet
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Ivan Jadin
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Nicolas Cauwe
- Musées Royaux d'Art et d'Histoire, Bruxelles, Belgium
| | - Joaquim Soler
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Neus Coromina
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | - Isaac Rufí
- Institute of Historical Research, University of Girona, Catalonia, Spain
| | | | - Geoffrey Clark
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Lawrence G Straus
- Grupo de I+D+i EVOADAPTA (Evolución Humana y Adaptaciones durante la Prehistoria) Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Marie-Anne Julien
- UMR 7194, Histoire Naturelle de l'Homme Préhistorique (HNHP), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, UPVD, Paris, France
- GéoArchPal-GéoArchÉon, Viéville sous-les-Cotes, France
| | - Silvia Renhart
- Archäologie & Münzkabinett, Universalmuseum Joanneum, Graz, Austria
| | - Dorothea Talaa
- Museum 'Das Dorf des Welan', Wöllersdorf-Steinabrückl, Austria
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Pradis Cave Museum, Clauzetto, Italy
- Department of Humanities, University of Ferrara, Ferrara, Italy
| | - Luc Amkreutz
- National Museum of Antiquities, Leiden, The Netherlands
- Faculty of Archaeology, Leiden University, Leiden, The Netherlands
| | - Hervé Bocherens
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Christoph Wißing
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Biogeology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Sébastien Villotte
- UMR 7206 Éco-Anthropologie, Équipe ABBA. CNRS, MNHN, Université de Paris Cité, Musée de l'Homme, Paris, France
- Quaternary Environments and Humans, OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Unité de Recherches Art, Archéologie Patrimoine, Université de Liège, Liège, Belgium
| | - Javier Fernández-López de Pablo
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | - Magdalena Gómez-Puche
- I.U. de Investigación en Arqueología y Patrimonio Histórico, University of Alicante, Sant Vicent del Raspeig, Alicante, Spain
| | | | - Pierre Bodu
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Liesbeth Smits
- Amsterdam Centre of Ancient Studies and Archaeology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bénédicte Souffi
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
- Inrap CIF, Croissy-Beaubourg, France
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Justina Kozakaitė
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Christophe Cupillard
- Service Régional de l'Archéologie de Bourgogne-Franche-Comté, Besançon Cedex, France
- Laboratoire de Chrono-Environnement, UMR 6249 du CNRS, UFR des Sciences et Techniques, Besançon Cedex, France
| | | | | | | | - Susanne C Feine
- LVR-LandesMuseum Bonn, Bonn, Germany
- Institute of Pre- and Protohistory, University of Tübingen, Tübingen, Germany
| | - Tim Schüler
- Department of Archeological Sciences, Thuringian State Office for Monuments Preservation and Archeology, Weimar, Germany
| | | | - Dan Grigorescu
- University of Bucharest, Faculty of Geology and Geophysics, Department of Geology, Bucharest, Romania
- Institute for Advanced Studies in Levant Culture and Civilization, Bucharest, Romania
| | | | - Andreas Kotula
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Henny Piezonka
- Institute for Pre- and Protohistory, Kiel University, Kiel, Germany
| | - Franz Schopper
- Brandenburg Authorities for Heritage Management and Archaeological State Museum, Zossen, Germany
| | - Jiří Svoboda
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Sandra Sázelová
- Institute of Archeology at Brno, Czech Academy of Sciences, Centre for Palaeolithic and Paleoanthropology, Brno, Czechia
| | - Andrey Chizhevsky
- Institute of Archaeology, Academy of Sciences of the Republic of Tatarstan, Kazan, Russia
| | - Aleksandr Khokhlov
- Samara State University of Social Sciences and Education, Samara, Russia
| | - Nicholas J Conard
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Early Prehistory and Quaternary Ecology, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Frédérique Valentin
- UMR 8068 CNRS, TEMPS-Technologie et Ethnologie des Mondes Préhistoriques, Nanterre Cedex, France
| | - Katerina Harvati
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
- Paleoanthropology, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- DFG Centre for Advanced Studies 'Words, Bones, Genes, Tools', University of Tübingen, Tübingen, Germany
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | | | - Alexander Suvorov
- Institute of Archaeology Russian, Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Alexandra Buzhilova
- Research Institute and Museum of Anthropology, Moscow State University, Moscow, Russia
| | - Thomas Terberger
- Seminar for Pre- and Protohistory, Göttingen University, Göttingen, Germany
- Lower Saxony State Service for Cultural Heritage, Hannover, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
31
|
Nyerki E, Kalmár T, Schütz O, Lima RM, Neparáczki E, Török T, Maróti Z. correctKin: an optimized method to infer relatedness up to the 4th degree from low-coverage ancient human genomes. Genome Biol 2023; 24:38. [PMID: 36855115 PMCID: PMC9972692 DOI: 10.1186/s13059-023-02882-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Kinship analysis from very low-coverage ancient sequences has been possible up to the second degree with large uncertainties. We propose a new, accurate, and fast method, correctKin, to estimate the kinship coefficient and the confidence interval using low-coverage ancient data. We perform simulations and also validate correctKin on experimental modern and ancient data with widely different genome coverages (0.12×-11.9×) using samples with known family relations and known/unknown population structure. Based on our results, correctKin allows for the reliable identification of relatedness up to the 4th degree from variable/low-coverage ancient or badly degraded forensic whole genome sequencing data.
Collapse
Affiliation(s)
- Emil Nyerki
- Department of Pediatrics, University of Szeged Albert Szent-Györgyi Medical Center Faculty of Medicine, Szeged, Hungary
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, University of Szeged Albert Szent-Györgyi Medical Center Faculty of Medicine, Szeged, Hungary
| | - Oszkár Schütz
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Rui M Lima
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Endre Neparáczki
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary
- Department of Genetics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged Albert Szent-Györgyi Medical Center Faculty of Medicine, Szeged, Hungary.
- Department of Archaeogenetics, Institute of Hungarian Research, Budapest, Hungary.
| |
Collapse
|
32
|
Vang A, Salem K, Fowler AM. Progesterone Receptor Gene Polymorphisms and Breast Cancer Risk. Endocrinology 2023; 164:7005421. [PMID: 36702635 DOI: 10.1210/endocr/bqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The objective of this systematic review was to investigate the association between polymorphisms in the progesterone receptor gene (PGR) and breast cancer risk. A search of PubMed, Scopus, and Web of Science databases was performed in November 2021. Study characteristics, minor allele frequencies, genotype frequencies, and odds ratios were extracted. Forty studies met the eligibility criteria and included 75 032 cases and 89 425 controls. Of the 84 PGR polymorphisms reported, 7 variants were associated with breast cancer risk in at least 1 study. These polymorphisms included an Alu insertion (intron 7) and rs1042838 (Val660Leu), also known as PROGINS. Other variants found to be associated with breast cancer risk included rs3740753 (Ser344Thr), rs10895068 (+331G/A), rs590688 (intron 2), rs1824128 (intron 3), and rs10895054 (intron 6). Increased risk of breast cancer was associated with rs1042838 (Val660Leu) in 2 studies, rs1824128 (intron 3) in 1 study, and rs10895054 (intron 6) in 1 study. The variant rs3740753 (Ser344Thr) was associated with decreased risk of breast cancer in 1 study. Mixed results were reported for rs590688 (intron 2), rs10895068 (+331G/A), and the Alu insertion. In a pooled analysis, the Alu insertion, rs1042838 (Val660Leu), rs3740753 (Ser344Thr), and rs10895068 (+331G/A) were not associated with breast cancer risk. Factors reported to contribute to differences in breast cancer risk associated with PGR polymorphisms included age, ethnicity, obesity, and postmenopausal hormone therapy use. PGR polymorphisms may have a small contribution to breast cancer risk in certain populations, but this is not conclusive with studies finding no association in larger, mixed populations.
Collapse
Affiliation(s)
- Alecia Vang
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
33
|
Middle Holocene Siberian genomes reveal highly connected gene pools throughout North Asia. Curr Biol 2023; 33:423-433.e5. [PMID: 36638796 DOI: 10.1016/j.cub.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.
Collapse
|
34
|
Hoffecker JF, Elias SA, Scott GR, O'Rourke DH, Hlusko LJ, Potapova O, Pitulko V, Pavlova E, Bourgeon L, Vachula RS. Beringia and the peopling of the Western Hemisphere. Proc Biol Sci 2023; 290:20222246. [PMID: 36629115 PMCID: PMC9832545 DOI: 10.1098/rspb.2022.2246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Did Beringian environments represent an ecological barrier to humans until less than 15 000 years ago or was access to the Americas controlled by the spatial-temporal distribution of North American ice sheets? Beringian environments varied with respect to climate and biota, especially in the two major areas of exposed continental shelf. The East Siberian Arctic Shelf ('Great Arctic Plain' (GAP)) supported a dry steppe-tundra biome inhabited by a diverse large-mammal community, while the southern Bering-Chukchi Platform ('Bering Land Bridge' (BLB)) supported mesic tundra and probably a lower large-mammal biomass. A human population with west Eurasian roots occupied the GAP before the Last Glacial Maximum (LGM) and may have accessed mid-latitude North America via an interior ice-free corridor. Re-opening of the corridor less than 14 000 years ago indicates that the primary ancestors of living First Peoples, who already had spread widely in the Americas at this time, probably dispersed from the NW Pacific coast. A genetic 'arctic signal' in non-arctic First Peoples suggests that their parent population inhabited the GAP during the LGM, before their split from the former. We infer a shift from GAP terrestrial to a subarctic maritime economy on the southern BLB coast before dispersal in the Americas from the NW Pacific coast.
Collapse
Affiliation(s)
- John F. Hoffecker
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA,Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Scott A. Elias
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
| | - G. Richard Scott
- Department of Anthropology, University of Nevada-Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Dennis H. O'Rourke
- Department of Anthropology, University of Kansas, 622 Fraser Hall, 1415 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Leslea J. Hlusko
- Human Evolution Research Center, University of California-Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain
| | - Olga Potapova
- Pleistocene Park Foundation, Philadelphia, PA 19006, USA,Department of Mammoth Fauna Studies, Academy of Sciences of Sakha, Yakutsk, Russia,The Mammoth Site of Hot Springs, Hot Springs, SD 57747, USA
| | - Vladimir Pitulko
- Institute of the History of Material Culture, Russian Academy of Sciences, Dvortsovaya nab., 18, 191186 St Petersburg, Russia,Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, 3, Universitetskaya nab., St Petersburg 199034, Russian Federation
| | - Elena Pavlova
- Arctic and Antarctic Research Institute, Russian Federal Service for Hydrometeorology and Environmental Monitoring, 38 Bering Street, 199397 St Petersburg, Russia
| | - Lauriane Bourgeon
- Kansas Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, KS 66047, USA
| | - Richard S. Vachula
- Department of Geosciences, Auburn University, 2050 Beard Eaves Coliseum, Auburn, AL 36849-5305, USA
| |
Collapse
|
35
|
After the blades: The late MIS3 flake-based technology at Shuidonggou Locality 2, North China. PLoS One 2022; 17:e0274777. [PMID: 36223341 PMCID: PMC9555678 DOI: 10.1371/journal.pone.0274777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Contrasting with the predominance of blade-based assemblages in the Eurasian Upper Paleolithic, the large-scale persistence of a core-and-flake technology remains one of the defining features of Late Pleistocene lithic technology in East Asia. In North China, Shuidonggou is an exceptional site where both technologies are documented, therefore, it is an important archaeological sequence to understand regional technological evolution during the Marine Isotopic Stage 3. Blade technology first occurred at Shuidonggou Locality 1 and 2 around 41 ka cal BP while core-and-flake assemblages were widespread in North China. However, systematic technological studies on assemblages postdating 34 ka cal BP have not been conducted to examine whether the blade technology appeared and disappeared over a short yet abrupt episode, or persists and integrates into other forms in the region. Here, we conducted qualitative and quantitative analyses to reconstruct lithic productions on the assemblages at Shuidonggou Locality 2, dated after 34 ka cal BP. Our results show that there is a total absence of laminar elements in stone artifacts dated to 34–28 ka cal BP at Shuidonggou. Instead, we observe a dominance of an expedient production of flakes in the younger assemblages, illustrating a rapid return to flake-based technology after a relatively brief episode of stone blade production. Combining archaeological, environmental, and genetic evidence, we suggest that this technological ‘reversal’ from blades back to core and flake technology reflect population dynamics and adaptive strategies at an ecological interface between East Asian winter and summer monsoon.
Collapse
|
36
|
Fu Q. Insights into evolutionary dynamics of East Asians through Ancient DNA. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Zhang X, Ji X, Li C, Yang T, Huang J, Zhao Y, Wu Y, Ma S, Pang Y, Huang Y, He Y, Su B. A Late Pleistocene human genome from Southwest China. Curr Biol 2022; 32:3095-3109.e5. [PMID: 35839766 DOI: 10.1016/j.cub.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China.
| | - Chunmei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyu Yang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiahui Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhui Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wu
- Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; School of History, Wuhan University, Wuhan 430072, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Shiwu Ma
- Mengzi Institute of Cultural Relics, Mengzi, Yunnan Province 661100, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
38
|
Rowe TB, Stafford TW, Fisher DC, Enghild JJ, Quigg JM, Ketcham RA, Sagebiel JC, Hanna R, Colbert MW. Human Occupation of the North American Colorado Plateau ∼37,000 Years Ago. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.903795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calibrating human population dispersals across Earth’s surface is fundamental to assessing rates and timing of anthropogenic impacts and distinguishing ecological phenomena influenced by humans from those that were not. Here, we describe the Hartley mammoth locality, which dates to 38,900–36,250 cal BP by AMS 14C analysis of hydroxyproline from bone collagen. We accept the standard view that elaborate stone technology of the Eurasian Upper Paleolithic was introduced into the Americas by arrival of the Native American clade ∼16,000 cal BP. It follows that if older cultural sites exist in the Americas, they might only be diagnosed using nuanced taphonomic approaches. We employed computed tomography (CT and μCT) and other state-of-the-art methods that had not previously been applied to investigating ancient American sites. This revealed multiple lines of taphonomic evidence suggesting that two mammoths were butchered using expedient lithic and bone technology, along with evidence diagnostic of controlled (domestic) fire. That this may be an ancient cultural site is corroborated by independent genetic evidence of two founding populations for humans in the Americas, which has already raised the possibility of a dispersal into the Americas by people of East Asian ancestry that preceded the Native American clade by millennia. The Hartley mammoth locality thus provides a new deep point of chronologic reference for occupation of the Americas and the attainment by humans of a near-global distribution.
Collapse
|
39
|
Huang X, Xia ZY, Bin X, He G, Guo J, Adnan A, Yin L, Huang Y, Zhao J, Yang Y, Ma F, Li Y, Hu R, Yang T, Wei LH, Wang CC. Genomic Insights Into the Demographic History of the Southern Chinese. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.853391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern China is the birthplace of rice-cultivating agriculture and different language families and has also witnessed various human migrations that facilitated cultural diffusions. The fine-scale demographic history in situ that forms present-day local populations, however, remains unclear. To comprehensively cover the genetic diversity in East and Southeast Asia, we generated genome-wide SNP data from 211 present-day Southern Chinese and co-analyzed them with ∼1,200 ancient and modern genomes. In Southern China, language classification is significantly associated with genetic variation but with a different extent of predictability, and there is strong evidence for recent shared genetic history particularly in Hmong–Mien and Austronesian speakers. A geography-related genetic sub-structure that represents the major genetic variation in Southern East Asians is established pre-Holocene and its extremes are represented by Neolithic Fujianese and First Farmers in Mainland Southeast Asia. This sub-structure is largely reduced by admixture in ancient Southern Chinese since > ∼2,000 BP, which forms a “Southern Chinese Cluster” with a high level of genetic homogeneity. Further admixture characterizes the demographic history of the majority of Hmong–Mien speakers and some Kra-Dai speakers in Southwest China happened ∼1,500–1,000 BP, coeval to the reigns of local chiefdoms. In Yellow River Basin, we identify a connection of local populations to genetic sub-structure in Southern China with geographical correspondence appearing > ∼9,000 BP, while the gene flow likely closely related to “Southern Chinese Cluster” since the Longshan period (∼5,000–4,000 BP) forms ancestry profile of Han Chinese Cline.
Collapse
|
40
|
Ancient genomes from the last three millennia support multiple human dispersals into Wallacea. Nat Ecol Evol 2022; 6:1024-1034. [PMID: 35681000 PMCID: PMC9262713 DOI: 10.1038/s41559-022-01775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022]
Abstract
Previous research indicates that human genetic diversity in Wallacea-islands in present-day Eastern Indonesia and Timor-Leste that were never part of the Sunda or Sahul continental shelves-has been shaped by complex interactions between migrating Austronesian farmers and indigenous hunter-gatherer communities. Yet, inferences based on present-day groups proved insufficient to disentangle this region's demographic movements and admixture timings. Here, we investigate the spatio-temporal patterns of variation in Wallacea based on genome-wide data from 16 ancient individuals (2600-250 years BP) from the North Moluccas, Sulawesi and East Nusa Tenggara. While ancestry in the northern islands primarily reflects contact between Austronesian- and Papuan-related groups, ancestry in the southern islands reveals additional contributions from Mainland Southeast Asia that seem to predate the arrival of Austronesians. Admixture time estimates further support multiple and/or continuous admixture involving Papuan- and Asian-related groups throughout Wallacea. Our results clarify previously debated times of admixture and suggest that the Neolithic dispersals into Island Southeast Asia are associated with the spread of multiple genetic ancestries.
Collapse
|
41
|
Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Zhu XW, Zhao PP, Xia JW, Guan PL, Qian Y, Tao JG, Xu L, Tian G, Wang PY, Xie SY, Qiu MC, Liu KQ, Tang BS, Zheng HF. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun 2022; 13:2939. [PMID: 35618720 PMCID: PMC9135724 DOI: 10.1038/s41467-022-30526-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
Collapse
Affiliation(s)
- Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng-Yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Vallini L, Marciani G, Aneli S, Bortolini E, Benazzi S, Pievani T, Pagani L. Genetics and Material Culture Support Repeated Expansions into Paleolithic Eurasia from a Population Hub Out of Africa. Genome Biol Evol 2022; 14:evac045. [PMID: 35445261 PMCID: PMC9021735 DOI: 10.1093/gbe/evac045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
The population dynamics that followed the Out of Africa (OoA) expansion and the whereabouts of the early migrants before the differentiation that ultimately led to the formation of Oceanian, West and East Eurasian macropopulations have long been debated. Shedding light on these events may, in turn, provide clues to better understand the cultural evolution in Eurasia between 50 and 35 ka. Here, we analyze Eurasian Paleolithic DNA evidence to provide a comprehensive population model and validate it in light of available material culture. Leveraging on our integrated approach we propose the existence of a Eurasian population Hub, where Homo sapiens lived between the OoA and the broader colonization of Eurasia, which was characterized by multiple events of expansion and local extinction. A major population wave out of Hub, of which Ust'Ishim, Bacho Kiro, and Tianyuan are unadmixed representatives, is broadly associated with Initial Upper Paleolithic lithics and populated West and East Eurasia before or around 45 ka, before getting largely extinct in Europe. In this light, we suggest a parsimonious placement of Oase1 as an individual related to Bacho Kiro who experienced additional Neanderthal introgression. Another expansion, started before 38 ka, is broadly associated with Upper Paleolithic industries and repopulated Europe with sporadic admixtures with the previous wave (GoyetQ116-1) and more systematic ones, whereas moving through Siberia (Yana, Mal'ta). Before these events, we also confirm Zlatý Kůň as the most basal human lineage sequenced to date OoA, potentially representing an earlier wave of expansion out of the Hub.
Collapse
Affiliation(s)
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, Italy
| | - Serena Aneli
- Department of Biology, University of Padova, Italy
- Department of Public Health Sciences and Pediatrics, University of Turin, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Luca Pagani
- Department of Biology, University of Padova, Italy
- Institute of Genomics, University of Tartu, Estonia
| |
Collapse
|
43
|
Kumar V, Wang W, Zhang J, Wang Y, Ruan Q, Yu J, Wu X, Hu X, Wu X, Guo W, Wang B, Niyazi A, Lv E, Tang Z, Cao P, Liu F, Dai Q, Yang R, Feng X, Ping W, Zhang L, Zhang M, Hou W, Liu Y, Bennett EA, Fu Q. Bronze and Iron Age population movements underlie Xinjiang population history. Science 2022; 376:62-69. [PMID: 35357918 DOI: 10.1126/science.abk1534] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Xinjiang region in northwest China is a historically important geographical passage between East and West Eurasia. By sequencing 201 ancient genomes from 39 archaeological sites, we clarify the complex demographic history of this region. Bronze Age Xinjiang populations are characterized by four major ancestries related to Early Bronze Age cultures from the central and eastern Steppe, Central Asian, and Tarim Basin regions. Admixtures between Middle and Late Bronze Age Steppe cultures continued during the Late Bronze and Iron Ages, along with an inflow of East and Central Asian ancestry. Historical era populations show similar admixed and diverse ancestries as those of present-day Xinjiang populations. These results document the influence that East and West Eurasian populations have had over time in the different regions of Xinjiang.
Collapse
Affiliation(s)
- Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,National Centre for Archaeology, Beijing 100013, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Enguo Lv
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100020, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, Patterson N, Reich D, Kelleher J, McVean G. A unified genealogy of modern and ancient genomes. Science 2022; 375:eabi8264. [PMID: 35201891 PMCID: PMC10027547 DOI: 10.1126/science.abi8264] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The sequencing of modern and ancient genomes from around the world has revolutionized our understanding of human history and evolution. However, the problem of how best to characterize ancestral relationships from the totality of human genomic variation remains unsolved. Here, we address this challenge with nonparametric methods that enable us to infer a unified genealogy of modern and ancient humans. This compact representation of multiple datasets explores the challenges of missing and erroneous data and uses ancient samples to constrain and date relationships. We demonstrate the power of the method to recover relationships between individuals and populations as well as to identify descendants of ancient samples. Finally, we introduce a simple nonparametric estimator of the geographical location of ancestors that recapitulates key events in human history.
Collapse
Affiliation(s)
- Anthony Wilder Wohns
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ali Akbari
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Swapan Mallick
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; 1090 Vienna, Austria
| | - Nick Patterson
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - David Reich
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
- Corresponding author.
| |
Collapse
|
45
|
The genomic history of southwestern Chinese populations demonstrated massive population migration and admixture among proto-Hmong-Mien speakers and incoming migrants. Mol Genet Genomics 2022; 297:241-262. [PMID: 35031862 DOI: 10.1007/s00438-021-01837-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Southwest China was the crossroad for the initial settler people of East Asia, which shows the highest diversity in languages and genetics. This region played a significant role in the formation of the genetic makeup of the proto-Hmong-Mien-speaking people and in the north-to-south human expansion during the Neolithic-to-historic transformation. Their genetic history covering migration events and the admixture processes still needs to be further explored. Therefore, in the current study, we have generated genome-wide data from three genomic aspects covering autosomal, mitochondrial and Y-chromosomal regions in 260 Hmong-Mien, Tibeto-Burman, and Sinitic people from 29 different southwestern Chinese groups, and further analyzed them with 2676 published modern and ancient Eurasian genomes. Here, we have noticed a new southwestern East Asian genetic cline composed of the Hmong-Mien-specific ancestry enriched in modern Hmong and Pathen. This newly identified southern inland East Asian lineage contributed to a great extent of the gene pool in the modern southern East Asians. We also have observed genetic substructure among Hmong-Mien-speaking populations. The southern Hmong-Mien-speaking people showed more genetic affinity with modern Tai-Kadai/Austroasiatic people, while the northern Hmong-Mien speakers expressed a closer genetic connection with the Neolithic-to-modern northern East Asians. Moreover, southwestern Sinitic populations had a strong genomic affinity with the adjacent Hmong-Mien-speaking populations and the lowlander Tibeto-Burman-speaking populations, which suggested the large-scale genetic admixture occurred between them. Allele-sharing-based qpAdm/qpGraph results further confirmed that all included southwestern Chinese populations could be modeled as a mixed result of the major ancestry component from the northern millet farmers in the Yellow River basin and the minor ancestry component from the southern rice farmers in the Yangtze River basin. Usually, this newly identified Hmong-Mien-associated southern East Asian ancestry could improve our understanding of the full-scale genetic landscape of the evolutionary and admixture history of southwestern East Asians. Further ancient genomic studies from southeastern China are required to shed deeper light on our established phylogeny context.
Collapse
|
46
|
d'Errico F, Pitarch Martí A, Wei Y, Gao X, Vanhaeren M, Doyon L. Zhoukoudian Upper Cave personal ornaments and ochre: Rediscovery and reevaluation. J Hum Evol 2021; 161:103088. [PMID: 34837740 DOI: 10.1016/j.jhevol.2021.103088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
Personal ornaments have become a key cultural proxy to investigate cognitive evolution, modern human dispersal, and population dynamics. Here, we reassess personal ornaments found at Zhoukoudian Upper Cave and compare them with those from other Late Paleolithic Northern Chinese sites. We reappraise the information provided by Pei Wen Chung on Upper Cave personal ornaments lost during World War II and analyze casts of 17 of them, along with two unpublished objects displayed at the Zhoukoudian Site Museum and three original perforated teeth rediscovered at the Zhoukoudian Site Museum. We apply archeozoological, technological and use-wear analyses to document variation in ornamental practices and their change throughout the site stratigraphy. Badger, fox, red deer, sika deer, marten, and tiger teeth as well as carp bone, bird bone, Anadara shell, limestone beads, and perforated pebble appear to have been the preferred objects used as ornaments by Upper Cave visitors. Multivariate analysis of technological data highlights a correspondence between cultural layers and perforation techniques, with radial incising being typical of layer L2 and bidirectional incising of L4. The three rediscovered badger canines display features suggesting they were sewed on clothing rather than suspended from necklaces or bracelets. Elemental scanning electron microscopy coupled with energy dispersive X-ray spectromety and mineralogical (μ-Raman) analyses of red residues adhering to the rediscovered teeth indicate these objects were originally coated with ochre and identify variations that match differences in technology. The two ornaments exhibited at the Zhoukoudian Site Museum are ancient teeth that were recently perforated and should be excluded from the Upper Cave assemblage. A seriation of Late Paleolithic ornaments found at Northern Chinese sites identifies a clear-cut difference in preferred ornament types between western and eastern sites, interpreted as reflecting two long-lasting traditions in garment symbolic codes.
Collapse
Affiliation(s)
- Francesco d'Errico
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway.
| | - Africa Pitarch Martí
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; Departament d'Arts I Conservació-Restauració, Facultat de Belles Arts, Universitat de Barcelona, Barcelona, Spain
| | - Yi Wei
- Centre for Excellence in Life and Paleoenvironment (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; Department of Scientific Research, Beijing Museum of Natural History, Beijing, China
| | - Xing Gao
- Centre for Excellence in Life and Paleoenvironment (CAS), Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Marian Vanhaeren
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France
| | - Luc Doyon
- CNRS UMR5199 PACEA, Université de Bordeaux, Pessac, CEDEX, France; Institute of Cultural Heritage, Shandong University, Qingdao, China
| |
Collapse
|
47
|
Chen T, Lin YX, Zha Y, Sun Y, Tian J, Yang Z, Lin SW, Yu F, Chen ZS, Kuang BH, Lei JJ, Nie YJ, Xu Y, Tian DB, Li YZ, Yang B, Xu Q, Yang L, Zhong N, Zheng M, Li Y, Zhao J, Zhang XY, Feng L. A Low-Producing Haplotype of Interleukin-6 Disrupting CTCF Binding Is Protective against Severe COVID-19. mBio 2021; 12:e0137221. [PMID: 34634929 PMCID: PMC8510538 DOI: 10.1128/mbio.01372-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Interleukin6 (IL-6) is a key driver of hyperinflammation in COVID-19, and its level strongly correlates with disease progression. To investigate whether variability in COVID-19 severity partially results from differential IL-6 expression, functional single-nucleotide polymorphisms (SNPs) of IL-6 were determined in Chinese COVID-19 patients with mild or severe illness. An Asian-common IL-6 haplotype defined by promoter SNP rs1800796 and intronic SNPs rs1524107 and rs2066992 correlated with COVID-19 severity. Homozygote carriers of C-T-T variant haplotype were at lower risk of developing severe symptoms (odds ratio, 0.256; 95% confidence interval, 0.088 to 0.739; P = 0.007). This protective haplotype was associated with lower levels of IL-6 and its antisense long noncoding RNA IL-6-AS1 by cis-expression quantitative trait loci analysis. The differences in expression resulted from the disturbance of stimulus-dependent bidirectional transcription of the IL-6/IL-6-AS1 locus by the polymorphisms. The protective rs2066992-T allele disrupted a conserved CTCF-binding locus at the enhancer elements of IL-6-AS1, which transcribed antisense to IL-6 and induces IL-6 expression in inflammatory responses. As a result, carriers of the protective allele had significantly reduced IL-6-AS1 expression and attenuated IL-6 induction in response to acute inflammatory stimuli and viral infection. Intriguingly, this low-producing variant that is endemic to present-day Asia was found in early humans who had inhabited mainland Asia since ∼40,000 years ago but not in other ancient humans, such as Neanderthals and Denisovans. The present study suggests that an individual's IL-6 genotype underlies COVID-19 outcome and may be used to guide IL-6 blockade therapy in Asian patients. IMPORTANCE Overproduction of cytokine interleukin-6 (IL-6) is a hallmark of severe COVID-19 and is believed to play a critical role in exacerbating the excessive inflammatory response. Polymorphisms in IL-6 account for the variability of IL-6 expression and disparities in infectious diseases, but its contribution to the clinical presentation of COVID-19 has not been reported. Here, we investigated IL-6 polymorphisms in severe and mild cases of COVID-19 in a Chinese population. The variant haplotype C-T-T, represented by rs1800796, rs1524107, and rs2066992 at the IL-6 locus, was reduced in patients with severe illness; in contrast, carriers of the wild-type haplotype G-C-G had higher risk of severe illness. Mechanistically, the protective variant haplotype lost CTCF binding at the IL-6 intron and responded poorly to inflammatory stimuli, which may protect the carriers from hyperinflammation in response to acute SARS-CoV-2 infection. These results point out the possibility that IL-6 genotypes underlie the differential viral virulence during the outbreak of COVID-19. The risk loci we identified may serve as a genetic marker to screen high-risk COVID-19 patients.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Xin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Zha
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinxiu Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhiying Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shan-Wen Lin
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People’s Hospital of Yangjiang, Yangjiang, Guangdong, China
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Zi-Sheng Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Bo-Hua Kuang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Ju Lei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-jie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dong-Bo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Ying-Zi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Qiang Xu
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Li Yang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meizhen Zheng
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang-Yan Zhang
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People’s Hospital, Guizhou University, Guizhou, China
| | - Lin Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
48
|
Abstract
We review the state of paleoanthropology research in Asia. We survey the fossil record, articulate the current understanding, and delineate the points of contention. Although Asia received less attention than Europe and Africa did in the second half of the twentieth century, an increase in reliably dated fossil materials and the advances in genetics have fueled new research. The long and complex evolutionary history of humans in Asia throughout the Pleistocene can be explained by a balance of mechanisms, between gene flow among different populations and continuity of regional ancestry. This pattern is reflected in fossil morphology and paleogenomics. Critical understanding of the sociocultural forces that shaped the history of hominin fossil research in Asia is important in charting the way forward.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Department of Anthropology, University of California, Riverside, California 92521, USA
| | - Autumn Hudock
- Department of Anthropology, University of North Carolina, Charlotte, North Carolina 28223, USA
- Current affiliation: Department of Anthropology, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
49
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
50
|
Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Stokes CA, Onbe S, Hatakeyama S, Machida K, Kasai K, Tomioka N, Matsumoto A, Ito M, Kojima Y, Bradley DG, Gakuhari T, Nakagome S. Ancient genomics reveals tripartite origins of Japanese populations. SCIENCE ADVANCES 2021; 7:eabh2419. [PMID: 34533991 PMCID: PMC8448447 DOI: 10.1126/sciadv.abh2419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Prehistoric Japan underwent rapid transformations in the past 3000 years, first from foraging to wet rice farming and then to state formation. A long-standing hypothesis posits that mainland Japanese populations derive dual ancestry from indigenous Jomon hunter-gatherer-fishers and succeeding Yayoi farmers. However, the genomic impact of agricultural migration and subsequent sociocultural changes remains unclear. We report 12 ancient Japanese genomes from pre- and postfarming periods. Our analysis finds that the Jomon maintained a small effective population size of ~1000 over several millennia, with a deep divergence from continental populations dated to 20,000 to 15,000 years ago, a period that saw the insularization of Japan through rising sea levels. Rice cultivation was introduced by people with Northeast Asian ancestry. Unexpectedly, we identify a later influx of East Asian ancestry during the imperial Kofun period. These three ancestral components continue to characterize present-day populations, supporting a tripartite model of Japanese genomic origins.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Japan
| | | | - Shin Onbe
- Kumakogen Board of Education, Kumakogen, Japan
| | | | - Kenichi Machida
- Toyama Prefectural Research Office for Archaeological Heritage, Toyama, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | | | | | - Masafumi Ito
- Foundation of Ishikawa Archaeological Artifacts Center, Kanazawa, Japan
| | - Yoshitaka Kojima
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Takashi Gakuhari
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|