1
|
Wang K, Suyama R, Mizutani N, Matsuo M, Peng Y, Seki M, Suzuki Y, Luscombe NM, Dantec C, Lemaire P, Toyoda A, Nishida H, Onuma TA. Transcriptomes of a fast-developing chordate uncover drastic differences in transcription factors and localized maternal RNA composition compared with those of ascidians. Development 2025; 152:DEV202666. [PMID: 40099490 DOI: 10.1242/dev.202666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 12/30/2024] [Indexed: 03/20/2025]
Abstract
The larvacean Oikopleura dioica is a fast-developing chordate because of its small number of cells (∼4500 in juveniles) and rapid development to complete morphogenesis by 10 h after fertilization. Strikingly, most of its blastomeres are restricted to give rise to a single cell-type by the 32-cell stage of embryogenesis, unlike cell fate determination at the 110-cell stage in ascidians. In this study, RNA-sequencing (RNA-seq) revealed non-canonical properties of O. dioica: (1) an initial zygotic gene expression of 950 genes at the 16- to 32-cell stage; (2) 25 transcription factors (TFs) are expressed in the 32-cell stage (fewer than half of the TFs underlying gene regulatory networks in ascidian embryogenesis were lost or not expressed); (3) five maternal mRNAs localized in the vegetal-posterior blastomeres in animal and vegetal hemispheres; and (4) three maternal mRNAs localized in the small vegetal pole region of unfertilized eggs. These observations indicate that this fast-developing chordate lacks the first phase of development in ascidians: fertilization-driven ooplasmic movements that drive postplasmic RNAs toward the vegetal pole. These data have been deposited in ANISEED (https://www.aniseed.fr/) as transcriptome resources.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ritsuko Suyama
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nanako Mizutani
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masaki Matsuo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yu Peng
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Christelle Dantec
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Universite de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Patrick Lemaire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237, CNRS-Universite de Montpellier, 1919 route de Mende, F-34090 Montpellier, France
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
2
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
3
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
4
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
Moggioli G, Panossian B, Sun Y, Thiel D, Martín-Zamora FM, Tran M, Clifford AM, Goffredi SK, Rimskaya-Korsakova N, Jékely G, Tresguerres M, Qian PY, Qiu JW, Rouse GW, Henry LM, Martín-Durán JM. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat Commun 2023; 14:2814. [PMID: 37198188 PMCID: PMC10192322 DOI: 10.1038/s41467-023-38521-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
Bacterial symbioses allow annelids to colonise extreme ecological niches, such as hydrothermal vents and whale falls. Yet, the genetic principles sustaining these symbioses remain unclear. Here, we show that different genomic adaptations underpin the symbioses of phylogenetically related annelids with distinct nutritional strategies. Genome compaction and extensive gene losses distinguish the heterotrophic symbiosis of the bone-eating worm Osedax frankpressi from the chemoautotrophic symbiosis of deep-sea Vestimentifera. Osedax's endosymbionts complement many of the host's metabolic deficiencies, including the loss of pathways to recycle nitrogen and synthesise some amino acids. Osedax's endosymbionts possess the glyoxylate cycle, which could allow more efficient catabolism of bone-derived nutrients and the production of carbohydrates from fatty acids. Unlike in most Vestimentifera, innate immunity genes are reduced in O. frankpressi, which, however, has an expansion of matrix metalloproteases to digest collagen. Our study supports that distinct nutritional interactions influence host genome evolution differently in highly specialised symbioses.
Collapse
Affiliation(s)
- Giacomo Moggioli
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Balig Panossian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Yanan Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Martin Tran
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
| | - Alexander M Clifford
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Nadezhda Rimskaya-Korsakova
- Friedrich Schiller University Jena, Faculty of Biological Sciences, Institute of Zoology and Evolutionary Research, Erbertstr. 1, 07743, Jena, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
6
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
7
|
Smith G, Manzano-Marín A, Reyes-Prieto M, Antunes CSR, Ashworth V, Goselle ON, Jan AAA, Moya A, Latorre A, Perotti MA, Braig HR. Human follicular mites: Ectoparasites becoming symbionts. Mol Biol Evol 2022; 39:msac125. [PMID: 35724423 PMCID: PMC9218549 DOI: 10.1093/molbev/msac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria
| | - Mariana Reyes-Prieto
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
| | | | - Victoria Ashworth
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Obed Nanjul Goselle
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - M Alejandra Perotti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Institute and Museum of Natural Sciences, National University of San Juan, San Juan, Argentina
| |
Collapse
|
8
|
Abstract
Tardigrades are ubiquitous meiofauna that are especially renowned for their exceptional extremotolerance to various adverse environments, including pressure, temperature, and even ionizing radiation. This is achieved through a reversible halt of metabolism triggered by desiccation, a phenomenon called anhydrobiosis. Recent establishment of genome resources for two tardigrades, Hypsibius exemplaris and Ramazzottius varieornatus, accelerated research to uncover the molecular mechanisms behind anhydrobiosis, leading to the discovery of many tardigrade-unique proteins. This review focuses on the history, methods, discoveries, and current state and challenges regarding tardigrade genomics, with an emphasis on molecular anhydrobiology. Remaining questions and future perspectives regarding prospective approaches to fully elucidate the molecular machinery of this complex phenomenon are discussed.
Collapse
Affiliation(s)
- Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Daishouji, Tsuruoka, Yamagata, Japan; .,Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.,Graduate School of Media and Governance, Systems Biology Program, Keio University, Fujisawa, Kanagawa, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, Japan
| |
Collapse
|
9
|
Onuma TA, Nishida H. Developmental biology of the larvacean Oikopleura dioica: Genome resources, functional screening, and imaging. Dev Growth Differ 2021; 64:67-82. [PMID: 34964127 DOI: 10.1111/dgd.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022]
Abstract
The larvacean Oikopleura dioica is a cosmopolitan planktonic chordate and is closely related to vertebrates. It is characterized by a tadpole-shaped morphology with notochord flanked by muscle in the tail and brain on the dorsal side, a short life cycle of five days, a compact genome of approximately 56 Mb, a simple and transparent body with a small number of cells (~4000 in functional juveniles), invariant embryonic cell lineages, and fast development that ensures complete morphogenesis and organ formation 10 h after fertilization. With these features, this marine chordate is a promising and advantageous animal model in which genetic manipulation is feasible. In this review, we introduce relevant resources and modern techniques that have been developed: (1) Genome and transcriptomes. Oikopleura dioica has the smallest genome among non-parasitic metazoans. Its genome databases have been generated using three geographically distant O. dioica populations, and several intra-species sequence differences are becoming evident; (2) Functional genetic knockdown techniques. Comprehensive screening of genes is feasible using ovarian microinjection and double-strand DNA-induced gene knockdown; and (3) Live imaging of embryos and larvae. Application of these techniques has uncovered novel aspects of development, including meiotic cell arrest, left-right patterning, epidermal cell patterning, and mouth formation involving the connection of ectoderm and endoderm sheets. Oikopleura dioca has become very useful for developmental and evolutionary studies in chordates.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Graduate School of Science and Engineering, Faculty of Science, Kagoshima University, Kagoshima, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
10
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
11
|
Onuma TA, Nakanishi R, Sasakura Y, Ogasawara M. Nkx2-1 and FoxE regionalize glandular (mucus-producing) and thyroid-equivalent traits in the endostyle of the chordate Oikopleura dioica. Dev Biol 2021; 477:219-231. [PMID: 34107272 DOI: 10.1016/j.ydbio.2021.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
The endostyle is a ventral pharyngeal organ used for internal filter feeding of basal chordates and is considered homologous to the follicular thyroid of vertebrates. It contains mucus-producing (glandular) and thyroid-equivalent regions organized along the dorsoventral (DV) axis. Although thyroid-related genes (Nkx2-1, FoxE, and thyroid peroxidase (TPO)) are known to be expressed in the endostyle, their roles in establishing regionalization within the organ have not been demonstrated. We report that Nkx2-1 and FoxE are essential for establishing DV axial identity in the endostyle of Oikopleura dioica. Genome and expression analyses showed von Willebrand factor-like (vWFL) and TPO/dual oxidase (Duox)/Nkx2-1/FoxE as orthologs of glandular and thyroid-related genes, respectively. Knockdown experiments showed that Nkx2-1 is necessary for the expression of glandular and thyroid-related genes, whereas FoxE is necessary only for thyroid-related genes. Moreover, Nkx2-1 expression is necessary for FoxE expression in larvae during organogenesis. The results demonstrate the essential roles of Nkx2-1 and FoxE in establishing regionalization in the endostyle, including (1) the Nkx2-1-dependent glandular region, and (2) the Nkx2-1/FoxE-dependent thyroid-equivalent region. DV axial regionalization may be responsible for organizing glandular and thyroid-equivalent traits of the pharynx along the DV axis.
Collapse
Affiliation(s)
- Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Rina Nakanishi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
12
|
Nishida H, Ohno N, Caicci F, Manni L. 3D reconstruction of structures of hatched larva and young juvenile of the larvacean Oikopleura dioica using SBF-SEM. Sci Rep 2021; 11:4833. [PMID: 33649401 PMCID: PMC7921577 DOI: 10.1038/s41598-021-83706-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and an emerging model organism with a short life cycle of 5 days that belongs toTunicata (Urochordata), the sister clade of vertebrates. It is characterized by the rapid development of a tadpole-shaped body. Organ formation in the trunk proceeds within 7 h after the hatching of the tailbud larvae at 3 h after fertilization (hpf) and is completed at 10 hpf, giving rise to fully functional juveniles as miniature adult form. Serial block face scanning electron microscopy was used to acquire ~ 2000 serial transverse section images of a 3 hpf larva and a 10 hpf juvenile to characterize the structures and cellular composition of the trunk and organs using 3D images and movies. Germ cells were found to fuse and establish a central syncytial cell in the gonad as early as 10 hpf. Larval development gave rise to functional organs after several rounds of cell division through trunk morphogenesis. The feature would make O. dioica ideal for analyzing cellular behaviors during morphogenetic processes using live imaging. The detailed descriptions of the larvae and juveniles provided in this study can be utilized as the start and end points of organ morphogenesis in this rapidly developing organism.
Collapse
Affiliation(s)
- Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Nobuhiko Ohno
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8787, Japan.,Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Federico Caicci
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università degli Studi di Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| |
Collapse
|
13
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Conservative route to genome compaction in a miniature annelid. Nat Ecol Evol 2020; 5:231-242. [PMID: 33199869 PMCID: PMC7854359 DOI: 10.1038/s41559-020-01327-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The causes and consequences of genome reduction in animals are unclear because our understanding of this process mostly relies on lineages with often exceptionally high rates of evolution. Here, we decode the compact 73.8-megabase genome of Dimorphilus gyrociliatus, a meiobenthic segmented worm. The D. gyrociliatus genome retains traits classically associated with larger and slower-evolving genomes, such as an ordered, intact Hox cluster, a generally conserved developmental toolkit and traces of ancestral bilaterian linkage. Unlike some other animals with small genomes, the analysis of the D. gyrociliatus epigenome revealed canonical features of genome regulation, excluding the presence of operons and trans-splicing. Instead, the gene-dense D. gyrociliatus genome presents a divergent Myc pathway, a key physiological regulator of growth, proliferation and genome stability in animals. Altogether, our results uncover a conservative route to genome compaction in annelids, reminiscent of that observed in the vertebrate Takifugu rubripes. This study reports the genome of the miniature segmented annelid Dimorphilus gyrociliatus and reveals no drastic changes in genome architecture and regulation, unlike other cases of genome miniaturization.
Collapse
|
15
|
Wang K, Tomura R, Chen W, Kiyooka M, Ishizaki H, Aizu T, Minakuchi Y, Seki M, Suzuki Y, Omotezako T, Suyama R, Masunaga A, Plessy C, Luscombe NM, Dantec C, Lemaire P, Itoh T, Toyoda A, Nishida H, Onuma TA. A genome database for a Japanese population of the larvacean Oikopleura dioica. Dev Growth Differ 2020; 62:450-461. [PMID: 32677034 DOI: 10.1111/dgd.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023]
Abstract
The larvacean Oikopleura dioica is a planktonic chordate and is a tunicate that belongs to the closest relatives to vertebrates. Its simple and transparent body, invariant embryonic cell lineages, and short life cycle of 5 days make it a promising model organism for the study of developmental biology. The genome browser OikoBase was established in 2013 using Norwegian O. dioica. However, genome information for other populations is not available, even though many researchers have studied local populations. In the present study, we sequenced using Illumina and PacBio RSII technologies the genome of O. dioica from a southwestern Japanese population that was cultured in our laboratory for 3 years. The genome of Japanese O. dioica was assembled into 576 scaffold sequences with a total length and N50 length of 56.6 and 1.5 Mb, respectively. A total of 18,743 gene models (transcript models) were predicted in the genome assembly, named OSKA2016. In addition, 19,277 non-redundant transcripts were assembled using RNA-seq data. The OSKA2016 has global sequence similarity of only 86.5% when compared with the OikoBase, highlighting the sequence difference between the two far distant O. dioica populations on the globe. The genome assembly, transcript assembly, and transcript models were incorporated into ANISEED (https://www.aniseed.cnrs.fr/) for genome browsing and BLAST searches. Mapping of reads obtained from male- or female-specific genome libraries yielded male-specific scaffolds in the OSKA2016 and revealed that over 2.6 Mb of sequence were included in the male-specific Y-region. The genome and transcriptome resources from two distinct populations will be useful datasets for developmental biology, evolutionary biology, and molecular ecology using this model organism.
Collapse
Affiliation(s)
- Kai Wang
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ryo Tomura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Wei Chen
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Miho Kiyooka
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hinako Ishizaki
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tomoyuki Aizu
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tatsuya Omotezako
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ritsuko Suyama
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Christelle Dantec
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Patrick Lemaire
- Centre de Recherches de Biochimie Macromoleculaire (CRBM), UMR5237, CNRS-Universite de Montpellier, Montpellier, France
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
16
|
Hanscom T, McVey M. Regulation of Error-Prone DNA Double-Strand Break Repair and Its Impact on Genome Evolution. Cells 2020; 9:E1657. [PMID: 32660124 PMCID: PMC7407515 DOI: 10.3390/cells9071657] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Double-strand breaks are one of the most deleterious DNA lesions. Their repair via error-prone mechanisms can promote mutagenesis, loss of genetic information, and deregulation of the genome. These detrimental outcomes are significant drivers of human diseases, including many cancers. Mutagenic double-strand break repair also facilitates heritable genetic changes that drive organismal adaptation and evolution. In this review, we discuss the mechanisms of various error-prone DNA double-strand break repair processes and the cellular conditions that regulate them, with a focus on alternative end joining. We provide examples that illustrate how mutagenic double-strand break repair drives genome diversity and evolution. Finally, we discuss how error-prone break repair can be crucial to the induction and progression of diseases such as cancer.
Collapse
Affiliation(s)
| | - Mitch McVey
- Department. of Biology, Tufts University, Medford, MA 02155, USA;
| |
Collapse
|
17
|
A chordate species lacking Nodal utilizes calcium oscillation and Bmp for left-right patterning. Proc Natl Acad Sci U S A 2020; 117:4188-4198. [PMID: 32029598 DOI: 10.1073/pnas.1916858117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Larvaceans are chordates with a tadpole-like morphology. In contrast to most chordates of which early embryonic morphology is bilaterally symmetric and the left-right (L-R) axis is specified by the Nodal pathway later on, invariant L-R asymmetry emerges in four-cell embryos of larvaceans. The asymmetric cell arrangements exist through development of the tailbud. The tail thus twists 90° in a counterclockwise direction relative to the trunk, and the tail nerve cord localizes on the left side. Here, we demonstrate that larvacean embryos have nonconventional L-R asymmetries: 1) L- and R-cells of the two-cell embryo had remarkably asymmetric cell fates; 2) Ca2+ oscillation occurred through embryogenesis; 3) Nodal, an evolutionarily conserved left-determining gene, was absent in the genome; and 4) bone morphogenetic protein gene (Bmp) homolog Bmp.a showed right-sided expression in the tailbud and larvae. We also showed that Ca2+ oscillation is required for Bmp.a expression, and that BMP signaling suppresses ectopic expression of neural genes. These results indicate that there is a chordate species lacking Nodal that utilizes Ca2+ oscillation and Bmp.a for embryonic L-R patterning. The right-side Bmp.a expression may have arisen via cooption of conventional BMP signaling in order to restrict neural gene expression on the left side.
Collapse
|
18
|
Low-abundance mutations in colorectal cancer patients and healthy adults. Aging (Albany NY) 2020; 12:808-824. [PMID: 31927530 PMCID: PMC6977685 DOI: 10.18632/aging.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
Detecting low-abundance mutations is very important for cancer diagnosis and treatment. Here we describe an improved targeted sequencing analysis that dramatically increases sequencing depth. Seven colorectal cancer (CRC) patients and seven healthy adults were enrolled in this study. We examined genetic mutations in tissue samples from the central and peripheral regions of tumors from the CRC patients and in blood cells from the healthy adults. We observed that each CRC carried larger numbers of mutations more than previously estimated. These included numerous deletion mutations in the tumor tissue. While the cellular morphology in the surrounding normal colonic tissues was healthy, these cells also carried many mutations. Similarly, the blood cells from the healthy donors carried numerous mutations. These findings shed new light on the processes of tumorigenesis and aging, and also present a potentially effective method for detecting low-abundance mutations for cancer diagnosis and targeted treatments.
Collapse
|
19
|
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics 2019; 20:607. [PMID: 31340759 PMCID: PMC6652013 DOI: 10.1186/s12864-019-5912-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. Results E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The “tardigrade unique proteins” (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. Conclusions Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12864-019-5912-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Kamilari
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| |
Collapse
|
20
|
Nenarokova A, Záhonová K, Krasilnikova M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. Causes and Effects of Loss of Classical Nonhomologous End Joining Pathway in Parasitic Eukaryotes. mBio 2019; 10:e01541-19. [PMID: 31311886 PMCID: PMC6635534 DOI: 10.1128/mbio.01541-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023] Open
Abstract
We report frequent losses of components of the classical nonhomologous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining repair of DNA double-strand breaks, in several lineages of parasitic protists. Moreover, we have identified a single lineage among trypanosomatid flagellates that has lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous insertions in many protein-coding genes. We propose a correlation between these two phenomena and discuss the possible impact of the C-NHEJ loss on genome evolution and transition to the parasitic lifestyle.IMPORTANCE Parasites tend to evolve small and compact genomes, generally endowed with a high mutation rate, compared with those of their free-living relatives. However, the mechanisms by which they achieve these features, independently in unrelated lineages, remain largely unknown. We argue that the loss of the classical nonhomologous end joining pathway components may be one of the crucial steps responsible for characteristic features of parasite genomes.
Collapse
Affiliation(s)
- Anna Nenarokova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Marija Krasilnikova
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Richard McCulloch
- Wellcome Centre for Molecular Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
- Life Science Research Centre and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
21
|
Abstract
Abstract
The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotechnology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstration of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.
Collapse
|
22
|
|