1
|
Varga V, Szinyákovics J, Bebes A, Szikszai F, Kovács T. Role of Hemocytes in the Aging of Drosophila Male Germline. Cells 2025; 14:315. [PMID: 39996785 PMCID: PMC11854897 DOI: 10.3390/cells14040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Stem cells are essential for the proper functioning of tissues, replacing damaged, senescent cells to ensure tissue regeneration. However, as age advances, the number of these stem cells can change, and their self-renewal abilities can become impaired, leading to disruption of homeostasis, loss of regenerative capacity, and, ultimately, deterioration of tissue function. In Drosophila testis, in addition to the germline and somatic cells involved in spermatogenesis, there are immune cells (hemocytes) with macrophage function. In our study, we aimed to investigate the role of hemocytes in maintaining germline stem cells throughout their lifespan. Our results show that in the absence of plasmatocytes and crystal immune cells, the number of germline stem cells (GSCs) and apoptotic germline cells also increases significantly during senescence, which may have detrimental effects on the differentiation processes of germline cells. The size of the hub increases in aged male testes. It is therefore conceivable that changes in the hub may induce dysfunction of differentiation processes. The fertility of aged immunodeficient animals is decreased. Furthermore, we show that the expression of the JAK/STAT signaling pathway, which is essential for the maintenance of the stem cell niche, is impaired in the lack of hemocytes. We found an increased expression of Socs36e, an inhibitor of JAK-STAT, which correlates with decreased JAK-STAT activity. Overexpression of Socs36e in the apical part of the germline led to a phenotype similar to the immunodeficient aged germline, where an increased GSC number and hub size were also observed. However, spermatogenesis was also disturbed in this case. Our study shows that hemocytes are required to regulate the number of GSCs. This regulation could be mediated through the JAK-STAT signaling pathway. These results may help to provide a more complex insight into the relationships between immune cells and stem cells.
Collapse
Affiliation(s)
- Virginia Varga
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Anikó Bebes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Fanni Szikszai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary; (V.V.); (J.S.); (A.B.); (F.S.)
| |
Collapse
|
2
|
Vida GS, Botto E, DiNardo S. Maintenance of niche architecture requires actomyosin and enables proper stem cell signaling and oriented division in the Drosophila testis. Development 2025; 152:dev204498. [PMID: 39620974 PMCID: PMC11795290 DOI: 10.1242/dev.204498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Stem cells are essential to repair and regenerate tissues, and often reside in a niche that controls their behavior. Here, we use the Drosophila testis niche, a paradigm for niche-stem cell interactions, to address the cell biological features that maintain niche structure and function during its steady-state operation. We report enrichment of Myosin II (MyoII) and a key regulator of actomyosin contractility (AMC), Rho Kinase (ROK), within the niche cell cortex at the interface with germline stem cells (GSCs). Compromising MyoII and ROK disrupts niche architecture, suggesting that AMC in niche cells is important to maintain its reproducible structure. Furthermore, defects in niche architecture disrupt GSC function. Our data suggest that the niche signals less robustly to adjacent germ cells yet permits increased numbers of cells to respond to the signal. Finally, compromising MyoII in niche cells leads to increased misorientation of centrosomes in GSCs as well as defects in the centrosome orientation checkpoint. Ultimately, this work identifies a crucial role for AMC-dependent maintenance of niche structure to ensure a proper complement of stem cells that correctly execute divisions.
Collapse
Affiliation(s)
- Gabriela S. Vida
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Elizabeth Botto
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd, Philadelphia, PA 19104, USA
- The Penn Institute for Regenerative Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Chen M, Zou F, Wang P, Hu W, Shen P, Wu X, Xu H, Rui Y, Wang X, Wang Y. Dual-Barb Microneedle with JAK/STAT Inhibitor-Loaded Nanovesicles Encapsulation for Tendinopathy. Adv Healthc Mater 2024; 13:e2401512. [PMID: 39030889 DOI: 10.1002/adhm.202401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Tendon stem/progenitor cells (TSPCs) are crucial for tendon repair, regeneration, and homeostasis. Dysfunction of TSPCs, due to aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, contributes to tendinopathy. Unfortunately, the effectiveness of conventional subcutaneous injection targeting at suppressing JAK/STAT signaling pathway is limited due to the passive diffusion of drugs away from the injury site. Herein, a novel poly-gamma-glutamic acid (γ-PGA) dual-barb microneedle (MN) path loaded with TSPCs-derived nanovesicles (NVs) containing JAK/STAT inhibitor WP1066 (MN-WP1066-NVs) for tendinopathy treatment is designed. The dual-barb design of the MN ensures firm adhesion to the skin, allowing for sustained and prolonged release of WP1066-NVs, facilitating enhanced TSPCs self-renewal, migration, and stemness in tendinopathy. In vitro and in vivo experiments demonstrate that the degradation of γ-PGA patch tips facilitates the gradual release of WP1066-NVs at the lesion site. This release alleviates inflammation, suppresses extracellular matrix degradation, and restores normal tendon histological structure by inhibiting the JAK/STAT pathway. These findings suggest that the multifunctional dual-barb MN patch offers a novel and effective therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fengkai Zou
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Department of Orthopaedics, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenbo Hu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Peng Shen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, Southeast University School of Medicine, Nanjing, 210009, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024; 598:2809-2828. [PMID: 39048534 PMCID: PMC11586607 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| | - Eleni Katsantoni
- Biomedical Research FoundationAcademy of Athens, Basic Research CenterAthensGreece
| |
Collapse
|
5
|
Li WX. Computational simulation of JAK/STAT signaling in somatic versus germline stem cells. Dev Dyn 2024; 253:648-658. [PMID: 38126664 PMCID: PMC11190031 DOI: 10.1002/dvdy.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway regulates a variety of cellular processes. A major activation event in this pathway involves the phosphorylation of a tyrosine of STAT, converting unphosphorylated STAT (uSTAT) to phosphorylated STAT (pSTAT), an active transcription factor. In a noncanonical role, uSTAT contributes to the maintenance of heterochromatin stability. As such, an increase in pSTAT concurrently reduces uSTAT, resulting in heterochromatin loss, as observed in Drosophila somatic tissues. Paradoxically, an opposing phenomenon occurs in Drosophila male germline stem cells (GSCs), where the JAK/STAT pathway remains persistently active due to a continuous supply of ligands. Here, computational simulations were employed to dissect JAK/STAT pathway activation under different cellular contexts, mimicking somatic and germline cells. In these simulations, ordinary differential equations were leveraged to replicate the chemical reactions governing JAK/STAT signaling under different conditions. RESULTS The outcomes indicate that transient ligand stimulation, typical in somatic tissues, led to a momentary reduction in uSTAT levels. Conversely, sustained ligand stimulation, a characteristic feature of the GSC niche, resulted in elevated uSTAT levels at equilibrium. CONCLUSION The simulation suggests that the duration of ligand exposure could explain the observed opposite effects of JAK/STAT activation on heterochromatin in somatic versus GSCs.
Collapse
Affiliation(s)
- Willis X Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Roach TV, Lenhart KF. Mating-induced Ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. Development 2024; 151:dev202542. [PMID: 38832826 PMCID: PMC11190578 DOI: 10.1242/dev.202542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
Affiliation(s)
- Tiffany V. Roach
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| | - Kari F. Lenhart
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Fu B, Ma R, Liu F, Chen X, Wang M, Jin W, Zhang S, Wang Y, Sun L. New insights into ginsenoside Rg1 regulating the niche to inhibit age-induced germline stem cells depletion through targeting ECR/BMP signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3612-3630. [PMID: 38364249 PMCID: PMC10929810 DOI: 10.18632/aging.205548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE The age-induced imbalance in ecological niches leads to the loss of GSCs, which is the main reason for ovarian germline senescence. Ginsenoside Rg1 can delay ovarian senescence. Here, we shed light on new insights of ginsenoside Rg1 in regulating the niche to maintain GSCs self-renewal and discussing related molecular mechanisms. METHODS The differences among GSC number, reproductive capacity of naturally aging female Drosophila after ginsenoside Rg1 feeding were analyzed by immunofluorescence and behavior monitoring. The expressions of the active factors in the niche and the BMP signaling were analyzed through Western blot and RT-qPCR. The target effect was verified in the ECR mutant and combined with the molecular docking. RESULTS Ginsenoside Rg1 inhibited the age-induced reduction of the GSCs number and restored offspring production and development. Ginsenoside Rg1 promoted the expression of anchor proteins E-cadherin, stemness maintenance factor Nos and differentiation promoting factor Bam, thereby GSCs niche homeostasis was regulated. In addition, ginsenoside Rg1 was bound to the LBD region of the hormone receptor ECR. Ginsenoside Rg1 promotes the regeneration of GSCs by targeting the ECR to increase pSmad1/5/8 expression and thereby activating the BMP signaling pathway. In addition, ginsenoside Rg1 maintenance of niche homeostasis to promote GSCs regeneration is dependent on ECR as demonstrated in ECR mutants. CONCLUSIONS Ginsenoside Rg1 regulated the ecological niche homeostasis of GSCs and promoted the regeneration of GSCs by targeting the ECR/BMP signaling pathway in hormone-deficient states in aging ovaries. It is of great significance for prolonging fertility potential and delaying ovarian senescence.
Collapse
Affiliation(s)
- Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Fangbing Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yanping Wang
- Obstetrics and Gynecology Diagnosis and Treatment Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130062, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| |
Collapse
|
8
|
Roach TV, Lenhart KF. Mating-induced ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562562. [PMID: 37905121 PMCID: PMC10614927 DOI: 10.1101/2023.10.16.562562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
|
9
|
Xing Y, Larson K, Li J, Li WX. Canonical and non-canonical functions of STAT in germline stem cell maintenance. Dev Dyn 2023; 252:728-741. [PMID: 36866634 PMCID: PMC10238624 DOI: 10.1002/dvdy.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Maintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. RESULTS Here, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. CONCLUSIONS These results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.
Collapse
Affiliation(s)
- Yalan Xing
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kimberly Larson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Willis X. Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
10
|
Greenspan LJ, Matunis EL. Live Imaging of the Drosophila Testis Stem Cell Niche. Methods Mol Biol 2023; 2677:113-125. [PMID: 37464238 DOI: 10.1007/978-1-0716-3259-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Live imaging of adult tissue stem cell niches provides key insights into the dynamic behavior of stem cells, their differentiating progeny, and their neighboring support cells, but few niches are amenable to this approach. Here, we discuss a technique for long-term live imaging of the Drosophila testis stem cell niche. Culturing whole testes ex vivo for up to 18 h allows for tracking of cell-type-specific behaviors under normal and various chemically or genetically modified conditions. Fixing and staining tissues after live imaging allows for the molecular confirmation of cell identity and behavior. By using live imaging in intact niches, we can better uncover the cellular and molecular mechanisms that regulate stem cell function in vivo.
Collapse
Affiliation(s)
- Leah J Greenspan
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Erika L Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Bhaskar PK, Southard S, Baxter K, Van Doren M. Germline sex determination regulates sex-specific signaling between germline stem cells and their niche. Cell Rep 2022; 39:110620. [PMID: 35385723 PMCID: PMC10462394 DOI: 10.1016/j.celrep.2022.110620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
Establishing germ cell sexual identity is critical for development of male and female germline stem cells (GSCs) and production of sperm or eggs. Germ cells depend on signals from the somatic gonad to determine sex, but in organisms such as flies, mice, and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ-cell-intrinsic cues combine to regulate germline sex determination is thus a key question. We find that JAK/STAT signaling in the GSC niche promotes male identity in germ cells, in part by activating the chromatin reader Phf7. Further, we find that JAK/STAT signaling is blocked in XX (female) germ cells through the action of the sex determination gene Sex lethal to preserve female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.
Collapse
Affiliation(s)
- Pradeep Kumar Bhaskar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sheryl Southard
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Kelly Baxter
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
12
|
Toma G, Lemnian IM, Karapetian E, Grosse I, Seliger B. Transcriptional Analysis of Total CD8 + T Cells and CD8 +CD45RA - Memory T Cells From Young and Old Healthy Blood Donors. Front Immunol 2022; 13:806906. [PMID: 35154123 PMCID: PMC8829550 DOI: 10.3389/fimmu.2022.806906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Memory CD8+ T cells accumulate with aging, while the naïve T cell compartment decreases, leading to an increased susceptibility to infections and a decreased vaccine efficiency. To get deeper insights into the underlying mechanisms, this study aims to determine the age-dependent expression profile of total versus memory CD8+ T cells from young and old donors. Total CD8+ and CD8+CD45RA- memory T cells isolated from young (<30 years) and old (>60 years) donors were stimulated with anti-CD3 and anti-CD28 antibodies for 48h before analyzing the cytokine secretion and activation markers by flow cytometry and changes in the expression profiles using RNA sequencing. Gene ontology (GO) term enrichment analyses were performed for up-regulated and uniquely expressed transcripts identified in the T cell populations of both age groups. Total and memory CD8+ T cells from old donors expressed significantly higher CD25 levels and have an increased cytokine secretion. While approximately 1,500 up-regulated transcripts were identified in all groups, CD8+CD45RA- memory T cells of old donors had approximately 500 more uniquely expressed transcripts. Four GO terms related to the JAK-STAT pathway were identified for up-regulated transcripts in the total CD8+ T cells of old donors, whereas CD8+CD45RA- memory T cells GO terms related to adjacent pathways, like JNK and MAPK/ERK, were found. Additionally, the unique transcripts of CD8+CD45RA- memory T cells of old donors were related to the JNK, MAPK and IL-12 pathways. For both T cell populations of the old donors, cytokine and JAK-STAT pathway transcripts were up-regulated. Thus, an age-dependent effect was observed on the transcriptomes of total and memory CD8+ T cells. The CD8+ CD45RA- memory T cells from old donors maintained the increased cytokine secretion of the total CD8+ T cell population and the increased JAK-STAT pathway transcripts, which have an impact on inflammation and senescence.
Collapse
Affiliation(s)
- Georgiana Toma
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ioana Maria Lemnian
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Institute for Human Genetics, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Eliza Karapetian
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Ivo Grosse
- Institute for Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany.,Department for Therapeutics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
13
|
Chen M, Xiao L, Dai G, Lu P, Zhang Y, Li Y, Ni M, Rui Y. Inhibition of JAK-STAT Signaling Pathway Alleviates Age-Related Phenotypes in Tendon Stem/Progenitor Cells. Front Cell Dev Biol 2021; 9:650250. [PMID: 33855026 PMCID: PMC8039155 DOI: 10.3389/fcell.2021.650250] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Diminished regeneration or healing capacity of tendon occurs during aging. It has been well demonstrated that tendon stem/progenitor cells (TSPCs) play a vital role in tendon maintenance and repair. Here, we identified an accumulation of senescent TSPCs in tendon tissue with aging. In aged TSPCs, the activity of JAK-STAT signaling pathway was increased. Besides, genetic knockdown of JAK2 or STAT3 significantly attenuated TSPC senescence in aged TSPCs. Pharmacological inhibition of JAK-STAT signaling pathway with AG490 similarly attenuated cellular senescence and senescence-associated secretory phenotype (SASP) of aged TSPCs. In addition, inhibition of JAK-STAT signaling pathway also restored the age-related dysfunctions of TSPCs, including self-renewal, migration, actin dynamics, and stemness. Together, our findings reveal the critical role of JAK-STAT signaling pathway in the regulation of TSPC aging and suggest an ideal therapeutic target for the age-related tendon disorders.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Longfei Xiao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuanwei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingjuan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Ni
- Department of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|
14
|
Fang Y, Zong Q, He Z, Liu C, Wang YF. Knockdown of RpL36 in testes impairs spermatogenesis in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:417-430. [PMID: 33734578 DOI: 10.1002/jez.b.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 01/03/2023]
Abstract
Many ribosomal proteins (RPs) not only play essential roles in ribosome biogenesis, but also have "extraribosomal" functions in various cellular processes. RpL36 encodes ribosomal protein L36, a component of the 60S subunit of ribosomes in Drosophila melanogaster. We report here that RpL36 is required for spermatogenesis in D. melanogaster. After showing the evolutionary conservation of RpL36 sequences in animals, we revealed that the RpL36 expression level in fly testes was significantly higher than in ovaries. Knockdown RpL36 in fly testes resulted in a significantly decreased egg hatch rate when these males mated with wild-type females. Furthermore, 76.67% of the RpL36 knockdown fly testes were much smaller in comparison to controls. Immunofluorescence staining exhibited that in the RpL36 knockdown testis hub cell cluster was enlarged, while the number of germ cells, including germ stem cells, was reduced. Knockdown of RpL36 in fly testis caused much fewer or no mature sperms in seminal vesicles. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) signal was stronger in RpL36 knockdown fly testes than in the control testes, but the TUNEL-positive cells could not be stained by Vasa antibody, indicating that apoptotic cells are not germ cells. The percentage of pH3-positive cells among the Vasa-positive cells was significantly reduced. The expression of genes involved in cell death, cell cycle progression, and JAK/STAT signaling pathway was significantly changed by RpL36 knockdown in fly testes. These results suggest that RpL36 plays an important role in spermatogenesis, likely through JAK/STAT pathway, thus resulting in defects in cell-cycle progression and cell death in D. melanogaster testes.
Collapse
Affiliation(s)
- Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Qiong Zong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
15
|
Affiliation(s)
- Alana M. O’Reilly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Loza-Coll MA, Petrossian CC, Boyle ML, Jones DL. Heterochromatin Protein 1 (HP1) inhibits stem cell proliferation induced by ectopic activation of the Jak/STAT pathway in the Drosophila testis. Exp Cell Res 2019; 377:1-9. [PMID: 30817931 DOI: 10.1016/j.yexcr.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 11/18/2022]
Abstract
Stem cells can divide asymmetrically with respect to cell fate, producing a copy of themselves (self-renewal), while giving rise to progeny that will differentiate along a specific lineage. Mechanisms that bias the balance towards self-renewal or extend the proliferative capacity of the differentiating progeny can result in tissue overgrowth and, eventually, the formation of tumors. Recent work has explored the role of heterochromatin and heterochromatin-associated proteins in the regulation of stem cell behavior under homeostatic conditions, but less is known about their possible roles in potentiating or suppressing stem cell overproliferation. Here we used ectopic activation of the Jak/STAT pathway in germline and somatic stem cells of the D. melanogaster testis as an in vivo model to probe the function of Heterochromatin Protein 1 (HP1) in stem cell overproliferation. Forced expression of HP1 in either early germ or somatic cells suppressed the overgrowth of testes in response to ectopic Jak/STAT activation. Interestingly, HP1 expression led to distinct phenotypes, depending on whether it was overexpressed in somatic or germ cells, possibly reflecting different cell-autonomous and non-autonomous effects in each cell type. Our results provide a new framework for further in vivo studies aimed at understanding the interactions between heterochromatin and uncontrolled stem cell proliferation, as well as the complex cross-regulatory interactions between the somatic and germline lineages in the Drosophila testis.
Collapse
Affiliation(s)
| | | | | | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|