1
|
Velez-Aguilera G, Jantsch V. The interkinetic envelope: A guardian or just a freeloader? J Cell Biol 2025; 224:e202501233. [PMID: 39998879 PMCID: PMC11854501 DOI: 10.1083/jcb.202501233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
In this issue, El Mossadeq et al. (https://doi.org/10.1083/jcb.202403125) report that a structure forms around segregating chromosomes following meiosis I that shares features with the nuclear envelope in interphase but also has distinct, unique characteristics.
Collapse
Affiliation(s)
- Griselda Velez-Aguilera
- Max Perutz Labs, Department of Chromosome Biology, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Verena Jantsch
- Max Perutz Labs, Department of Chromosome Biology, University of Vienna, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
2
|
Czajkowski ER, Zou Y, Divekar NS, Wignall SM. The doublecortin-family kinase ZYG-8DCLK1 regulates microtubule dynamics and motor-driven forces to promote the stability of C. elegans acentrosomal spindles. PLoS Genet 2024; 20:e1011373. [PMID: 39226307 PMCID: PMC11398696 DOI: 10.1371/journal.pgen.1011373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/13/2024] [Accepted: 07/23/2024] [Indexed: 09/05/2024] Open
Abstract
Although centrosomes help organize spindles in most cell types, oocytes of most species lack these structures. During acentrosomal spindle assembly in C. elegans oocytes, microtubule minus ends are sorted outwards away from the chromosomes where they form poles, but then these outward forces must be balanced to form a stable bipolar structure. Simultaneously, microtubule dynamics must be precisely controlled to maintain spindle length and organization. How forces and dynamics are tuned to create a stable bipolar structure is poorly understood. Here, we have gained insight into this question through studies of ZYG-8, a conserved doublecortin-family kinase; the mammalian homolog of this microtubule-associated protein is upregulated in many cancers and has been implicated in cell division, but the mechanisms by which it functions are poorly understood. We found that ZYG-8 depletion from oocytes resulted in overelongated spindles with pole and midspindle defects. Importantly, experiments with monopolar spindles revealed that ZYG-8 depletion led to excess outward forces within the spindle and suggested a potential role for this protein in regulating the force-generating motor BMK-1/kinesin-5. Further, we found that ZYG-8 is also required for proper microtubule dynamics within the oocyte spindle and that kinase activity is required for its function during both meiosis and mitosis. Altogether, our findings reveal new roles for ZYG-8 in oocytes and provide insights into how acentrosomal spindles are stabilized to promote faithful meiosis.
Collapse
Affiliation(s)
- Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Yuntong Zou
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
3
|
Zimyanin V, Redemann S. Microtubule length correlates with spindle length in C. elegans meiosis. Cytoskeleton (Hoboken) 2024; 81:356-368. [PMID: 38450962 PMCID: PMC11333180 DOI: 10.1002/cm.21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The accurate segregation of chromosomes during female meiosis relies on the precise assembly and function of the meiotic spindle, a dynamic structure primarily composed of microtubules. Despite the crucial role of microtubule dynamics in this process, the relationship between microtubule length and spindle size remains elusive. Leveraging Caenorhabditis elegans as a model system, we combined electron tomography and live imaging to investigate this correlation. Our analysis revealed significant changes in spindle length throughout meiosis, coupled with alterations in microtubule length. Surprisingly, while spindle size decreases during the initial stages of anaphase, the size of antiparallel microtubule overlap decreased as well. Detailed electron tomography shows a positive correlation between microtubule length and spindle size, indicating a role of microtubule length in determining spindle dimensions. Notably, microtubule numbers displayed no significant association with spindle length, highlighting the dominance of microtubule length regulation in spindle size determination. Depletion of the microtubule depolymerase KLP-7 led to elongated metaphase spindles with increased microtubule length, supporting the link between microtubule length and spindle size. These findings underscore the pivotal role of regulating microtubule dynamics, and thus microtubule length, in governing spindle rearrangements during meiotic division, shedding light on fundamental mechanisms dictating spindle architecture.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Wolpe AG, Luse MA, Baryiames C, Schug WJ, Wolpe JB, Johnstone SR, Dunaway LS, Juśkiewicz ZJ, Loeb SA, Askew Page HR, Chen YL, Sabapathy V, Pavelec CM, Wakefield B, Cifuentes-Pagano E, Artamonov MV, Somlyo AV, Straub AC, Sharma R, Beier F, Barrett EJ, Leitinger N, Pagano PJ, Sonkusare SK, Redemann S, Columbus L, Penuela S, Isakson BE. Pannexin-3 stabilizes the transcription factor Bcl6 in a channel-independent manner to protect against vascular oxidative stress. Sci Signal 2024; 17:eadg2622. [PMID: 38289985 PMCID: PMC11960805 DOI: 10.1126/scisignal.adg2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.
Collapse
Affiliation(s)
- Abigail G. Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Melissa A. Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Wyatt J. Schug
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jacob B. Wolpe
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Center for Vascular and Heart Research, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Luke S. Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Zuzanna J. Juśkiewicz
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Skylar A. Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Henry R. Askew Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caitlin M. Pavelec
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brent Wakefield
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugenia Cifuentes-Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mykhaylo V. Artamonov
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Avril V. Somlyo
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Adam C. Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rahul Sharma
- Center for Immunity, Inflammation, and Regenerative Medicine (CIIR), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Frank Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Eugene J. Barrett
- Department of Medicine, Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patrick J. Pagano
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Oncology (Division of Experimental Oncology), Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
5
|
Li W, Crellin HA, Cheerambathur D, McNally FJ. Redundant microtubule crosslinkers prevent meiotic spindle bending to ensure diploid offspring in C. elegans. PLoS Genet 2023; 19:e1011090. [PMID: 38150489 PMCID: PMC10775986 DOI: 10.1371/journal.pgen.1011090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/09/2024] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Oocyte meiotic spindles mediate the expulsion of ¾ of the genome into polar bodies to generate diploid zygotes in nearly all animal species. Failures in this process result in aneuploid or polyploid offspring that are typically inviable. Accurate meiotic chromosome segregation and polar body extrusion require the spindle to elongate while maintaining its structural integrity. Previous studies have implicated three hypothetical activities during this process, including microtubule crosslinking, microtubule sliding and microtubule polymerization. However, how these activities regulate spindle rigidity and elongation as well as the exact proteins involved in the activities remain unclear. We discovered that C. elegans meiotic anaphase spindle integrity is maintained through redundant microtubule crosslinking activities of the Kinesin-5 family motor BMK-1, the microtubule bundling protein SPD-1/PRC1, and the Kinesin-4 family motor, KLP-19. Using time-lapse imaging, we found that single depletion of KLP-19KIF4A, SPD-1PRC1 or BMK-1Eg5 had minimal effects on anaphase B spindle elongation velocity. In contrast, double depletion of SPD-1PRC1 and BMK-1Eg5 or double depletion of KLP-19KIF4A and BMK-1Eg5 resulted in spindles that elongated faster, bent in a myosin-dependent manner, and had a high rate of polar body extrusion errors. Bending spindles frequently extruded both sets of segregating chromosomes into two separate polar bodies. Normal anaphase B velocity was observed after double depletion of KLP-19KIF4A and SPD-1PRC1. These results suggest that KLP-19KIF4A and SPD-1PRC1 act in different pathways, each redundant with a separate BMK-1Eg5 pathway in regulating meiotic spindle elongation. Depletion of ZYG-8, a doublecortin-related microtubule binding protein, led to slower anaphase B spindle elongation. We found that ZYG-8DCLK1 acts by excluding SPD-1PRC1 from the spindle. Thus, three mechanistically distinct microtubule regulation modules, two based on crosslinking, and one based on exclusion of crosslinkers, power the mechanism that drives spindle elongation and structural integrity during anaphase B of C.elegans female meiosis.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Helena A. Crellin
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Quiogue AR, Sumiyoshi E, Fries A, Chuang CH, Bowerman B. Microtubules oppose cortical actomyosin-driven membrane ingression during C. elegans meiosis I polar body extrusion. PLoS Genet 2023; 19:e1010984. [PMID: 37782660 PMCID: PMC10569601 DOI: 10.1371/journal.pgen.1010984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/12/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
During C. elegans oocyte meiosis I cytokinesis and polar body extrusion, cortical actomyosin is locally remodeled to assemble a contractile ring that forms within and remains part of a much larger and actively contractile cortical actomyosin network. This network both mediates contractile ring dynamics and generates shallow ingressions throughout the oocyte cortex during polar body extrusion. Based on our analysis of requirements for CLS-2, a member of the CLASP family of proteins that stabilize microtubules, we recently proposed that a balance of actomyosin-mediated tension and microtubule-mediated stiffness limits membrane ingression throughout the oocyte during meiosis I polar body extrusion. Here, using live cell imaging and fluorescent protein fusions, we show that CLS-2 is part of a group of kinetochore proteins, including the scaffold KNL-1 and the kinase BUB-1, that also co-localize during meiosis I to structures called linear elements, which are present within the assembling oocyte spindle and also are distributed throughout the oocyte in proximity to, but appearing to underlie, the actomyosin cortex. We further show that KNL-1 and BUB-1, like CLS-2, promote the proper organization of sub-cortical microtubules and also limit membrane ingression throughout the oocyte. Moreover, nocodazole or taxol treatment to destabilize or stabilize oocyte microtubules leads to, respectively, excess or decreased membrane ingression throughout the oocyte. Furthermore, taxol treatment, and genetic backgrounds that elevate the levels of cortically associated microtubules, both suppress excess membrane ingression in cls-2 mutant oocytes. We propose that linear elements influence the organization of sub-cortical microtubules to generate a stiffness that limits cortical actomyosin-driven membrane ingression throughout the oocyte during meiosis I polar body extrusion. We discuss the possibility that this regulation of sub-cortical microtubule dynamics facilitates actomyosin contractile ring dynamics during C. elegans oocyte meiosis I cell division.
Collapse
Affiliation(s)
- Alyssa R. Quiogue
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Adam Fries
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
- Imaging Core, Office of the Vice President for Research University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugen, Oregon, United States of America
| |
Collapse
|
7
|
Pitayu-Nugroho L, Aubry M, Laband K, Geoffroy H, Ganeswaran T, Primadhanty A, Canman JC, Dumont J. Kinetochore component function in C. elegans oocytes revealed by 4D tracking of holocentric chromosomes. Nat Commun 2023; 14:4032. [PMID: 37419936 PMCID: PMC10329006 DOI: 10.1038/s41467-023-39702-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
During cell division, chromosome congression to the spindle center, their orientation along the spindle long axis and alignment at the metaphase plate depend on interactions between spindle microtubules and kinetochores, and are pre-requisite for chromosome bi-orientation and accurate segregation. How these successive phases are controlled during oocyte meiosis remains elusive. Here we provide 4D live imaging during the first meiotic division in C. elegans oocytes with wild-type or disrupted kinetochore protein function. We show that, unlike in monocentric organisms, holocentric chromosome bi-orientation is not strictly required for accurate chromosome segregation. Instead, we propose a model in which initial kinetochore-localized BHC module (comprised of BUB-1Bub1, HCP-1/2CENP-F and CLS-2CLASP)-dependent pushing acts redundantly with Ndc80 complex-mediated pulling for accurate chromosome segregation in meiosis. In absence of both mechanisms, homologous chromosomes tend to co-segregate in anaphase, especially when initially mis-oriented. Our results highlight how different kinetochore components cooperate to promote accurate holocentric chromosome segregation in oocytes of C. elegans.
Collapse
Affiliation(s)
| | - Mélanie Aubry
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Kimberley Laband
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Hélène Geoffroy
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | | | | | - Julie C Canman
- Columbia University Irving Medical Center; Department of Pathology and Cell Biology, New York, NY, 10032, USA
| | - Julien Dumont
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
| |
Collapse
|
8
|
Gong T, McNally FJ. Caenorhabditis elegans spermatocytes can segregate achiasmate homologous chromosomes apart at higher than random frequency during meiosis I. Genetics 2023; 223:iyad021. [PMID: 36792551 PMCID: PMC10319977 DOI: 10.1093/genetics/iyad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Chromosome segregation errors during meiosis are the leading cause of aneuploidy. Faithful chromosome segregation during meiosis in most eukaryotes requires a crossover which provides a physical attachment holding homologs together in a "bivalent." Crossovers are critical for homologs to be properly aligned and partitioned in the first meiotic division. Without a crossover, individual homologs (univalents) might segregate randomly, resulting in aneuploid progeny. However, Caenorhabditis elegans zim-2 mutants, which have crossover defects on chromosome V, have fewer dead embryos than that expected from random segregation. This deviation from random segregation is more pronounced in zim-2 males than that in females. We found three phenomena that can explain this apparent discrepancy. First, we detected crossovers on chromosome V in both zim-2(tm574) oocytes and spermatocytes, suggesting a redundant mechanism to make up for the ZIM-2 loss. Second, after accounting for the background crossover frequency, spermatocytes produced significantly more euploid gametes than what would be expected from random segregation. Lastly, trisomy of chromosome V is viable and fertile. Together, these three phenomena allow zim-2(tm574) mutants with reduced crossovers on chromosome V to have more viable progeny. Furthermore, live imaging of meiosis in spo-11(me44) oocytes and spermatocytes, which exhibit crossover failure on all 6 chromosomes, showed 12 univalents segregating apart in roughly equal masses in a homology-independent manner, supporting the existence of a mechanism that segregates any 2 chromosomes apart.
Collapse
Affiliation(s)
- Ting Gong
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Kletter T, Biswas A, Reber S. Engineering metaphase spindles: Construction site and building blocks. Curr Opin Cell Biol 2022; 79:102143. [PMID: 36436307 DOI: 10.1016/j.ceb.2022.102143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
In an active, crowded cytoplasm, eukaryotic cells construct metaphase spindles from conserved building blocks to segregate chromosomes. Yet, spindles execute their function in a stunning variety of cell shapes and sizes across orders of magnitude. Thus, the current challenge is to understand how unique mesoscale spindle characteristics emerge from the interaction of molecular collectives. Key components of these collectives are tubulin dimers, which polymerise into microtubules. Despite all conservation, tubulin is a genetically and biochemically complex protein family, and we only begin to uncover how tubulin diversity affects microtubule dynamics and thus spindle assembly. Moreover, it is increasingly appreciated that spindles are dynamically intertwined with the cytoplasm that itself exhibits cell-type specific emergent properties with yet mostly unexplored consequences for spindle construction. Therefore, on our way toward a quantitative picture of spindle function, we need to understand molecular behaviour of the building blocks and connect it to the entire cellular context.
Collapse
Affiliation(s)
- Tobias Kletter
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
10
|
Horton HH, Divekar NS, Wignall SM. Newfound features of meiotic chromosome organization that promote efficient congression and segregation in Caenorhabditis elegans oocytes. Mol Biol Cell 2022; 33:br25. [PMID: 36222840 PMCID: PMC9727786 DOI: 10.1091/mbc.e22-07-0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although end-on microtubule-kinetochore attachments typically drive chromosome alignment, Caenorhabditis elegans oocytes do not form these connections. Instead, microtubule bundles run laterally alongside chromosomes and a ring-shaped protein complex facilitates congression (the "ring complex", RC). Here, we report new aspects of RC and chromosome structure that are required for congression and segregation. First, we found that in addition to encircling the outside of each homologous chromosome pair (bivalent), the RC also forms internal subloops that wrap around the domains where cohesion is lost during the first meiotic division; cohesin removal could therefore disengage these subloops in anaphase, enabling RC removal from chromosomes. Additionally, we discovered new features of chromosome organization that facilitate congression. Analysis of a mutant that forms bivalents with a fragile, unresolved homolog interface revealed that these bivalents are usually able to biorient on the spindle, with lateral microtubule bundles running alongside them and constraining the chromosome arms so that the two homologs are pointed to opposite spindle poles. This biorientation facilitates congression, as monooriented bivalents exhibited reduced polar ejection forces that resulted in congression defects. Thus, despite not forming end-on attachments, chromosome biorientation promotes congression in C. elegans oocytes. Our work therefore reveals novel features of chromosome organization in oocytes and highlights the importance of proper chromosome structure for faithful segregation during meiotic divisions.
Collapse
Affiliation(s)
- Hannah H. Horton
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208,*Address correspondence to: Sarah M. Wignall ()
| |
Collapse
|
11
|
Cavin-Meza G, Mullen TJ, Czajkowski ER, Wolff ID, Divekar NS, Finkle JD, Wignall SM. ZYG-9ch-TOG promotes the stability of acentrosomal poles via regulation of spindle microtubules in C. elegans oocyte meiosis. PLoS Genet 2022; 18:e1010489. [PMID: 36449516 PMCID: PMC9757581 DOI: 10.1371/journal.pgen.1010489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/16/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
During mitosis, centrosomes serve as microtubule organizing centers that guide the formation of a bipolar spindle. However, oocytes of many species lack centrosomes; how meiotic spindles establish and maintain these acentrosomal poles remains poorly understood. Here, we show that the microtubule polymerase ZYG-9ch-TOG is required to maintain acentrosomal pole integrity in C. elegans oocyte meiosis. We exploited the auxin inducible degradation system to remove ZYG-9 from pre-formed spindles within minutes; this caused the poles to split apart and an unstable multipolar structure to form. Depletion of TAC-1, a protein known to interact with ZYG-9 in mitosis, caused loss of proper ZYG-9 localization and similar spindle phenotypes, further demonstrating that ZYG-9 is required for pole integrity. However, depletion of ZYG-9 or TAC-1 surprisingly did not affect the assembly or stability of monopolar spindles, suggesting that these proteins are not required for acentrosomal pole structure per se. Moreover, fluorescence recovery after photobleaching (FRAP) revealed that ZYG-9 turns over rapidly at acentrosomal poles, displaying similar turnover dynamics to tubulin itself, suggesting that ZYG-9 does not play a static structural role at poles. Together, these data support a global role for ZYG-9 in regulating the stability of bipolar spindles and demonstrate that the maintenance of acentrosomal poles requires factors beyond those acting to organize the pole structure itself.
Collapse
Affiliation(s)
- Gabriel Cavin-Meza
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Timothy J. Mullen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Emily R. Czajkowski
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Ian D. Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nikita S. Divekar
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Justin D. Finkle
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah M. Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
12
|
Kiewisz R, Fabig G, Conway W, Baum D, Needleman DJ, Müller-Reichert T. Three-dimensional structure of kinetochore-fibers in human mitotic spindles. eLife 2022; 11:75459. [PMID: 35894209 PMCID: PMC9365394 DOI: 10.7554/elife.75459] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/24/2022] [Indexed: 11/13/2022] Open
Abstract
During cell division, kinetochore microtubules (KMTs) provide a physical linkage between the chromosomes and the rest of the spindle. KMTs in mammalian cells are organized into bundles, so-called kinetochore-fibers (k-fibers), but the ultrastructure of these fibers is currently not well characterized. Here, we show by large-scale electron tomography that each k-fiber in HeLa cells in metaphase is composed of approximately nine KMTs, only half of which reach the spindle pole. Our comprehensive reconstructions allowed us to analyze the three-dimensional (3D) morphology of k-fibers and their surrounding MTs in detail. We found that k-fibers exhibit remarkable variation in circumference and KMT density along their length, with the pole-proximal side showing a broadening. Extending our structural analysis then to other MTs in the spindle, we further observed that the association of KMTs with non-KMTs predominantly occurs in the spindle pole regions. Our 3D reconstructions have implications for KMT growth and k-fiber self-organization models as covered in a parallel publication applying complementary live-cell imaging in combination with biophysical modeling (Conway et al., 2022). Finally, we also introduce a new visualization tool allowing an interactive display of our 3D spindle data that will serve as a resource for further structural studies on mitosis in human cells.
Collapse
Affiliation(s)
- Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - William Conway
- Department of Physics, Harvard University, Cambridge, United States
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Wolff ID, Hollis JA, Wignall SM. Acentrosomal spindle assembly and maintenance in Caenorhabditis elegans oocytes requires a kinesin-12 nonmotor microtubule interaction domain. Mol Biol Cell 2022; 33:ar71. [PMID: 35594182 PMCID: PMC9635285 DOI: 10.1091/mbc.e22-05-0153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the meiotic divisions in oocytes, microtubules are sorted and organized by motor proteins to generate a bipolar spindle in the absence of centrosomes. In most organisms, kinesin-5 family members crosslink and slide microtubules to generate outward force that promotes acentrosomal spindle bipolarity. However, the mechanistic basis for how other kinesin families act on acentrosomal spindles has not been explored. We investigated this question in Caenorhabditis elegans oocytes, where kinesin-5 is not required to generate outward force and the kinesin-12 family motor KLP-18 instead performs this function. Here we use a combination of in vitro biochemical assays and in vivo mutant analysis to provide insight into the mechanism by which KLP-18 promotes acentrosomal spindle assembly. We identify a microtubule binding site on the C-terminal stalk of KLP-18 and demonstrate that a direct interaction between the KLP-18 stalk and its adaptor protein MESP-1 activates nonmotor microtubule binding. We also provide evidence that this C-terminal domain is required for KLP-18 activity during spindle assembly and show that KLP-18 is continuously required to maintain spindle bipolarity. This study thus provides new insight into the construction and maintenance of the oocyte acentrosomal spindle as well as into kinesin-12 mechanism and regulation.
Collapse
Affiliation(s)
- Ian D Wolff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Jeremy A Hollis
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
14
|
Lindow N, Brünig FN, Dercksen VJ, Fabig G, Kiewisz R, Redemann S, Müller-Reichert T, Prohaska S, Baum D. Semi-automatic stitching of filamentous structures in image stacks from serial-section electron tomography. J Microsc 2021; 284:25-44. [PMID: 34110027 DOI: 10.1111/jmi.13039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
We present a software-assisted workflow for the alignment and matching of filamentous structures across a three-dimensional (3D) stack of serial images. This is achieved by combining automatic methods, visual validation, and interactive correction. After the computation of an initial automatic matching, the user can continuously improve the result by interactively correcting landmarks or matches of filaments. Supported by a visual quality assessment of regions that have been already inspected, this allows a trade-off between quality and manual labour. The software tool was developed in an interdisciplinary collaboration between computer scientists and cell biologists to investigate cell division by quantitative 3D analysis of microtubules (MTs) in both mitotic and meiotic spindles. For this, each spindle is cut into a series of semi-thick physical sections, of which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. In practice, automatic stitching alone provides only an incomplete solution, because large physical distortions and a low signal-to-noise ratio often cause experimental difficulties. To derive 3D models of spindles despite dealing with imperfect data related to sample preparation and subsequent data collection, semi-automatic validation and correction is required to remove stitching mistakes. However, due to the large number of MTs in spindles (up to 30k) and their resulting dense spatial arrangement, a naive inspection of each MT is too time-consuming. Furthermore, an interactive visualisation of the full image stack is hampered by the size of the data (up to 100 GB). Here, we present a specialised, interactive, semi-automatic solution that considers all requirements for large-scale stitching of filamentous structures in serial-section image stacks. To the best of our knowledge, it is the only currently available tool which is able to process data of the type and size presented here. The key to our solution is a careful design of the visualisation and interaction tools for each processing step to guarantee real-time response, and an optimised workflow that efficiently guides the user through datasets. The final solution presented here is the result of an iterative process with tight feedback loops between the involved computer scientists and cell biologists. LAY DESCRIPTION: Electron tomography of biological samples is used for a three-dimensional (3D) reconstruction of filamentous structures, such as microtubules (MTs) in mitotic and meiotic spindles. Large-scale electron tomography can be applied to increase the reconstructed volume for the visualisation of full spindles. For this, each spindle is cut into a series of semi-thick physical sections, from which electron tomograms are acquired. The serial tomograms are then stitched and non-rigidly aligned to allow tracing and connecting of MTs across tomogram boundaries. Previously, we presented fully automatic approaches for this 3D reconstruction pipeline. However, large volumes often suffer from imperfections (ie physical distortions) caused by the image acquisition process, making it difficult to apply fully automatic approaches for matching and stitching of numerous tomograms. Therefore, we developed an interactive, semi-automatic solution that considers all requirements for large-scale stitching of microtubules in image stacks of consecutive sections. We achieved this by combining automatic methods, visual validation and interactive error correction, thus allowing the user to continuously improve the result by interactively correcting landmarks or matches of filaments. We present large-scale reconstructions of spindles in which the automatic workflow failed and where different steps of manual corrections were needed. Our approach is also applicable to other biological samples showing 3D distributions of MTs in a number of different cellular contexts.
Collapse
Affiliation(s)
- Norbert Lindow
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Florian N Brünig
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Vincent J Dercksen
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefanie Redemann
- School of Medicine, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.,School of Medicine, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia.,School of Medicine, Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Prohaska
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, Berlin, Germany
| |
Collapse
|
15
|
Penfield L, Shankar R, Szentgyörgyi E, Laffitte A, Mauro MS, Audhya A, Müller-Reichert T, Bahmanyar S. Regulated lipid synthesis and LEM2/CHMP7 jointly control nuclear envelope closure. J Cell Biol 2021; 219:151636. [PMID: 32271860 PMCID: PMC7199858 DOI: 10.1083/jcb.201908179] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 11/22/2022] Open
Abstract
The nuclear permeability barrier depends on closure of nuclear envelope (NE) holes. Here, we investigate closure of the NE opening surrounding the meiotic spindle in C. elegans oocytes. ESCRT-III components accumulate at the opening but are not required for nuclear closure on their own. 3D analysis revealed cytoplasmic membranes directly adjacent to NE holes containing meiotic spindle microtubules. We demonstrate that the NE protein phosphatase, CNEP-1/CTDNEP1, controls de novo glycerolipid synthesis through lipin to prevent invasion of excess ER membranes into NE holes and a defective NE permeability barrier. Loss of NE adaptors for ESCRT-III exacerbates ER invasion and nuclear permeability defects in cnep-1 mutants, suggesting that ESCRTs restrict excess ER membranes during NE closure. Restoring glycerolipid synthesis in embryos deleted for CNEP-1 and ESCRT components rescued NE permeability defects. Thus, regulating the production and feeding of ER membranes into NE holes together with ESCRT-mediated remodeling is required for nuclear closure.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Erik Szentgyörgyi
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alyssa Laffitte
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Michael Sean Mauro
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, New Haven, CT
| |
Collapse
|
16
|
Lantzsch I, Yu CH, Chen YZ, Zimyanin V, Yazdkhasti H, Lindow N, Szentgyoergyi E, Pani AM, Prohaska S, Srayko M, Fürthauer S, Redemann S. Microtubule reorganization during female meiosis in C. elegans. eLife 2021; 10:58903. [PMID: 34114562 PMCID: PMC8225387 DOI: 10.7554/elife.58903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/24/2021] [Indexed: 02/01/2023] Open
Abstract
Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic Caenorhabditis elegans spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.
Collapse
Affiliation(s)
- Ina Lantzsch
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yu-Zen Chen
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Vitaly Zimyanin
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | - Hossein Yazdkhasti
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States
| | | | - Erik Szentgyoergyi
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Ariel M Pani
- Department of Biology, University of VirginiaCharlottesvilleUnited States,Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | | | - Martin Srayko
- Department of Biological Sciences, University of AlbertaEdmontonCanada
| | | | - Stefanie Redemann
- Center for Membrane and Cell Physiology, University of Virginia School of MedicineCharlottesvilleUnited States,Department of Molecular Physiology and Biological Physics, University of Virginia, School of MedicineCharlottesvilleUnited States,Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
17
|
Taylor SJ, Pelisch F. Chromosome segregation during female meiosis in C. elegans: A tale of pushing and pulling. J Cell Biol 2020; 219:e202011035. [PMID: 33211077 PMCID: PMC7716380 DOI: 10.1083/jcb.202011035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of the kinetochore during meiotic chromosome segregation in C. elegans oocytes has been a matter of controversy. Danlasky et al. (2020. J. Cell. Biol.https://doi.org/10.1083/jcb.202005179) show that kinetochore proteins KNL-1 and KNL-3 are required for early stages of anaphase during female meiosis, suggesting a new kinetochore-based model of chromosome segregation.
Collapse
Affiliation(s)
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
18
|
Danlasky BM, Panzica MT, McNally KP, Vargas E, Bailey C, Li W, Gong T, Fishman ES, Jiang X, McNally FJ. Evidence for anaphase pulling forces during C. elegans meiosis. J Cell Biol 2020; 219:e202005179. [PMID: 33064834 PMCID: PMC7577052 DOI: 10.1083/jcb.202005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
19
|
Wang J, Veronezi GMB, Kang Y, Zagoskin M, O'Toole ET, Davis RE. Comprehensive Chromosome End Remodeling during Programmed DNA Elimination. Curr Biol 2020; 30:3397-3413.e4. [PMID: 32679104 PMCID: PMC7484210 DOI: 10.1016/j.cub.2020.06.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 01/14/2023]
Abstract
Germline and somatic genomes are in general the same in a multicellular organism. However, programmed DNA elimination leads to a reduced somatic genome compared to germline cells. Previous work on the parasitic nematode Ascaris demonstrated that programmed DNA elimination encompasses high-fidelity chromosomal breaks and loss of specific genome sequences including a major tandem repeat of 120 bp and ~1,000 germline-expressed genes. However, the precise chromosomal locations of these repeats, breaks regions, and eliminated genes remained unknown. We used PacBio long-read sequencing and chromosome conformation capture (Hi-C) to obtain fully assembled chromosomes of Ascaris germline and somatic genomes, enabling a complete chromosomal view of DNA elimination. We found that all 24 germline chromosomes undergo comprehensive chromosome end remodeling with DNA breaks in their subtelomeric regions and loss of distal sequences including the telomeres at both chromosome ends. All new Ascaris somatic chromosome ends are recapped by de novo telomere healing. We provide an ultrastructural analysis of Ascaris DNA elimination and show that eliminated DNA is incorporated into double membrane-bound structures, similar to micronuclei, during telophase of a DNA elimination mitosis. These micronuclei undergo dynamic changes including loss of active histone marks and localize to the cytoplasm following daughter nuclei formation and cytokinesis where they form autophagosomes. Comparative analysis of nematode chromosomes suggests that chromosome fusions occurred, forming Ascaris sex chromosomes that become independent chromosomes following DNA elimination breaks in somatic cells. These studies provide the first chromosomal view and define novel features and functions of metazoan programmed DNA elimination.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Giovana M B Veronezi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yuanyuan Kang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maxim Zagoskin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eileen T O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays Biochem 2020; 64:233-249. [PMID: 32756873 DOI: 10.1042/ebc20190067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.
Collapse
|
21
|
Mogessie B. Advances and surprises in a decade of oocyte meiosis research. Essays Biochem 2020; 64:263-275. [PMID: 32538429 DOI: 10.1042/ebc20190068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eggs are produced from progenitor oocytes through meiotic cell division. Fidelity of meiosis is critical for healthy embryogenesis - fertilisation of aneuploid eggs that contain the wrong number of chromosomes is a leading cause of genetic disorders including Down's syndrome, human embryo deaths and infertility. Incidence of meiosis-related oocyte and egg aneuploidies increases dramatically with advancing maternal age, which further complicates the 'meiosis problem'. We have just emerged from a decade of meiosis research that was packed with exciting and transformative research. This minireview will focus primarily on studies of mechanisms that directly influence chromosome segregation.
Collapse
Affiliation(s)
- Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| |
Collapse
|
22
|
Nazockdast E, Redemann S. Mechanics of the spindle apparatus. Semin Cell Dev Biol 2020; 107:91-102. [PMID: 32747191 DOI: 10.1016/j.semcdb.2020.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 12/01/2022]
Abstract
During mitosis microtubules self-organize to form a bipolar mitotic spindle structure, which positions the sister chromatids on the spindle mid-plane and separates them afterwards. Previous studies have identified many spindle associated proteins. Yet, we do not fully understand how these nanoscopic proteins lead to force generation through interactions of individual microtubules, motor proteins and chromosomes, and how a large number of these local interactions ultimately determine the structure and mechanics of the spindle in micron scale. Here we review the current understanding and open questions related to the structure and mechanics of the mitotic spindle. We then discuss how a combination of electron microscopy and computational modeling can be used to tackle some of these open questions.
Collapse
Affiliation(s)
- Ehssan Nazockdast
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA.
| | - Stefanie Redemann
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
23
|
Fabig G, Kiewisz R, Lindow N, Powers JA, Cota V, Quintanilla LJ, Brugués J, Prohaska S, Chu DS, Müller-Reichert T. Male meiotic spindle features that efficiently segregate paired and lagging chromosomes. eLife 2020; 9:50988. [PMID: 32149606 PMCID: PMC7101234 DOI: 10.7554/elife.50988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a ‘tug of war’ reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.
Collapse
Affiliation(s)
- Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - James A Powers
- Light Microscopy Imaging Center, Indiana University, Bloomington, United States
| | - Vanessa Cota
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Luis J Quintanilla
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Centre for Systems Biology Dresden, Dresden, Germany
| | | | - Diana S Chu
- Department of Biology, San Francisco State University, San Francisco, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
O'Toole E, Morphew M, McIntosh JR. Electron tomography reveals aspects of spindle structure important for mechanical stability at metaphase. Mol Biol Cell 2019; 31:184-195. [PMID: 31825721 PMCID: PMC7001478 DOI: 10.1091/mbc.e19-07-0405] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Metaphase spindles exert pole-directed forces on still-connected sister kinetochores. The spindle must counter these forces with extensive forces to prevent spindle collapse. In small spindles, kinetochore microtubules (KMTs) connect directly with the poles, and countering forces are supplied either by interdigitating MTs that form interpolar bundles or by astral MTs connected to the cell cortex. In bigger spindles, particularly those without structured poles, the origin of extensive forces is less obvious. We have used electron tomography of well-preserved metaphase cells to obtain structural evidence about interactions among different classes of MTs in metaphase spindles from Chlamydomonas rheinhardti and two strains of cultured mammalian cells. In all these spindles, KMTs approach close to and cross-bridge with the minus ends of non-KMTs, which form a framework that interdigitates near the spindle equator. Although this structure is not pole-connected, its organization suggests that it can support kinetochore tension. Analogous arrangements of MTs have been seen in even bigger spindles, such as metaphase spindles in Haemanthus endosperm and frog egg extracts. We present and discuss a hypothesis that rationalizes changes in spindle design with spindle size based on the negative exponential distribution of MT lengths in dynamically unstable populations of tubulin polymers.
Collapse
Affiliation(s)
- Eileen O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| |
Collapse
|
25
|
Redemann S, Fürthauer S, Shelley M, Müller-Reichert T. Current approaches for the analysis of spindle organization. Curr Opin Struct Biol 2019; 58:269-277. [DOI: 10.1016/j.sbi.2019.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
|
26
|
Yu CH, Redemann S, Wu HY, Kiewisz R, Yoo TY, Conway W, Farhadifar R, Müller-Reichert T, Needleman D. Central-spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B. Mol Biol Cell 2019; 30:2503-2514. [PMID: 31339442 PMCID: PMC6743361 DOI: 10.1091/mbc.e19-01-0074] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 01/05/2023] Open
Abstract
Spindle microtubules, whose dynamics vary over time and at different locations, cooperatively drive chromosome segregation. Measurements of microtubule dynamics and spindle ultrastructure can provide insight into the behaviors of microtubules, helping elucidate the mechanism of chromosome segregation. Much work has focused on the dynamics and organization of kinetochore microtubules, that is, on the region between chromosomes and poles. In comparison, microtubules in the central-spindle region, between segregating chromosomes, have been less thoroughly characterized. Here, we report measurements of the movement of central-spindle microtubules during chromosome segregation in human mitotic spindles and Caenorhabditis elegans mitotic and female meiotic spindles. We found that these central-spindle microtubules slide apart at the same speed as chromosomes, even as chromosomes move toward spindle poles. In these systems, damaging central-spindle microtubules by laser ablation caused an immediate and complete cessation of chromosome motion, suggesting a strong coupling between central-spindle microtubules and chromosomes. Electron tomographic reconstruction revealed that the analyzed anaphase spindles all contain microtubules with both ends between segregating chromosomes. Our results provide new dynamical, functional, and ultrastructural characterizations of central-spindle microtubules during chromosome segregation in diverse spindles and suggest that central-spindle microtubules and chromosomes are strongly coupled in anaphase.
Collapse
Affiliation(s)
- Che-Hang Yu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Stefanie Redemann
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Center for Membrane and Cell Physiology & Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tae Yeon Yoo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - William Conway
- Department of Physics, Harvard University, Cambridge, MA 02138
| | - Reza Farhadifar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Daniel Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Pelisch F, Bel Borja L, Jaffray EG, Hay RT. Sumoylation regulates protein dynamics during meiotic chromosome segregation in C. elegans oocytes. J Cell Sci 2019; 132:jcs232330. [PMID: 31243051 PMCID: PMC6679583 DOI: 10.1242/jcs.232330] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Oocyte meiotic spindles in most species lack centrosomes and the mechanisms that underlie faithful chromosome segregation in acentrosomal meiotic spindles are not well understood. In C. elegans oocytes, spindle microtubules exert a poleward force on chromosomes that is dependent on the microtubule-stabilising protein CLS-2, the orthologue of the mammalian CLASP proteins. The checkpoint kinase BUB-1 and CLS-2 localise in the central spindle and display a dynamic localisation pattern throughout anaphase, but the signals regulating their anaphase-specific localisation remains unknown. We have shown previously that SUMO regulates BUB-1 localisation during metaphase I. Here, we found that SUMO modification of BUB-1 is regulated by the SUMO E3 ligase GEI-17 and the SUMO protease ULP-1. SUMO and GEI-17 are required for BUB-1 localisation between segregating chromosomes during early anaphase I. We also show that CLS-2 is subject to SUMO-mediated regulation; CLS-2 precociously localises in the midbivalent when either SUMO or GEI-17 are depleted. Overall, we provide evidence for a novel, SUMO-mediated control of protein dynamics during early anaphase I in oocytes.
Collapse
Affiliation(s)
- Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
28
|
Spindle assembly and chromosome dynamics during oocyte meiosis. Curr Opin Cell Biol 2019; 60:53-59. [PMID: 31082633 DOI: 10.1016/j.ceb.2019.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/26/2022]
Abstract
Organisms that reproduce sexually utilize a specialized form of cell division called meiosis to reduce their chromosome number by half to generate haploid gametes. Meiosis in females is especially error-prone, and this vulnerability has a profound impact on human health: it is estimated that 10-25% of human embryos are chromosomally abnormal, and the vast majority of these defects arise from problems with the female reproductive cells (oocytes). Here, we highlight recent studies that explore how these important cells divide. Although we focus on work in the model organism Caenorhabditis elegans, we also discuss complementary studies in other organisms that together provide new insights into this crucial form of cell division.
Collapse
|
29
|
|