1
|
Forrester-Fronstin Z, Barrett AR, Mondschein AS, Johnson JM, Cordes CN, Lawton-Stone TS, Schatz KC, Paul MJ. Exogenous estradiol impacts anxiety-like behavior of juvenile male and female Siberian hamsters in a dose-dependent manner. Horm Behav 2025; 167:105674. [PMID: 39731972 DOI: 10.1016/j.yhbeh.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Anxiety is among the most prevalent mental health issues in children. While it is well established that gonadal steroids influence anxiety-like behavior in adulthood, a potential role in prepubertal juveniles has been overlooked because it is commonly thought that the gonads are quiescent during the juvenile period. However, the juvenile gonads secrete measurable amounts of steroids, and we have recently found that prepubertal ovariectomy decreases anxiety-like behavior of juvenile Siberian hamsters in the light/dark box test. The present study tested whether an injection of estradiol benzoate (1 μg or 10 μg, SC) to gonadectomized hamsters (Exp. 1) or chronic suppression of endogenous estradiol with the aromatase inhibitor, letrozole (2 mg/kg, PO), to intact hamsters (Exp. 2) affects anxiety-like behavior in the light/dark box test during the juvenile phase. Estradiol benzoate altered anxiety-like behavior of both male and female juveniles in a dose-dependent manner, with anxiolytic actions at the low dose, but no effect at the high dose. Similar effects were seen for activity measures, albeit only in females. Letrozole suppressed uterine weights demonstrating an active role for endogenous estradiol during the juvenile phase. Anxiety-like behavior, however, was impacted by the administration procedure itself, preventing conclusions on letrozole's actions on behavior. While the role for endogenous estradiol in juvenile anxiety-like behavior remains unresolved, the present findings indicate that the neural centers regulating affective behavior are responsive to exogenous estradiol prior to puberty. These findings highlight the potential impact of exogenous estrogen exposures on juvenile affective behavior.
Collapse
Affiliation(s)
| | - Abigal R Barrett
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA
| | | | - Jordan M Johnson
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Chloe N Cordes
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA
| | | | - Kelcie C Schatz
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Matthew J Paul
- Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, NY, USA
| |
Collapse
|
2
|
Baker AE, Galván A, Fuligni AJ. The connecting brain in context: How adolescent plasticity supports learning and development. Dev Cogn Neurosci 2025; 71:101486. [PMID: 39631105 PMCID: PMC11653146 DOI: 10.1016/j.dcn.2024.101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Puberty initiates significant neurobiological changes that amplify adolescents' responsiveness to their environment, facilitating neural adaptation through processes like synaptic pruning, myelination, and neuronal reorganization. This heightened neuroplasticity, combined with their burgeoning social curiosity and appetite for risk, propels adolescents to explore diverse new environments and forge social bonds. Such exploration can accelerate experiential learning and the formation of social networks as adolescents prepare for adult independence. This review examines the complex interplay between adolescent neuroplasticity, environmental influences, and learning processes, synthesizing findings from recent studies that illustrate how factors such as social interactions, school environments, and neighborhood contexts influence both the transient activation and enduring organization of the developing brain. We advocate for incorporating social interaction into adolescent-tailored interventions, leveraging their social plasticity to optimize learning and development during this critical phase. Going forward, we discuss the importance of longitudinal studies that employ multimodal approaches to characterize the dynamic interactions between development and environment, highlighting recent advancements in quantifying environmental impacts in studies of developmental neuroscience. Ultimately, this paper provides an updated synopsis of adolescent neuroplasticity and the environment, underscoring the potential for environmental enrichment programs to support healthy brain development and resilience at this critical development stage.
Collapse
|
3
|
Hoops D, Kyne R, Salameh S, MacGowan D, Avramescu RG, Ewing E, He AT, Orsini T, Durand A, Popescu C, Zhao JM, Shatz K, Li L, Carroll Q, Liu G, Paul MJ, Flores C. The scheduling of adolescence with Netrin-1 and UNC5C. eLife 2024; 12:RP88261. [PMID: 39056276 PMCID: PMC11281785 DOI: 10.7554/elife.88261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.
Collapse
Affiliation(s)
- Daniel Hoops
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Robert Kyne
- Neuroscience Program, University at BuffaloSUNYUnited States
| | - Samer Salameh
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Del MacGowan
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Radu Gabriel Avramescu
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
| | - Elise Ewing
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Alina Tao He
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Taylor Orsini
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Anais Durand
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Christina Popescu
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Janet Mengyi Zhao
- Douglas Mental Health University InstituteMontréalCanada
- Integrated Program in Neuroscience, McGill UniversityMontrealCanada
| | - Kelcie Shatz
- Department of Psychology, University at BuffaloSUNYUnited States
| | - LiPing Li
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Quinn Carroll
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Guofa Liu
- Department of Biological Sciences, University of ToledoToledoUnited States
| | - Matthew J Paul
- Neuroscience Program, University at BuffaloSUNYUnited States
- Department of Psychology, University at BuffaloSUNYUnited States
| | - Cecilia Flores
- Department of Psychiatry, McGill UniversityMontréalCanada
- Douglas Mental Health University InstituteMontréalCanada
- Department of Neurology and Neurosurgery, McGill UniversityMontréalCanada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill UniversityMontréalCanada
| |
Collapse
|
4
|
Marshall CJ, Blake A, Stewart C, Liddle TA, Denizli I, Cuthill F, Evans NP, Stevenson TJ. Prolactin Mediates Long-Term, Seasonal Rheostatic Regulation of Body Mass in Female Mammals. Endocrinology 2024; 165:bqae020. [PMID: 38417844 PMCID: PMC10904104 DOI: 10.1210/endocr/bqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
A series of well-described anabolic and catabolic neuropeptides are known to provide short-term, homeostatic control of energy balance. The mechanisms that govern long-term, rheostatic control of regulated changes in energy balance are less well characterized. Using the robust and repeatable seasonal changes in body mass observed in Siberian hamsters, this report examined the role of prolactin in providing long-term rheostatic control of body mass and photoinduced changes in organ mass (ie, kidney, brown adipose tissue, uterine, and spleen). Endogenous circannual interval timing was observed after 4 months in a short photoperiod, indicated by a significant increase in body mass and prolactin mRNA expression in the pituitary gland. There was an inverse relationship between body mass and the expression of somatostatin (Sst) and cocaine- and amphetamine-regulated transcript (Cart). Pharmacological inhibition of prolactin release (via bromocriptine injection), reduced body mass of animals maintained in long photoperiods to winter-short photoperiod levels and was associated with a significant increase in hypothalamic Cart expression. Administration of ovine prolactin significantly increased body mass 24 hours after a single injection and the effect persisted after 3 consecutive daily injections. The data indicate that prolactin has pleiotropic effects on homeostatic sensors of energy balance (ie, Cart) and physiological effectors (ie, kidney, BAT). We propose that prolactin release from the pituitary gland acts as an output signal of the hypothalamic rheostat controller to regulate adaptive changes in body mass.
Collapse
Affiliation(s)
- Christopher J Marshall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Alexandra Blake
- Institute of Molecular Biology, University of Mainz, Mainz 55122, Germany
| | - Calum Stewart
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - T Adam Liddle
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Irem Denizli
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Fallon Cuthill
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Neil P Evans
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Tyler J Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
5
|
Within versus between group designs, and not timing of onset of puberty, influence sex and age differences in intake of palatable food in rats. Physiol Behav 2022; 257:113997. [DOI: 10.1016/j.physbeh.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
6
|
Cusick JA, Wellman CL, Demas GE. Maternal stress and the maternal microbiome have sex-specific effects on offspring development and aggressive behavior in Siberian hamsters (Phodopus sungorus). Horm Behav 2022; 141:105146. [PMID: 35276524 DOI: 10.1016/j.yhbeh.2022.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
The gut microbiome, a community of commensal, symbiotic and pathogenic bacteria, fungi, and viruses, interacts with many physiological systems to affect behavior. Prenatal experiences, including exposure to maternal stress and different maternal microbiomes, are important sources of organismal variation that can affect offspring development. These physiological systems do not act in isolation and can have long-term effects on offspring development and behavior. Here we investigated the interactive effects of maternal stress and manipulations of the maternal microbiome on offspring development and social behavior using Siberian hamsters, Phodopus sungorus. We exposed pregnant females to either a social stressor, antibiotics, both the social stressor and antibiotics, or no treatment (i.e., control) over the duration of their pregnancy and quantified male and female offspring growth, gut microbiome composition and diversity, stress-induced cortisol concentrations, and social behavior. Maternal antibiotic exposure altered the gut microbial communities of male and female offspring. Maternal treatment also had sex-specific effects on aspects of offspring development and aggressive behavior. Female offspring produced by stressed mothers were more aggressive than other female offspring. Female, but not male, offspring produced by mothers exposed to the combined treatment displayed low levels of aggression, suggesting that alteration of the maternal microbiome attenuated the effects of prenatal stress in a sex-specific manner. Maternal treatment did not affect non-aggressive behavior in offspring. Collectively, our study offers insight into how maternal systems can interact to affect offspring in sex-specific ways and highlights the important role of the maternal microbiome in mediating offspring development and behavior.
Collapse
Affiliation(s)
- Jessica A Cusick
- Department of Biology, Utah Valley University, United States of America; Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America.
| | - Cara L Wellman
- Animal Behavior Program, Indiana University, United States of America; Department of Psychological and Brain Sciences, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| | - Gregory E Demas
- Department of Biology, Indiana University, United States of America; Animal Behavior Program, Indiana University, United States of America; Program in Neuroscience, Indiana University, United States of America
| |
Collapse
|
7
|
Making sense of strengths and weaknesses observed in adolescent lab rodents. Curr Opin Psychol 2022; 45:101297. [DOI: 10.1016/j.copsyc.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
|
8
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Hodgson AR, Richmond C, Tello J, Brown GR. Suppression of ovarian hormones in adolescent rats has no effect on anxiety-like behaviour or c-fos activation in the amygdala. J Neuroendocrinol 2020; 32:e12897. [PMID: 32935383 DOI: 10.1111/jne.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/28/2022]
Abstract
In humans, sex differences in mood disorders emerge during adolescence, with prevalence rates being consistently higher in females than males. It has been hypothesised that exposure to endogenous ovarian hormones during adolescence enhances the susceptibility of females to mood disorders from this stage of life onwards. However, experimental evidence in favour of this hypothesis is lacking. In the present study, we examined the long-term effects of suppressing adolescent gonadal hormone levels in a group of female Lister-hooded rats via administration of a gonadotrophin-releasing hormone antagonist (Antide; administered on postnatal day [PND] 28 and 42) compared to control females and males (n = 14 per group). We predicted that, in adulthood, Antide-treated female rats would exhibit more male-like behaviour than control females in novel environments (elevated-plus maze, open field and light-dark box), in response to novel objects and novel social partners, and in an acoustic startle task. Progesterone and luteinising hormone assays (which were conducted on blood samples collected on PND 55/56 and 69/70) confirmed that the hypothalamic-pituitary-gonadal axis was temporarily suppressed by Antide treatment. In addition, Antide-treated females were found to exhibit a modest pubertal delay, as measured by vaginal opening, which was comparable in length to the pubertal delay that has been induced by adolescent exposure to alcohol or stress in previous studies of female rats. However, Antide-treated females did not substantially differ from control females on any of the behavioural tests, despite the evidence for predicted sex differences in some measures. Following the acoustic startle response task, all subjects were culled and perfused, and c-Fos staining was conducted in the medial and basolateral amygdala, with the results showing no significant differences in cell counts between the groups. These findings suggest that ovarian hormone exposure during adolescence does not have long-term effects on anxiety-related responses in female rats.
Collapse
Affiliation(s)
- Amy R Hodgson
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Claire Richmond
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| | - Javier Tello
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Gillian R Brown
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
11
|
Wright EC, Hostinar CE, Trainor BC. Anxious to see you: Neuroendocrine mechanisms of social vigilance and anxiety during adolescence. Eur J Neurosci 2020; 52:2516-2529. [PMID: 31782841 PMCID: PMC7255921 DOI: 10.1111/ejn.14628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022]
Abstract
Social vigilance is a behavioral strategy commonly used in adverse or changing social environments. In animals, a combination of avoidance and vigilance allows an individual to evade potentially dangerous confrontations while monitoring the social environment to identify favorable changes. However, prolonged use of this behavioral strategy in humans is associated with increased risk of anxiety disorders, a major burden for human health. Elucidating the mechanisms of social vigilance in animals could provide important clues for new treatment strategies for social anxiety. Importantly, during adolescence the prevalence of social anxiety increases significantly. We hypothesize that many of the actions typically characterized as anxiety behaviors begin to emerge during this time as strategies for navigating more complex social structures. Here, we consider how the social environment and the pubertal transition shape neural circuits that modulate social vigilance, focusing on the bed nucleus of the stria terminalis and prefrontal cortex. The emergence of gonadal hormone secretion during adolescence has important effects on the function and structure of these circuits, and may play a role in the emergence of a notable sex difference in anxiety rates across adolescence. However, the significance of these changes in the context of anxiety is still uncertain, as not enough studies are sufficiently powered to evaluate sex as a biological variable. We conclude that greater integration between human and animal models will aid the development of more effective strategies for treating social anxiety.
Collapse
Affiliation(s)
- Emily C Wright
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Delevich K, Hall CD, Piekarski D, Zhang Y, Wilbrecht L. Prepubertal gonadectomy reveals sex differences in approach-avoidance behavior in adult mice. Horm Behav 2020; 118:104641. [PMID: 31778717 PMCID: PMC12058001 DOI: 10.1016/j.yhbeh.2019.104641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022]
Abstract
Adolescence is a developmental period that is associated with physical, cognitive, and affective maturation and a time when sex biases in multiple psychiatric diseases emerge. While puberty onset marks the initiation of adolescence, it is unclear whether the pubertal rise in gonadal hormones generates sex differences in approach-avoidance behaviors that may impact psychiatric vulnerability. To examine the influence of pubertal development on adult behavior, we removed the gonads or performed sham surgery in male and female mice just prior to puberty onset and assessed performance in an odor-guided foraging task and anxiety-related behaviors in adulthood. We observed no significant sex differences in foraging or anxiety-related behaviors between intact adult male and female mice but found significant differences between adult male and female mice that had been gonadectomized (GDX) prior to puberty onset. GDX males failed to acquire the odor-guided foraging task, showed reduced locomotion, and exhibited increased anxiety-like behavior, while GDX females showed the opposite pattern of behavior. These data suggest that puberty may minimize rather than drive differences in approach-avoidance phenotypes in male and female mice.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Hall
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - David Piekarski
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Yuting Zhang
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Abstract
A closer look at behavioral development in seasonally breeding rodents reveals more complex relations between puberty and social behavior than previously recognized. Pubertal hormones determine gross amounts of behavior, but play recedes and aggression emerges independently of puberty at predetermined chronological ages.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology and Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.
| | - Irving Zucker
- Departments of Psychology and Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
14
|
Kyne RF, Barrett AR, Brown LM, Paul MJ. Prepubertal ovarian inhibition of Light/Dark Box exploration and novel object investigation in juvenile Siberian hamsters. Horm Behav 2019; 115:104559. [PMID: 31310759 DOI: 10.1016/j.yhbeh.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
The overwhelming majority of research on the role of gonadal hormones in behavioral development has focused on perinatal, pubertal, or adult life stages. The juvenile period has been overlooked because it is thought to be a time of gonadal quiescence. In the present study, we tested whether prepubertal gonadectomy impacts the behavior of male and female juvenile hamsters on the Light/Dark Box, Novel Object, and Social Approach tests (Experiment 1) and compared these findings to those obtained after adult gonadectomy (Experiment 2). Prepubertal ovariectomy increased exploration (i.e. time spent in the light zone of the Light/Dark Box) and novel object investigation of juveniles indicating an inhibitory role for the juvenile ovary; social approach was unaffected. In contrast, adult ovariectomy and castration (both prepubertal and adult) had no effect on any behavioral measure. Experiment 3 tested whether rearing hamsters in a short day length (SD), which delays puberty in this species, extends the interval of juvenile ovarian inhibition on exploration and novelty seeking. We also tested whether provision of estradiol reverses the effects of prepubertal ovariectomy. Hormonal manipulations and behavioral tests of Experiment 3 were conducted at ages when long day-reared hamsters are adult (as in Experiment 2), but SD-reared hamsters remain reproductively immature. Ovariectomy again increased exploration in the SD-reared juveniles despite the older age of surgery and testing. Estradiol treatment had no effect. These findings reveal a novel role for the juvenile ovary in exploration and novelty seeking that is unlikely to be mediated exclusively by estradiol.
Collapse
Affiliation(s)
- R F Kyne
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo SUNY, Buffalo, NY, USA.
| | - A R Barrett
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - L M Brown
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA.
| | - M J Paul
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo SUNY, Buffalo, NY, USA.
| |
Collapse
|
15
|
Lawson H, Vuong E, Miller RM, Kiontke K, Fitch DHA, Portman DS. The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. eLife 2019; 8:e43660. [PMID: 31264582 PMCID: PMC6606027 DOI: 10.7554/elife.43660] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Sexual maturation must occur on a controlled developmental schedule. In mammals, Makorin3 (MKRN3) and the miRNA regulators LIN28A/B are key regulators of this process, but how they act is unclear. In C. elegans, sexual maturation of the nervous system includes the functional remodeling of postmitotic neurons and the onset of adult-specific behaviors. Here, we find that the lin-28-let-7 axis (the 'heterochronic pathway') determines the timing of these events. Upstream of lin-28, the Makorin lep-2 and the lncRNA lep-5 regulate maturation cell-autonomously, indicating that distributed clocks, not a central timer, coordinate sexual differentiation of the C. elegans nervous system. Overexpression of human MKRN3 delays aspects of C. elegans sexual maturation, suggesting the conservation of Makorin function. These studies reveal roles for a Makorin and a lncRNA in timing of sexual differentiation; moreover, they demonstrate deep conservation of the lin-28-let-7 system in controlling the functional maturation of the nervous system.
Collapse
Affiliation(s)
- Hannah Lawson
- Department of BiologyUniversity of RochesterRochesterUnited States
| | - Edward Vuong
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
| | - Renee M Miller
- Department of Brain and Cognitive SciencesUniversity of RochesterRochesterUnited States
| | - Karin Kiontke
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - David HA Fitch
- Center for Developmental Genetics, Department of BiologyNew York UniversityNew YorkUnited States
| | - Douglas S Portman
- Department of BiologyUniversity of RochesterRochesterUnited States
- Department of Biomedical GeneticsUniversity of RochesterRochesterUnited States
- Department of NeuroscienceUniversity of RochesterRochesterUnited States
- DelMonte Institute for NeuroscienceUniversity of RochesterRochesterUnited States
| |
Collapse
|