1
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2025; 60:1251-1270.e3. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Ahmad A, Bogoch Y, Shvaizer G, Guler N, Levy K, Elkouby YM. The piRNA protein Asz1 is essential for germ cell and gonad development in zebrafish and exhibits differential necessities in distinct types of germ granules. PLoS Genet 2025; 21:e1010868. [PMID: 39804923 PMCID: PMC11760641 DOI: 10.1371/journal.pgen.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood. Asz1 is a piRNA protein in Drosophila and mice. Zebrafish Asz1 localizes to both piRNA and Bb granules, with yet unknown functions. Here, we hypothesized that Asz1 functions in germ granules and germline development in zebrafish. We generated asz1 mutant fish to determine the roles of Asz1 in germ cell development. We show that Asz1 is dispensable for somatic development, but essential for germ cell and gonad development. asz1-/- fish developed exclusively as sterile males with severely underdeveloped testes that lacked germ cells. In asz1 mutant juvenile gonads, germ cells undergo extensive apoptosis, demonstrating that Asz1 is essential for germ cell survival. Mechanistically, we provide evidence to conclude that zygotic Asz1 is not required for primordial germ cell specification or migration to the gonad, but is essential during post-embryonic gonad development, likely by suppressing the expression of germline transposons. Increased transposon expression and mis-organized piRNA granules in asz1 mutants, argue that zebrafish Asz1 functions in the piRNA pathway. We generated asz1;tp53 fish to partially rescue ovarian development, revealing that Asz1 is also essential for oogenesis. We further showed that in contrast with piRNA granules, Asz1 is dispensable for Bb granule formation, as shown by normal Bb localization of Buc and dazl. By uncovering Asz1 as an essential regulator of germ cell survival and gonadogenesis in zebrafish, and determining its differential necessity in distinct germ granule types, our work advances our understanding of the developmental genetics of reproduction and fertility, as well as of germ granule biology.
Collapse
Affiliation(s)
- Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Noga Guler
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| |
Collapse
|
4
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ramat A, Haidar A, Garret C, Simonelig M. Spatial organization of translation and translational repression in two phases of germ granules. Nat Commun 2024; 15:8020. [PMID: 39271704 PMCID: PMC11399267 DOI: 10.1038/s41467-024-52346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Most RNA-protein condensates are composed of heterogeneous immiscible phases. However, how this multiphase organization contributes to their biological functions remains largely unexplored. Drosophila germ granules, a class of RNA-protein condensates, are the site of mRNA storage and translational activation. Here, using super-resolution microscopy and single-molecule imaging approaches, we show that germ granules have a biphasic organization and that translation occurs in the outer phase and at the surface of the granules. The localization, directionality, and compaction of mRNAs within the granule depend on their translation status, translated mRNAs being enriched in the outer phase with their 5'end oriented towards the surface. Translation is strongly reduced when germ granule biphasic organization is lost. These findings reveal the intimate links between the architecture of RNA-protein condensates and the organization of their different functions, highlighting the functional compartmentalization of these condensates.
Collapse
Affiliation(s)
- Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| | - Ali Haidar
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
6
|
Tarannum R, Mun G, Quddos F, Swanger SA, Steward O, Farris S. Dendritically localized RNAs are packaged as diversely composed ribonucleoprotein particles with heterogeneous copy number states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603387. [PMID: 39071419 PMCID: PMC11275876 DOI: 10.1101/2024.07.13.603387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Localization of mRNAs to dendrites is a fundamental mechanism by which neurons achieve spatiotemporal control of gene expression. Translationally repressed neuronal mRNA transport granules, also referred to as ribonucleoprotein particles (RNPs), have been shown to be trafficked as single or low copy number RNPs and as larger complexes with multiple copies and/or species of mRNAs. However, there is little evidence of either population in intact neuronal circuits. Using single molecule fluorescence in situ hybridization studies in the dendrites of adult rat and mouse hippocampus, we provide evidence that supports the existence of multi-transcript RNPs with the constituents varying in amounts for each RNA species. By competing-off fluorescently labeled probe with serial increases of unlabeled probe, we detected stepwise decreases in Arc RNP number and fluorescence intensity, suggesting Arc RNAs localize to dendrites in both low- and multiple-copy number RNPs. When probing for multiple mRNAs, we find that localized RNPs are heterogeneous in size and colocalization patterns that vary per RNA. Further, localized RNAs that are targeted by the same trans-acting element (FMRP) display greater levels of colocalization compared to an RNA not targeted by FMRP. Simultaneous visualization of a dozen FMRP-targeted mRNA species using highly multiplexed imaging demonstrates that dendritic RNAs are mostly trafficked as heteromeric cargoes of multiple types of RNAs (at least one or more RNAs). Moreover, the composition of these RNA cargoes, as assessed by colocalization, correlates with the abundance of the transcripts even after accounting for the expected differences in colocalization based on expression. Collectively, these results suggest that dendritic RNPs are packaged as heterogeneous co-assemblies of different mRNAs and that RNP contents may be driven, at least partially, by highly abundant dendritic RNAs; a model that favors efficiency over fine-tuned control for sustaining long-distance trafficking of thousands of messenger molecules.
Collapse
Affiliation(s)
- Renesa Tarannum
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Grace Mun
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
| | - Fatima Quddos
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Translational Biology, Medicine & Health Graduate Program, Virginia Tech, Blacksburg, Virginia
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | | | - Shannon Farris
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, Virginia
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
7
|
Chen R, Stainier W, Dufourt J, Lagha M, Lehmann R. Direct observation of translational activation by a ribonucleoprotein granule. Nat Cell Biol 2024; 26:1322-1335. [PMID: 38965420 PMCID: PMC11321996 DOI: 10.1038/s41556-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear. Here, using single-molecule imaging, we demonstrate that the germ cell-determining RNP granules in Drosophila embryos are sites for active translation of nanos mRNA. Nanos translation occurs preferentially at the germ granule surface with the 3' UTR buried within the granule. Smaug, a cytosolic RNA-binding protein, represses nanos translation, which is relieved when Smaug is sequestered to the germ granule by the scaffold protein Oskar. Together, our findings uncover a molecular process by which RNP granules achieve localized protein synthesis through the compartmentalized loss of translational repression.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York, NY, USA
| | - William Stainier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
8
|
Scholl A, Liu Y, Seydoux G. Caenorhabditis elegans germ granules accumulate hundreds of low translation mRNAs with no systematic preference for germ cell fate regulators. Development 2024; 151:dev202575. [PMID: 38984542 PMCID: PMC11266749 DOI: 10.1242/dev.202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.
Collapse
Affiliation(s)
- Alyshia Scholl
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yihong Liu
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WVI, Low TCH, Luo H, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm assembly and primordial germ cell number in Drosophila embryos. SCIENCE ADVANCES 2024; 10:eadg7894. [PMID: 38608012 PMCID: PMC11014450 DOI: 10.1126/sciadv.adg7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Whitby V. I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy C. H. Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
10
|
Wahiduzzaman, Tindell SJ, Alexander E, Hackney E, Kharel K, Schmidtke R, Arkov AL. Drosophila germ granules are assembled from protein components through different modes of competing interactions with the multi-domain Tudor protein. FEBS Lett 2024; 598:774-786. [PMID: 38499396 DOI: 10.1002/1873-3468.14846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Membraneless organelles are RNA-protein assemblies which have been implicated in post-transcriptional control. Germ cells form membraneless organelles referred to as germ granules, which contain conserved proteins including Tudor domain-containing scaffold polypeptides and their partner proteins that interact with Tudor domains. Here, we show that in Drosophila, different germ granule proteins associate with the multi-domain Tudor protein using different numbers of Tudor domains. Furthermore, these proteins compete for interaction with Tudor in vitro and, surprisingly, partition to distinct and poorly overlapping clusters in germ granules in vivo. This partition results in minimization of the competition. Our data suggest that Tudor forms structurally different configurations with different partner proteins which dictate different biophysical properties and phase separation parameters within the same granule.
Collapse
Affiliation(s)
- Wahiduzzaman
- Department of Biological Sciences, Murray State University, KY, USA
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, KY, USA
| | - Emma Alexander
- Department of Biological Sciences, Murray State University, KY, USA
| | - Ethan Hackney
- Department of Biological Sciences, Murray State University, KY, USA
| | - Kabita Kharel
- Department of Biological Sciences, Murray State University, KY, USA
| | - Ryan Schmidtke
- Department of Biological Sciences, Murray State University, KY, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, KY, USA
| |
Collapse
|
11
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
12
|
Cardona AH, Ecsedi S, Khier M, Yi Z, Bahri A, Ouertani A, Valero F, Labrosse M, Rouquet S, Robert S, Loubat A, Adekunle D, Hubstenberger A. Self-demixing of mRNA copies buffers mRNA:mRNA and mRNA:regulator stoichiometries. Cell 2023; 186:4310-4324.e23. [PMID: 37703874 DOI: 10.1016/j.cell.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/08/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.
Collapse
Affiliation(s)
| | - Szilvia Ecsedi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Mokrane Khier
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Zhou Yi
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Alia Bahri
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Amira Ouertani
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Florian Valero
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | - Sami Rouquet
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Stéphane Robert
- Université Aix Marseille, Inserm, INRAE, C2VN, 13005 Marseille, France
| | - Agnès Loubat
- Université Côte D'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | | | | |
Collapse
|
13
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1. Dev Cell 2023; 58:1578-1592.e5. [PMID: 37463577 PMCID: PMC10528888 DOI: 10.1016/j.devcel.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
14
|
Wilby EL, Weil TT. Relating the Biogenesis and Function of P Bodies in Drosophila to Human Disease. Genes (Basel) 2023; 14:1675. [PMID: 37761815 PMCID: PMC10530015 DOI: 10.3390/genes14091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Drosophila has been a premier model organism for over a century and many discoveries in flies have furthered our understanding of human disease. Flies have been successfully applied to many aspects of health-based research spanning from behavioural addiction, to dysplasia, to RNA dysregulation and protein misfolding. Recently, Drosophila tissues have been used to study biomolecular condensates and their role in multicellular systems. Identified in a wide range of plant and animal species, biomolecular condensates are dynamic, non-membrane-bound sub-compartments that have been observed and characterised in the cytoplasm and nuclei of many cell types. Condensate biology has exciting research prospects because of their diverse roles within cells, links to disease, and potential for therapeutics. In this review, we will discuss processing bodies (P bodies), a conserved biomolecular condensate, with a particular interest in how Drosophila can be applied to advance our understanding of condensate biogenesis and their role in disease.
Collapse
Affiliation(s)
| | - Timothy T. Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK;
| |
Collapse
|
15
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Germ Granule Evolution Provides Mechanistic Insight into Drosophila Germline Development. Mol Biol Evol 2023; 40:msad174. [PMID: 37527522 PMCID: PMC10414811 DOI: 10.1093/molbev/msad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
The copackaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to posttranscriptionally regulate germline mRNAs. In Drosophila melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates containing multiple transcripts from the same gene. Nucleated by Oskar (Osk), homotypic clusters are generated through a stochastic seeding and self-recruitment process that requires the 3' untranslated region (UTR) of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species and we hypothesized that this diversity influences homotypic clustering. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that clustering is a conserved process used to enrich germ granule mRNAs. However, we discovered germ granule phenotypes that included significant changes in the abundance of transcripts present in species' homotypic clusters, which also reflected diversity in the number of coalesced primordial germ cells within their embryonic gonads. By integrating biological data with computational modeling, we found that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels and/or homotypic clustering efficacy. Furthermore, we demonstrated how the nos 3' UTR from different species influences nos clustering, causing granules to have ∼70% less nos and increasing the presence of defective primordial germ cells. Our results highlight the impact that evolution has on germ granules, which should provide broader insight into processes that modify compositions and activities of other classes of biomolecular condensate.
Collapse
Affiliation(s)
- Dominique A Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Florencia N Burian
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Annabelle J Klinder
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Melissa M Menzel
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | | | | | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Gisselle A Hidalgo
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Bianca M Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Matthew G Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Department of Biological Sciences, Kean University, Union, NJ, USA
| |
Collapse
|
16
|
Eichler CE, Li H, Grunberg ME, Gavis ER. Localization of oskar mRNA by agglomeration in ribonucleoprotein granules. PLoS Genet 2023; 19:e1010877. [PMID: 37624861 PMCID: PMC10484445 DOI: 10.1371/journal.pgen.1010877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Localization of oskar mRNA to the posterior of the Drosophila oocyte is essential for abdominal patterning and germline development. oskar localization is a multi-step process involving temporally and mechanistically distinct transport modes. Numerous cis-acting elements and trans-acting factors have been identified that mediate earlier motor-dependent transport steps leading to an initial accumulation of oskar at the posterior. Little is known, however, about the requirements for the later localization phase, which depends on cytoplasmic flows and results in the accumulation of large oskar ribonucleoprotein granules, called founder granules, by the end of oogenesis. Using super-resolution microscopy, we show that founder granules are agglomerates of smaller oskar transport particles. In contrast to the earlier kinesin-dependent oskar transport, late-phase localization depends on the sequence as well as on the structure of the spliced oskar localization element (SOLE), but not on the adjacent exon junction complex deposition. Late-phase localization also requires the oskar 3' untranslated region (3' UTR), which targets oskar to founder granules. Together, our results show that 3' UTR-mediated targeting together with SOLE-dependent agglomeration leads to accumulation of oskar in large founder granules at the posterior of the oocyte during late stages of oogenesis. In light of previous work showing that oskar transport particles are solid-like condensates, our findings indicate that founder granules form by a process distinct from that of well-characterized ribonucleoprotein granules like germ granules, P bodies, and stress granules. Additionally, they illustrate how an individual mRNA can be adapted to exploit different localization mechanisms depending on the cellular context.
Collapse
Affiliation(s)
- Catherine E. Eichler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Hui Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Michelle E. Grunberg
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
17
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates are controlled by Dnd1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548244. [PMID: 37461638 PMCID: PMC10350045 DOI: 10.1101/2023.07.09.548244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles essential for germline development in different organisms The patterning of the granules and its relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that localization of RNA molecules to the periphery of the granules, where ribosomes are localized depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for posttranscriptional control, and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| |
Collapse
|
18
|
Kara E, McCambridge A, Proffer M, Dilts C, Pumnea B, Eshak J, Smith KA, Fielder I, Doyle DA, Ortega BM, Mukatash Y, Malik N, Mohammed AR, Govani D, Niepielko MG, Gao M. Mutational analysis of the functional motifs of the DEAD-box RNA helicase Me31B/DDX6 in Drosophila germline development. FEBS Lett 2023; 597:1848-1867. [PMID: 37235728 PMCID: PMC10389067 DOI: 10.1002/1873-3468.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Me31B/DDX6 is a DEAD-box family RNA helicase playing roles in post-transcriptional RNA regulation in different cell types and species. Despite the known motifs/domains of Me31B, the in vivo functions of the motifs remain unclear. Here, we used the Drosophila germline as a model and used CRISPR to mutate the key Me31B motifs/domains: helicase domain, N-terminal domain, C-terminal domain and FDF-binding motif. Then, we performed screening characterization on the mutants and report the effects of the mutations on the Drosophila germline, on processes such as fertility, oogenesis, embryo patterning, germline mRNA regulation and Me31B protein expression. The study indicates that the Me31B motifs contribute different functions to the protein and are needed for proper germline development, providing insights into the in vivo working mechanism of the helicase.
Collapse
Affiliation(s)
- Evan Kara
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Megan Proffer
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Carol Dilts
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Brooke Pumnea
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - John Eshak
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Korey A. Smith
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Isaac Fielder
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Yousif Mukatash
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Noor Malik
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | | | - Deep Govani
- Biology Department, Indiana University Northwest, Gary, IN, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Biology Department, Kean University, Union, NJ, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, USA
| |
Collapse
|
19
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
20
|
Hakes AC, Gavis ER. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol 2023; 21:e3002069. [PMID: 37053289 PMCID: PMC10128949 DOI: 10.1371/journal.pbio.3002069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.
Collapse
Affiliation(s)
- Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
21
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
22
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Evolutionary changes in germ granule mRNA content are driven by multiple mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529147. [PMID: 36865184 PMCID: PMC9980053 DOI: 10.1101/2023.02.21.529147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The co-packaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to post-transcriptionally regulate mRNAs that function in germline development and maintenance. In D. melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates that contain multiple transcripts from a specific gene. Nucleated by Oskar (Osk), homotypic clusters in D. melanogaster are generated through a stochastic seeding and self-recruitment process that requires the 3' UTR of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species. Thus, we hypothesized that evolutionary changes in the 3' UTR influences germ granule development. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that homotypic clustering is a conserved developmental process used to enrich germ granule mRNAs. Additionally, we discovered that the number of transcripts found in nos and/or pgc clusters could vary significantly among species. By integrating biological data with computational modeling, we determined that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels, and/or homotypic clustering efficacy. Finally, we found that the nos 3' UTR from different species can alter the efficacy of nos homotypic clustering, resulting in germ granules with reduced nos accumulation. Our findings highlight the impact that evolution has on the development of germ granules and may provide insight into processes that modify the content of other classes of biomolecular condensates.
Collapse
Affiliation(s)
- Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Florencia N. Burian
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Annabelle J. Klinder
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Melissa M. Menzel
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gerard Carlo C. Nifras
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Ahad L. Shabazz-Henry
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gisselle A. Hidalgo
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Christopher J. Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
23
|
Fingerhut JM, Yamashita YM. Analysis of Gene Expression Patterns and RNA Localization by Fluorescence in Situ Hybridization in Whole Mount Drosophila Testes. Methods Mol Biol 2023; 2666:15-28. [PMID: 37166654 DOI: 10.1007/978-1-0716-3191-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Researchers have used RNA in situ hybridization to detect the presence of RNA in cells and tissues for approximately 50 years. The recent development of a method capable of visualizing a single RNA molecule by utilizing tiled fluorescently labeled oligonucleotide probes that together produce a diffraction-limited spot has greatly increased the resolution of this technique, allowing for the precise determination of subcellular RNA localization and relative abundance. Here, we present our method for single molecule RNA fluorescence in situ hybridization (smFISH) in whole mount Drosophila testes and discuss how we have utilized this method to better understand the expression pattern of the highly unusual Y-linked genes.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
24
|
Chiappetta A, Liao J, Tian S, Trcek T. Structural and functional organization of germ plasm condensates. Biochem J 2022; 479:2477-2495. [PMID: 36534469 PMCID: PMC10722471 DOI: 10.1042/bcj20210815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Reproductive success of metazoans relies on germ cells. These cells develop early during embryogenesis, divide and undergo meiosis in the adult to make sperm and oocytes. Unlike somatic cells, germ cells are immortal and transfer their genetic material to new generations. They are also totipotent, as they differentiate into different somatic cell types. The maintenance of immortality and totipotency of germ cells depends on extensive post-transcriptional and post-translational regulation coupled with epigenetic remodeling, processes that begin with the onset of embryogenesis [1, 2]. At the heart of this regulation lie germ granules, membraneless ribonucleoprotein condensates that are specific to the germline cytoplasm called the germ plasm. They are a hallmark of all germ cells and contain several proteins and RNAs that are conserved across species. Interestingly, germ granules are often structured and tend to change through development. In this review, we describe how the structure of germ granules becomes established and discuss possible functional outcomes these structures have during development.
Collapse
|
25
|
Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes. iScience 2022; 25:104811. [PMID: 35982794 PMCID: PMC9379569 DOI: 10.1016/j.isci.2022.104811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular polarity. In Xenopus oocytes, RNAs required for germ layer patterning localize in biomolecular condensates, termed Localization bodies (L-bodies). Here, we have used an L-body RNA-binding protein, PTBP3, to test the role of RNA–protein interactions in regulating the biophysical characteristics of L-bodies in vivo and PTBP3–RNA condensates in vitro. Our results reveal that RNA–protein interactions drive recruitment of PTBP3 and localized RNA to L-bodies and that multivalent interactions tune the dynamics of the PTBP3 after localization. In a concentration-dependent manner, RNA becomes non-dynamic and interactions with the RNA determine PTBP3 dynamics within these biomolecular condensates in vivo and in vitro. Importantly, RNA, and not protein, is required for maintenance of the PTBP3–RNA condensates in vitro, pointing to a model where RNA serves as a non-dynamic substructure in these condensates. RNA–protein interactions drive recruitment of both RNA and protein to L-bodies RNA is non-dynamic in both L-bodies and in vitro condensates Multivalent interactions with RNA tune protein dynamics both in vivo and in vitro RNA, but not protein, is required for maintenance of the in vitro condensates
Collapse
|
26
|
Parker DM, Winkenbach LP, Osborne Nishimura E. It’s Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control. Front Genet 2022; 13:931220. [PMID: 35832192 PMCID: PMC9271857 DOI: 10.3389/fgene.2022.931220] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cells spatially organize their molecular components to carry out fundamental biological processes and guide proper development. The spatial organization of RNA within the cell can both promote and result from gene expression regulatory control. Recent studies have demonstrated diverse associations between RNA spatial patterning and translation regulatory control. One form of patterning, compartmentalization in biomolecular condensates, has been of particular interest. Generally, transcripts associated with cytoplasmic biomolecular condensates—such as germ granules, stress granules, and P-bodies—are linked with low translational status. However, recent studies have identified new biomolecular condensates with diverse roles associated with active translation. This review outlines RNA compartmentalization in various condensates that occur in association with repressed or active translational states, highlights recent findings in well-studied condensates, and explores novel condensate behaviors.
Collapse
Affiliation(s)
- Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry, University of Colorado, Boulder, CO, United States
| | - Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Erin Osborne Nishimura,
| |
Collapse
|
27
|
Valentino M, Ortega BM, Ulrich B, Doyle DA, Farnum ED, Joiner DA, Gavis ER, Niepielko MG. Computational modeling offers new insight into Drosophila germ granule development. Biophys J 2022; 121:1465-1482. [PMID: 35288123 PMCID: PMC9072583 DOI: 10.1016/j.bpj.2022.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022] Open
Abstract
The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.
Collapse
|
28
|
Regulation of spatially restricted gene expression: linking RNA localization and phase separation. Biochem Soc Trans 2021; 49:2591-2600. [PMID: 34821361 DOI: 10.1042/bst20210320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Subcellular restriction of gene expression is crucial to the functioning of a wide variety of cell types. The cellular machinery driving spatially restricted gene expression has been studied for many years, but recent advances have highlighted novel mechanisms by which cells can generate subcellular microenvironments with specialized gene expression profiles. Particularly intriguing are recent findings that phase separation plays a role in certain RNA localization pathways. The burgeoning field of phase separation has revolutionized how we view cellular compartmentalization, revealing that, in addition to membrane-bound organelles, phase-separated cytoplasmic microenvironments - termed biomolecular condensates - are compositionally and functionally distinct from the surrounding cytoplasm, without the need for a lipid membrane. The coupling of phase separation and RNA localization allows for precise subcellular targeting, robust translational repression and dynamic recruitment of accessory proteins. Despite the growing interest in the intersection between RNA localization and phase separation, it remains to be seen how exactly components of the localization machinery, particularly motor proteins, are able to associate with these biomolecular condensates. Further studies of the formation, function, and transport of biomolecular condensates promise to provide a new mechanistic understanding of how cells restrict gene expression at a subcellular level.
Collapse
|
29
|
Neil CR, Jeschonek SP, Cabral SE, O'Connell LC, Powrie EA, Otis JP, Wood TR, Mowry KL. L-bodies are RNA-protein condensates driving RNA localization in Xenopus oocytes. Mol Biol Cell 2021; 32:ar37. [PMID: 34613784 PMCID: PMC8694076 DOI: 10.1091/mbc.e21-03-0146-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless compartments within cells, formed by phase separation, that function as regulatory hubs for diverse biological processes. However, the mechanisms by which RNAs and proteins interact to promote RNP granule structure and function in vivo remain unclear. In Xenopus laevis oocytes, maternal mRNAs are localized as large RNPs to the vegetal hemisphere of the developing oocyte, where local translation is critical for proper embryonic patterning. Here we demonstrate that RNPs containing vegetally localized RNAs represent a new class of cytoplasmic RNP granule, termed localization-bodies (L-bodies). We show that L-bodies contain a dynamic protein-containing phase surrounding a nondynamic RNA-containing phase. Our results support a role for RNA as a critical component within these RNP granules and suggest that cis-elements within localized mRNAs may drive subcellular RNA localization through control over phase behavior.
Collapse
Affiliation(s)
- Christopher R Neil
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Sarah E Cabral
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Erin A Powrie
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Timothy R Wood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912
| |
Collapse
|
30
|
Avilés-Pagán EE, Hara M, Orr-Weaver TL. The GNU subunit of PNG kinase, the developmental regulator of mRNA translation, binds BIC-C to localize to RNP granules. eLife 2021; 10:67294. [PMID: 34250903 PMCID: PMC8313231 DOI: 10.7554/elife.67294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
Control of mRNA translation is a key mechanism by which the differentiated oocyte transitions to a totipotent embryo. In Drosophila, the PNG kinase complex regulates maternal mRNA translation at the oocyte-to-embryo transition. We previously showed that the GNU activating subunit is crucial in regulating PNG and timing its activity to the window between egg activation and early embryogenesis (Hara et al., 2017). In this study, we find associations between GNU and proteins of RNP granules and demonstrate that GNU localizes to cytoplasmic RNP granules in the mature oocyte, identifying GNU as a new component of a subset of RNP granules. Furthermore, we define roles for the domains of GNU. Interactions between GNU and the granule component BIC-C reveal potential conserved functions for translational regulation in metazoan development. We propose that by binding to BIC-C, upon egg activation GNU brings PNG to its initial targets, translational repressors in RNP granules.
Collapse
Affiliation(s)
- Emir E Avilés-Pagán
- Department of Biology, MIT, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Masatoshi Hara
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Terry L Orr-Weaver
- Department of Biology, MIT, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
31
|
Voronina AS, Pshennikova ES. mRNPs: Structure and role in development. Cell Biochem Funct 2021; 39:832-843. [PMID: 34212408 DOI: 10.1002/cbf.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022]
Abstract
In eukaryotic cells, mRNA molecules are coated with numerous RNA-binding proteins and so exist in ribonucleoproteins (mRNPs). The proteins associated with the mRNA regulate the fate of mRNA, including its localization, translation and decay. Before activation of translation, the mRNA does not display any template functions-it is masked. The coordinated activity of certain RNA-binding proteins determines the future fate of each mRNA individually. In embryo development, the temporal and spatial regulation of translation can cause a situation when the mRNA and the encoded protein are localized in different compartments and so the differentiation of the cells can be determined. The fundamentals of regulation of the mRNAs fate and functioning in nerves are similar to those already described for oo- and embryogenesis. Disorders in the mRNA masking and demasking result in the emergence of various diseases, in particular cancers and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Anna S Voronina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Pshennikova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Schmidt H, Putnam A, Rasoloson D, Seydoux G. Protein-based condensation mechanisms drive the assembly of RNA-rich P granules. eLife 2021; 10:63698. [PMID: 34106046 PMCID: PMC8238508 DOI: 10.7554/elife.63698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Germ granules are protein-RNA condensates that segregate with the embryonic germline. In Caenorhabditis elegans embryos, germ (P) granule assembly requires MEG-3, an intrinsically disordered protein that forms RNA-rich condensates on the surface of PGL condensates at the core of P granules. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). We find that MEG-3 is a modular protein that uses its IDR to bind RNA and its C-terminus to drive condensation. The HMGL motif mediates binding to PGL-3 and is required for co-assembly of MEG-3 and PGL-3 condensates in vivo. Mutations in HMGL cause MEG-3 and PGL-3 to form separate condensates that no longer co-segregate to the germline or recruit RNA. Our findings highlight the importance of protein-based condensation mechanisms and condensate-condensate interactions in the assembly of RNA-rich germ granules.
Collapse
Affiliation(s)
- Helen Schmidt
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrea Putnam
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Dominique Rasoloson
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
33
|
Tikhomirova MA, Sheval EV. Formation of Biomolecular Condensates: Regulation of Embryogenesis at the Cellular Level. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Niepielko MG, Shumskaya M. Early Requirement for Bioinformatics in Undergraduate Biology Curricula. FRONTIERS IN BIOINFORMATICS 2021; 1:656531. [PMID: 36303737 PMCID: PMC9581004 DOI: 10.3389/fbinf.2021.656531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Matthew G. Niepielko
- New Jersey Center for Science, Technology, and Mathematics, Kean University, Union, NJ, United States
| | - Maria Shumskaya
- School of Natural Sciences, Biology, Kean University, Union, NJ, United States
- *Correspondence: Maria Shumskaya,
| |
Collapse
|
35
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
36
|
So C, Cheng S, Schuh M. Phase Separation during Germline Development. Trends Cell Biol 2021; 31:254-268. [PMID: 33455855 DOI: 10.1016/j.tcb.2020.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Phase separation has emerged as a new key principle of intracellular organization. Phase-separated structures play diverse roles in various biological processes and pathogenesis of protein aggregation diseases. Recent work has revealed crucial functions for phase separation during germline development. Phase separation controls the assembly and segregation of germ granules that determine which embryonic cells become germ cells. Phase separation promotes the formation of the Balbiani body, a structure that stores organelles and RNAs during the prolonged prophase arrest of oocytes. Phase separation also facilitates meiotic recombination that prepares homologous chromosomes for segregation, and drives the formation of a liquid-like spindle domain that promotes spindle assembly in mammalian oocytes. We review how phase separation drives these essential steps during germline development.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
37
|
Wan G, Bajaj L, Fields B, Dodson AE, Pagano D, Fei Y, Kennedy S. ZSP-1 is a Z granule surface protein required for Z granule fluidity and germline immortality in Caenorhabditis elegans. EMBO J 2021; 40:e105612. [PMID: 33438773 DOI: 10.15252/embj.2020105612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Germ granules are biomolecular condensates that form in germ cells of all/most animals, where they regulate mRNA expression to promote germ cell function and totipotency. In the adult Caenorhabditis elegans germ cell, these granules are composed of at least four distinct sub-compartments, one of which is the Z granule. To better understand the role of the Z granule in germ cell biology, we conducted a genetic screen for genes specifically required for Z granule assembly or morphology. Here, we show that zsp-1, which encodes a low-complexity/polyampholyte-domain protein, is required for Z granule homeostasis. ZSP-1 localizes to the outer surface of Z granules. In the absence of ZSP-1, Z granules swell to an abnormal size, fail to segregate with germline blastomeres during development, and lose their liquid-like character. Finally, ZSP-1 promotes piRNA- and siRNA-directed gene regulation and germline immortality. Our data suggest that Z granules coordinate small RNA-based gene regulation to promote germ cell function and that ZSP-1 helps/is need to maintain Z granule morphology and liquidity.
Collapse
Affiliation(s)
- Gang Wan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, GuangZhou, GuangDong, China.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lakshya Bajaj
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Brandon Fields
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Engineering, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E Dodson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Pagano
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuhan Fei
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Mateu-Regué À, Nielsen FC, Christiansen J. Cytoplasmic mRNPs revisited: Singletons and condensates. Bioessays 2020; 42:e2000097. [PMID: 33145808 DOI: 10.1002/bies.202000097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasmic messenger ribonucleoprotein particles (mRNPs) represent the cellular transcriptome, and recent data have challenged our current understanding of their architecture, transport, and complexity before translation. Pre-translational mRNPs are composed of a single transcript, whereas P-bodies and stress granules are condensates. Both pre-translational mRNPs and actively translating mRNPs seem to adopt a linear rather than a closed-loop configuration. Moreover, assembly of pre-translational mRNPs in physical RNA regulons is an unlikely event, and co-regulated translation may occur locally following extracellular cues. We envisage a stochastic mRNP transport mechanism where translational repression of single mRNPs-in combination with microtubule-mediated cytoplasmic streaming and docking events-are prerequisites for local translation, rather than direct transport.
Collapse
Affiliation(s)
| | | | - Jan Christiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Dodson AE, Kennedy S. Phase Separation in Germ Cells and Development. Dev Cell 2020; 55:4-17. [PMID: 33007213 DOI: 10.1016/j.devcel.2020.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/20/2022]
Abstract
The animal germline is an immortal cell lineage that gives rise to eggs and/or sperm each generation. Fusion of an egg and sperm, or fertilization, sets off a cascade of developmental events capable of producing an array of different cell types and body plans. How germ cells develop, function, and eventually give rise to entirely new organisms is an important question in biology. A growing body of evidence suggests that phase separation events likely play a significant and multifaceted role in germ cells and development. Here, we discuss the organization, dynamics, and potential functions of phase-separated compartments in germ cells and examine the various ways in which phase separation might contribute to the development of multicellular organisms.
Collapse
Affiliation(s)
- Anne E Dodson
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Revaitis NT, Niepielko MG, Marmion RA, Klein EA, Piccoli B, Yakoby N. Quantitative analyses of EGFR localization and trafficking dynamics in the follicular epithelium. Development 2020; 147:dev183210. [PMID: 32680934 PMCID: PMC7438018 DOI: 10.1242/dev.183210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
To bridge the gap between qualitative and quantitative analyses of the epidermal growth factor receptor (EGFR) in tissues, we generated an sfGFP-tagged EGF receptor (EGFR-sfGFP) in Drosophila The homozygous fly appears similar to wild type with EGFR expression and activation patterns that are consistent with previous reports in the ovary, early embryo, and imaginal discs. Using ELISA, we quantified an average of 1100, 6200 and 2500 receptors per follicle cell (FC) at stages 8/9, 10 and ≥11 of oogenesis, respectively. Interestingly, the spatial localization of the EGFR to the apical side of the FCs at early stages depended on the TGFα-like ligand Gurken. At later stages, EGFR localized to basolateral positions of the FCs. Finally, we followed the endosomal localization of EGFR in the FCs. The EGFR colocalized with the late endosome, but no significant colocalization of the receptor was found with the early endosome. The EGFR-sfGFP fly is an exciting new resource for studying cellular localization and regulation of EGFR in tissues.
Collapse
Affiliation(s)
- Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Matthew G Niepielko
- New Jersey Center for Science, Technology & Mathematics, Kean University, Union, NJ 07083, USA
| | - Robert A Marmion
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Eric A Klein
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Benedetto Piccoli
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Mathematical Sciences, Rutgers, The State University of New Jersey, Camden, NJ 08102, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
41
|
Tian S, Curnutte HA, Trcek T. RNA Granules: A View from the RNA Perspective. Molecules 2020; 25:E3130. [PMID: 32650583 PMCID: PMC7397151 DOI: 10.3390/molecules25143130] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
RNA granules are ubiquitous. Composed of RNA-binding proteins and RNAs, they provide functional compartmentalization within cells. They are inextricably linked with RNA biology and as such are often referred to as the hubs for post-transcriptional regulation. Much of the attention has been given to the proteins that form these condensates and thus many fundamental questions about the biology of RNA granules remain poorly understood: How and which RNAs enrich in RNA granules, how are transcripts regulated in them, and how do granule-enriched mRNAs shape the biology of a cell? In this review, we discuss the imaging, genetic, and biochemical data, which have revealed that some aspects of the RNA biology within granules are carried out by the RNA itself rather than the granule proteins. Interestingly, the RNA structure has emerged as an important feature in the post-transcriptional control of granule transcripts. This review is part of the Special Issue in the Frontiers in RNA structure in the journal Molecules.
Collapse
Affiliation(s)
| | | | - Tatjana Trcek
- Homewood Campus, Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; (S.T.); (H.A.C.)
| |
Collapse
|
42
|
Moravec CE, Pelegri F. The role of the cytoskeleton in germ plasm aggregation and compaction in the zebrafish embryo. Curr Top Dev Biol 2020; 140:145-179. [PMID: 32591073 DOI: 10.1016/bs.ctdb.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transmission of genetic information from one generation to another is crucial for survival of animal species. This is accomplished by the induction of primordial germ cells (PGCs) that will eventually establish the germline. In some animals the germline is induced by signals in gastrula, whereas in others it is specified by inheritance of maternal determinants, known as germ plasm. In zebrafish, aggregation and compaction of maternally derived germ plasm during the first several embryonic cell cycles is essential for generation of PGCs. These processes are controlled by cellular functions associated with the cellular division apparatus. Ribonucleoparticles containing germ plasm components are bound to both the ends of astral microtubules and a dynamic F-actin network through a mechanism integrated with that which drives the cell division program. In this chapter we discuss the role that modifications of the cell division apparatus, including the cytoskeleton and cytoskeleton-associated proteins, play in the regulation of zebrafish germ plasm assembly.
Collapse
Affiliation(s)
- Cara E Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
43
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
44
|
Trcek T, Douglas TE, Grosch M, Yin Y, Eagle WVI, Gavis ER, Shroff H, Rothenberg E, Lehmann R. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Mol Cell 2020; 78:941-950.e12. [PMID: 32464092 DOI: 10.1016/j.molcel.2020.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| | - Tyler E Douglas
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Markus Grosch
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA
| | - Yandong Yin
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Whitby V I Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, USA
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU School of Medicine, New York, NY, USA
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
45
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
46
|
Eichler CE, Hakes AC, Hull B, Gavis ER. Compartmentalized oskar degradation in the germ plasm safeguards germline development. eLife 2020; 9:49988. [PMID: 31909715 PMCID: PMC6986870 DOI: 10.7554/elife.49988] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Partitioning of mRNAs into ribonucleoprotein (RNP) granules supports diverse regulatory programs within the crowded cytoplasm. At least two types of RNP granules populate the germ plasm, a cytoplasmic domain at the posterior of the Drosophila oocyte and embryo. Germ granules deliver mRNAs required for germline development to pole cells, the germ cell progenitors. A second type of RNP granule, here named founder granules, contains oskar mRNA, which encodes the germ plasm organizer. Whereas oskar mRNA is essential for germ plasm assembly during oogenesis, we show that it is toxic to pole cells. Founder granules mediate compartmentalized degradation of oskar during embryogenesis to minimize its inheritance by pole cells. Degradation of oskar in founder granules is temporally and mechanistically distinct from degradation of oskar and other mRNAs during the maternal-to-zygotic transition. Our results show how compartmentalization in RNP granules differentially controls fates of mRNAs localized within the same cytoplasmic domain.
Collapse
Affiliation(s)
- Catherine E Eichler
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Brooke Hull
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
47
|
Vo HDL, Wahiduzzaman, Tindell SJ, Zheng J, Gao M, Arkov AL. Protein components of ribonucleoprotein granules from Drosophila germ cells oligomerize and show distinct spatial organization during germline development. Sci Rep 2019; 9:19190. [PMID: 31844131 PMCID: PMC6915754 DOI: 10.1038/s41598-019-55747-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/28/2019] [Indexed: 01/11/2023] Open
Abstract
The assembly of large RNA-protein granules occurs in germ cells of many animals and these germ granules have provided a paradigm to study structure-functional aspects of similar structures in different cells. Germ granules in Drosophila oocyte’s posterior pole (polar granules) are composed of RNA, in the form of homotypic clusters, and proteins required for germline development. In the granules, Piwi protein Aubergine binds to a scaffold protein Tudor, which contains 11 Tudor domains. Using a super-resolution microscopy, we show that surprisingly, Aubergine and Tudor form distinct clusters within the same polar granules in early Drosophila embryos. These clusters partially overlap and, after germ cells form, they transition into spherical granules with the structural organization unexpected from these interacting proteins: Aubergine shell around the Tudor core. Consistent with the formation of distinct clusters, we show that Aubergine forms homo-oligomers and using all purified Tudor domains, we demonstrate that multiple domains, distributed along the entire Tudor structure, interact with Aubergine. Our data suggest that in polar granules, Aubergine and Tudor are assembled into distinct phases, partially mixed at their “interaction hubs”, and that association of distinct protein clusters may be an evolutionarily conserved mechanism for the assembly of germ granules.
Collapse
Affiliation(s)
- Hieu D L Vo
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Wahiduzzaman
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Jimiao Zheng
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, 46408, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| |
Collapse
|
48
|
Schisa JA. Germ Cell Responses to Stress: The Role of RNP Granules. Front Cell Dev Biol 2019; 7:220. [PMID: 31632971 PMCID: PMC6780003 DOI: 10.3389/fcell.2019.00220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
The ability to respond to stress is critical to survival for animals. While stress responses have been studied at both organismal and cellular levels, less attention has been given to the effect of stress on the germ line. Effective germ line adaptations to stress are essential to the propagation of a species. Recent studies suggest that germ cells share some cellular responses to stress with somatic cells, including the assembly of RNP granules, but may also have unique requirements. One fundamental difference between oocytes and sperm, as well as most somatic cells, is the long lifespan of oocytes. Since women are born with all of their eggs, oocytes must maintain their cellular quality over decades prior to fertilization. This prolonged meiotic arrest is one type of stress that eventually contributes to decreased fertility in older women. Germ cell responses to nutritional stress and heat stress have also been well-characterized using model systems. Here we review our current understanding of how germ cells respond to stress, with an emphasis on the dynamic assembly of RNP granules that may be adaptive. We compare and contrast stress responses of male gametes with those of female gametes, and discuss how the dynamic cellular remodeling of the germ line can impact the regulation of gene expression. We also discuss the implications of recent in vitro studies of ribonucleoprotein granule assembly on our understanding of germ line responses to stress, and the gaps that remain in our understanding of the function of RNP granules during stress.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
49
|
Trcek T, Lehmann R. Germ granules in Drosophila. Traffic 2019; 20:650-660. [PMID: 31218815 PMCID: PMC6771631 DOI: 10.1111/tra.12674] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/26/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Germ granules are hallmarks of all germ cells. Early ultrastructural studies in Drosophila first described these membraneless granules in the oocyte and early embryo as filled with amorphous to fibrillar material mixed with RNA. Genetic studies identified key protein components and specific mRNAs that regulate germ cell‐specific functions. More recently these ultrastructural studies have been complemented by biophysical analysis describing germ granules as phase‐transitioned condensates. In this review, we provide an overview that connects the composition of germ granules with their function in controlling germ cell specification, formation and migration, and illuminate these mysterious condensates as the gatekeepers of the next generation.
Collapse
Affiliation(s)
- Tatjana Trcek
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| | - Ruth Lehmann
- HHMI, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York
| |
Collapse
|
50
|
Wilbertz JH, Voigt F, Horvathova I, Roth G, Zhan Y, Chao JA. Single-Molecule Imaging of mRNA Localization and Regulation during the Integrated Stress Response. Mol Cell 2019; 73:946-958.e7. [PMID: 30661979 DOI: 10.1016/j.molcel.2018.12.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022]
Abstract
Biological phase transitions form membrane-less organelles that generate distinct cellular environments. How molecules are partitioned between these compartments and the surrounding cellular space and the functional consequence of this localization is not well understood. Here, we report the localization of mRNA to stress granules (SGs) and processing bodies (PBs) and its effect on translation and degradation during the integrated stress response. Using single mRNA imaging in living human cells, we find that the interactions of mRNAs with SGs and PBs have different dynamics, very few mRNAs directly move between SGs and PBs, and that specific RNA-binding proteins can anchor mRNAs within these compartments. During recovery from stress, we show that mRNAs that were within SGs and PBs are translated and degraded at similar rates as their cytosolic counterparts. Our work provides a framework for using single-molecule measurements to directly investigate the molecular mechanisms of phase-separated compartments within their cellular environment.
Collapse
Affiliation(s)
- Johannes H Wilbertz
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Ivana Horvathova
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|