1
|
Bracey KM, Fye M, Cario A, Ho KH, Noguchi P, Gu G, Kaverina I. Glucose-stimulated KIF5B-driven microtubule sliding organizes microtubule networks in pancreatic β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.25.546468. [PMID: 37425827 PMCID: PMC10327020 DOI: 10.1101/2023.06.25.546468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In pancreatic islet β cells, molecular motors use cytoskeletal polymers microtubules as tracks for intracellular transport of insulin secretory granules. The β-cell microtubule network has a complex architecture and is non-directional, which provides insulin granules at the cell periphery for rapid secretion response, yet to avoid over-secretion and subsequent hypoglycemia. We have previously characterized a peripheral sub-membrane microtubule array, which is critical for the withdrawal of excessive insulin granules from the secretion sites. Microtubules in β cells originate at the Golgi in the cell interior, and how the peripheral array is formed is unknown. Using real-time imaging and photo-kinetics approaches in clonal mouse pancreatic β cells MIN6, we now demonstrate that kinesin KIF5B, a motor protein with a capacity to transport microtubules as cargos, slides existing microtubules to the cell periphery and aligns them to each other along the plasma membrane. Moreover, like many physiological β-cell features, microtubule sliding is facilitated by a high glucose stimulus. These new data, together with our previous report that in high glucose sub-membrane MT array is destabilized to allow for robust secretion, indicate that MT sliding is another integral part of glucose-triggered microtubule remodeling, likely replacing destabilized peripheral microtubules to prevent their loss over time and β-cell malfunction.
Collapse
|
2
|
Qu J, Li J, Wang H, Lan J, Huo Z, Li X. Decoding the role of microtubules: a trafficking road for vesicle. Theranostics 2025; 15:5138-5152. [PMID: 40303338 PMCID: PMC12036878 DOI: 10.7150/thno.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/27/2025] [Indexed: 05/02/2025] Open
Abstract
Background: In eukaryotic cells, intracellular and extracellular vesicle transport systems are ubiquitous and tightly linked. This process involves well-defined initiation and termination points, as well as mechanisms for vesicle recycling. During transport, cytoskeletal components serve as "roads" to prevent disordered vesicular movement and to ensure efficient transport, particularly through microtubules. Microtubules primarily facilitate the long-distance transport of vesicles. The dynamic nature of microtubule structure makes its stability sensitive to proteins, drugs, and post-translational modifications such as acetylation, which in turn regulate microtubule-dependent vesicular transport. Furthermore, motor proteins interact with microtubules and bind to cargoes via their tail domains, driving vesicle transport along microtubules and determining the directionality of movement. Aim of review: To elucidate the detailed processes and mechanisms of microtubules-regulated long-distance vesicle transport, providing a comprehensive overview of current research in this area. Key scientific concepts of review: This review provides an in-depth analysis of microtubule-mediated vesicle transport, emphasizing the molecular mechanisms involved. It examines vesicle transport between organelles, the impact of microtubule characteristics on this process, and the role of motor proteins in vesicle dynamics. Additionally, it summarizes diseases associated with abnormal microtubule-mediated vesicle transport, aiming to offer insights for the treatment of related conditions.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianan Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Hong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zixuan Huo
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| |
Collapse
|
3
|
Torun A, Tuğral H, Banerjee S. Crosstalk Between Phase-Separated Membraneless Condensates and Membrane-Bound Organelles in Cellular Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095243 DOI: 10.1007/5584_2025_852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Compartmentalization in eukaryotic cells allows the spatiotemporal regulation of biochemical processes, in addition to allowing specific sets of proteins to interact in a regulated as well as stochastic manner. Although membrane-bound organelles are thought to be the key players of cellular compartmentalization, membraneless biomolecular condensates such as stress granules, P bodies, and many others have recently emerged as key players that are also thought to bring order to a highly chaotic environment. Here, we have evaluated the latest studies on biomolecular condensates, specifically focusing on how they interact with membrane-bound organelles and modulate each other's functions. We also highlight the importance of this interaction in neurodegenerative and cardiovascular diseases as well as in cancer.
Collapse
Affiliation(s)
- Aydan Torun
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Hoşnaz Tuğral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye.
| |
Collapse
|
4
|
Mueller JW, Thomas P, Dalgaard LT, da Silva Xavier G. Sulfation pathways in the maintenance of functional beta-cell mass and implications for diabetes. Essays Biochem 2024; 68:509-522. [PMID: 39290144 PMCID: PMC11625869 DOI: 10.1042/ebc20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Diabetes Type 1 and Type 2 are widely occurring diseases. In spite of a vast amount of biomedical literature about diabetic processes in general, links to certain biological processes are only becoming evident these days. One such area of biology is the sulfation of small molecules, such as steroid hormones or metabolites from the gastrointestinal tract, as well as larger biomolecules, such as proteins and proteoglycans. Thus, modulating the physicochemical propensities of the different sulfate acceptors, resulting in enhanced solubility, expedited circulatory transit, or enhanced macromolecular interaction. This review lists evidence for the involvement of sulfation pathways in the maintenance of functional pancreatic beta-cell mass and the implications for diabetes, grouped into various classes of sulfated biomolecule. Complex heparan sulfates might play a role in the development and maintenance of beta-cells. The sulfolipids sulfatide and sulfo-cholesterol might contribute to beta-cell health. In beta-cells, there are only very few proteins with confirmed sulfation on some tyrosine residues, with the IRS4 molecule being one of them. Sulfated steroid hormones, such as estradiol-sulfate and vitamin-D-sulfate, may facilitate downstream steroid signaling in beta-cells, following de-sulfation. Indoxyl sulfate is a metabolite from the intestine, that causes kidney damage, contributing to diabetic kidney disease. Finally, from a technological perspective, there is heparan sulfate, heparin, and chondroitin sulfate, that all might be involved in next-generation beta-cell transplantation. Sulfation pathways may play a role in pancreatic beta-cells through multiple mechanisms. A more coherent understanding of sulfation pathways in diabetes will facilitate discussion and guide future research.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | - Patricia Thomas
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, U.K
| | | | | |
Collapse
|
5
|
Ho KH, Barmaver SN, Hu R, Yagan M, Ahmed HK, Kaverina I, Gu G. Pancreatic islet α cells regulate microtubule stability in neighboring β cells to tune insulin secretion and induce functional heterogeneity in individual mouse and human islets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619544. [PMID: 39484371 PMCID: PMC11527287 DOI: 10.1101/2024.10.21.619544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We have reported that the microtubule (MT) network in β cells attenuates this function by withdrawing insulin secretory granules (ISGs) away from the plasma membrane. Thus, high glucose-induced MT remodeling is required for robust glucose-stimulated insulin secretion (GSIS). We now show that α-cell secreted hormones, Gcg and/or Glp1, regulate the MT stability in β cells. Activating the receptors of Gcg or Glp1 (GcgR or Glp1R) with chemical agonists induces MT destabilization in β ells in the absence of high glucose. In contrast, inhibiting these receptors with antagonists attenuates high glucose-induced MT destabilization. Supporting the significance of this regulation, the MT networks in β cells of islets with higher α/β cell ratio are less stable than those with lower α/β cell ratio. Within each individual islet, β cells that are located close to α cells show faster MTs remodeling upon glucose stimulation than those away. Consequently, islets with higher α/β cell ratio secrete more insulin in response to high glucose and plasma membrane depolarization, which is recapitulated by direct Gcg stimulation. These combined results reveal a new MT-dependent pathway by which α cells, using Gcg and or Glp1-mediated paracrine signaling, tune β-cell secretion. In addition, the different α-β cell ratios in individual islets lead to their heterogeneous secretory responses, which may be important for handling secretory function needs under different physiological conditions. Highlights Gcg sensitizes glucose-induced MT remodeling in mouse and human β cellsMT density in single islets anti-correlates with α/β cell ratioGSIS levels in single islets positively correlate with α/β cell ratioDifferent α/β cell ratio contributes to heterogeneity of single islet GSIS.
Collapse
|
6
|
Loh YP, Xiao L, Park JJ. Trafficking of hormones and trophic factors to secretory and extracellular vesicles: a historical perspective and new hypothesis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:568-587. [PMID: 38435713 PMCID: PMC10906782 DOI: 10.20517/evcna.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
It is well known that peptide hormones and neurotrophic factors are intercellular messengers that are packaged into secretory vesicles in endocrine cells and neurons and released by exocytosis upon the stimulation of the cells in a calcium-dependent manner. These secreted molecules bind to membrane receptors, which then activate signal transduction pathways to mediate various endocrine/trophic functions. Recently, there is evidence that these molecules are also in extracellular vesicles, including small extracellular vesicles (sEVs), which appear to be taken up by recipient cells. This finding raised the hypothesis that they may have functions differentiated from their classical secretory hormone/neurotrophic factor actions. In this article, the historical perspective and updated mechanisms for the sorting and packaging of hormones and neurotrophic factors into secretory vesicles and their transport in these organelles for release at the plasma membrane are reviewed. In contrast, little is known about the packaging of hormones and neurotrophic factors into extracellular vesicles. One proposal is that these molecules could be sorted at the trans-Golgi network, which then buds to form Golgi-derived vesicles that can fuse to endosomes and subsequently form intraluminal vesicles. They are then taken up by multivesicular bodies to form extracellular vesicles, which are subsequently released. Other possible mechanisms for packaging RSP proteins into sEVs are discussed. We highlight some studies in the literature that suggest the dual vesicular pathways for the release of hormones and neurotrophic factors from the cell may have some physiological significance in intercellular communication.
Collapse
Affiliation(s)
- Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua J. Park
- Scientific Review Branch, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Wildonger J, Than H. Intracellular transport: Finding the motor that will take you where you need to go. Curr Biol 2023; 33:R950-R953. [PMID: 37751706 DOI: 10.1016/j.cub.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The Golgi complex is a busy production hub. A new study reveals that a microtubule end-binding (EB) protein enriched at the trans-Golgi network in neurons is needed to pair dense core vesicles with a kinesin motor for transport to axons.
Collapse
Affiliation(s)
- Jill Wildonger
- Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Helen Than
- Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Li Q, Zhang J, Fang Y, Dai Y, Jia P, Shen Z, Xu S, Ding X, Zhou F. Phosphoproteome Profiling of uEVs Reveals p-AQP2 and p-GSK3β as Potential Markers for Diabetic Nephropathy. Molecules 2023; 28:5605. [PMID: 37513479 PMCID: PMC10383182 DOI: 10.3390/molecules28145605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3β (p-GSK3β[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.
Collapse
Affiliation(s)
- Qing Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, Sichuan Clinical Research Center for Kidney Disease, University of Electronic Science and Technology, Chengdu 610072, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Yan Dai
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Sujuan Xu
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200437, China
| | - Feng Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion, Liver Cancer Institute, Zhongshan Hospital, Minister of Education, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Sahu S, Chauhan P, Lumen E, Moody K, Peddireddy K, Mani N, Subramanian R, Robertson-Anderson R, Wolfe AJ, Ross JL. Interplay of self-organization of microtubule asters and crosslinking protein condensates. PNAS NEXUS 2023; 2:pgad231. [PMID: 37497046 PMCID: PMC10367440 DOI: 10.1093/pnasnexus/pgad231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
The cytoskeleton is a major focus of physical studies to understand organization inside cells given its primary role in cell motility, cell division, and cell mechanics. Recently, protein condensation has been shown to be another major intracellular organizational strategy. Here, we report that the microtubule crosslinking proteins, MAP65-1 and PRC1, can form phase separated condensates at physiological salt and temperature without additional crowding agents in vitro. The size of the droplets depends on the concentration of protein. MAP65 condensates are liquid at first and can gelate over time. We show that these condensates can nucleate and grow microtubule bundles that form asters, regardless of the viscoelasticity of the condensate. The droplet size directly controls the number of projections in the microtubule asters, demonstrating that the MAP65 concentration can control the organization of microtubules. When gel-like droplets nucleate and grow asters from a shell of tubulin at the surface, the microtubules are able to re-fluidize the MAP65 condensate, returning the MAP65 molecules to solution. This work implies that there is an interplay between condensate formation from microtubule-associated proteins, microtubule organization, and condensate dissolution that could be important for the dynamics of intracellular organization.
Collapse
Affiliation(s)
- Sumon Sahu
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- Department of Physics, New York University, New York, NY 10003, USA
| | - Prashali Chauhan
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ellie Lumen
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
| | - Kelsey Moody
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | | | - Nandini Mani
- Massachusetts General Hospital, Boston, MA 02115, USA
| | | | | | - Aaron J Wolfe
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Jennifer L Ross
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
Ho KH, Jayathilake A, Yagan M, Nour A, Osipovich AB, Magnuson MA, Gu G, Kaverina I. CAMSAP2 localizes to the Golgi in islet β-cells and facilitates Golgi-ER trafficking. iScience 2023; 26:105938. [PMID: 36718359 PMCID: PMC9883185 DOI: 10.1016/j.isci.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glucose stimulation induces the remodeling of microtubules, which potentiates insulin secretion in pancreatic β-cells. CAMSAP2 binds to microtubule minus ends to stabilize microtubules in several cultured clonal cells. Here, we report that the knockdown of CAMSAP2 in primary β-cells reduces total insulin content and attenuates GSIS without affecting the releasability of insulin vesicles. Surprisingly, CAMSAP2 knockdown does not change microtubule stability. Unlike in cultured insulinoma cells, CAMSAP2 in primary β-cells predominantly localizes to the Golgi apparatus instead of microtubule minus ends. This novel localization is specific to primary β- but not α-cells and is independent of microtubule binding. Consistent with its specific localization at the Golgi, CAMSAP2 promotes efficient Golgi-ER trafficking in primary β-cells. Moreover, primary β-cells and insulinoma cells likely express different CAMSAP2 isoforms. We propose that a novel CAMSAP2 isoform in primary β-cells has a non-canonical function, which promotes Golgi-ER trafficking to support efficient production of insulin and secretion.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anissa Jayathilake
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mahircan Yagan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Aisha Nour
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Castillo-Velázquez R, Martínez-Morales F, Castañeda-Delgado JE, García-Hernández MH, Herrera-Mayorga V, Paredes-Sánchez FA, Rivera G, Rivas-Santiago B, Lara-Ramírez EE. Bioinformatic prediction of the molecular links between Alzheimer's disease and diabetes mellitus. PeerJ 2023; 11:e14738. [PMID: 36778155 PMCID: PMC9912946 DOI: 10.7717/peerj.14738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Background Alzheimer's disease (AD) and type 2 diabetes mellitus (DM2) are chronic degenerative diseases with complex molecular processes that are potentially interconnected. The aim of this work was to predict the potential molecular links between AD and DM2 from different sources of biological information. Materials and Methods In this work, data mining of nine databases (DisGeNET, Ensembl, OMIM, Protein Data Bank, The Human Protein Atlas, UniProt, Gene Expression Omnibus, Human Cell Atlas, and PubMed) was performed to identify gene and protein information that was shared in AD and DM2. Next, the information was mapped to human protein-protein interaction (PPI) networks based on experimental data using the STRING web platform. Then, gene ontology biological process (GOBP) and pathway analyses with EnrichR showed its specific and shared biological process and pathway deregulations. Finally, potential biomarkers and drug targets were predicted with the Metascape platform. Results A total of 1,551 genes shared in AD and DM2 were identified. The highest average degree of nodes within the PPI was for DM2 (average = 2.97), followed by AD (average degree = 2.35). GOBP for AD was related to specific transcriptional and translation genetic terms occurring in neurons cells. The GOBP and pathway information for the association AD-DM2 were linked mainly to bioenergetics and cytokine signaling. Within the AD-DM2 association, 10 hub proteins were identified, seven of which were predicted to be present in plasma and exhibit pharmacological interaction with monoclonal antibodies in use, anticancer drugs, and flavonoid derivatives. Conclusion Our data mining and analysis strategy showed that there are a plenty of biological information based on experiments that links AD and DM2, which could provide a rational guide to design further diagnosis and treatment for AD and DM2.
Collapse
Affiliation(s)
- Ricardo Castillo-Velázquez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México,Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis, San Luis Potosí, San Luis Potosí, México
| | - Flavio Martínez-Morales
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis, San Luis Potosí, San Luis Potosí, México
| | - Julio E. Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México,Investigadores por México, CONACYT, Consejo Nacional de Ciencia y Tecnología, Zacatecas, Zacatecas, México
| | - Mariana H. García-Hernández
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Verónica Herrera-Mayorga
- Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante, Tamaulipas, México
| | | | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Bruno Rivas-Santiago
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Edgar E. Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México,Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| |
Collapse
|
12
|
Tran DT, Pottekat A, Lee K, Raghunathan M, Loguercio S, Mir SA, Paton AW, Paton JC, Arvan P, Kaufman RJ, Itkin-Ansari P. Inflammatory Cytokines Rewire the Proinsulin Interaction Network in Human Islets. J Clin Endocrinol Metab 2022; 107:3100-3110. [PMID: 36017587 PMCID: PMC10233482 DOI: 10.1210/clinem/dgac493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 01/19/2023]
Abstract
CONTEXT Aberrant biosynthesis and secretion of the insulin precursor proinsulin occurs in both type I and type II diabetes. Inflammatory cytokines are implicated in pancreatic islet stress and dysfunction in both forms of diabetes, but the mechanisms remain unclear. OBJECTIVE We sought to determine the effect of the diabetes-associated cytokines on proinsulin folding, trafficking, secretion, and β-cell function. METHODS Human islets were treated with interleukin-1β and interferon-γ for 48 hours, followed by analysis of interleukin-6, nitrite, proinsulin and insulin release, RNA sequencing, and unbiased profiling of the proinsulin interactome by affinity purification-mass spectrometry. RESULTS Cytokine treatment induced secretion of interleukin-6, nitrites, and insulin, as well as aberrant release of proinsulin. RNA sequencing showed that cytokines upregulated genes involved in endoplasmic reticulum stress, and, consistent with this, affinity purification-mass spectrometry revealed cytokine induced proinsulin binding to multiple endoplasmic reticulum chaperones and oxidoreductases. Moreover, increased binding to the chaperone immunoglobulin binding protein was required to maintain proper proinsulin folding in the inflammatory environment. Cytokines also regulated novel interactions between proinsulin and type 1 and type 2 diabetes genome-wide association studies candidate proteins not previously known to interact with proinsulin (eg, Ataxin-2). Finally, cytokines induced proinsulin interactions with a cluster of microtubule motor proteins and chemical destabilization of microtubules with Nocodazole exacerbated cytokine induced proinsulin secretion. CONCLUSION Together, the data shed new light on mechanisms by which diabetes-associated cytokines dysregulate β-cell function. For the first time, we show that even short-term exposure to an inflammatory environment reshapes proinsulin interactions with critical chaperones and regulators of the secretory pathway.
Collapse
Affiliation(s)
- Duc T Tran
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Plexium, San Diego, CA, USA
| | - Anita Pottekat
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Illumina, San Diego, CA, USA
| | - Kouta Lee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Megha Raghunathan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Saiful A Mir
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- University of Calcutta, West Bengal, India
| | | | | | - Peter Arvan
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Randal J Kaufman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | |
Collapse
|
13
|
Bracey KM, Gu G, Kaverina I. Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision. Front Cell Dev Biol 2022; 10:915206. [PMID: 35874834 PMCID: PMC9305484 DOI: 10.3389/fcell.2022.915206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic islet β cells regulate glucose homeostasis via glucose-stimulated insulin secretion (GSIS). Cytoskeletal polymers microtubules (MTs) serve as tracks for the transport and positioning of secretory insulin granules. MT network in β cells has unique morphology with several distinct features, which support granule biogenesis (via Golgi-derived MT array), net non-directional transport (via interlocked MT mesh), and control availability of granules at secretion sites (via submembrane MT bundle). The submembrane MT array, which is parallel to the plasma membrane and serves to withdraw excessive granules from the secretion hot spots, is destabilized and fragmented downstream of high glucose stimulation, allowing for regulated secretion. The origin of such an unusual MT network, the features that define its functionality, and metabolic pathways that regulate it are still to a large extent elusive and are a matter of active investigation and debate. Besides the MT network itself, it is important to consider the interplay of molecular motors that drive and fine-tune insulin granule transport. Importantly, activity of kinesin-1, which is the major MT-dependent motor in β cells, transports insulin granules, and has a capacity to remodel MT network, is also regulated by glucose. We discuss yet unknown potential avenues toward understanding how MT network and motor proteins provide control for secretion in coordination with other GSIS-regulating mechanisms.
Collapse
|
14
|
Buchwalter RA, Ogden SC, York SB, Sun L, Zheng C, Hammack C, Cheng Y, Chen JV, Cone AS, Meckes DG, Tang H, Megraw TL. Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells 2021; 10:3335. [PMID: 34943843 PMCID: PMC8699624 DOI: 10.3390/cells10123335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.
Collapse
Affiliation(s)
- Rebecca A. Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Sarah C. Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Sara B. York
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Li Sun
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Jieyan V. Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Allaura S. Cone
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| |
Collapse
|
15
|
Trogden KP, Lee J, Bracey KM, Ho KH, McKinney H, Zhu X, Arpag G, Folland TG, Osipovich AB, Magnuson MA, Zanic M, Gu G, Holmes WR, Kaverina I. Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. eLife 2021; 10:59912. [PMID: 34783306 PMCID: PMC8635970 DOI: 10.7554/elife.59912] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of glucose-stimulated insulin secretion (GSIS) in pancreatic islets is physiologically important but poorly understood. Here, we utilize mouse islets to determine how microtubules (MTs) affect secretion toward the vascular extracellular matrix at single cell and subcellular levels. Our data indicate that MT stability in the β-cell population is heterogenous, and that GSIS is suppressed in cells with highly stable MTs. Consistently, MT hyper-stabilization prevents, and MT depolymerization promotes the capacity of single β-cell for GSIS. Analysis of spatiotemporal patterns of secretion events shows that MT depolymerization activates otherwise dormant β-cells via initiation of secretion clusters (hot spots). MT depolymerization also enhances secretion from individual cells, introducing both additional clusters and scattered events. Interestingly, without MTs, the timing of clustered secretion is dysregulated, extending the first phase of GSIS and causing oversecretion. In contrast, glucose-induced Ca2+ influx was not affected by MT depolymerization yet required for secretion under these conditions, indicating that MT-dependent regulation of secretion hot spots acts in parallel with Ca2+ signaling. Our findings uncover a novel MT function in tuning insulin secretion hot spots, which leads to accurately measured and timed response to glucose stimuli and promotes functional β-cell heterogeneity.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Justin Lee
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Hudson McKinney
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Medicine, Vanderbilt University, Nashville, United States
| | - Goker Arpag
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - Thomas G Folland
- Department of Mechanical Engineering, Vanderbilt University, Nashville, United States
| | - Anna B Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Mark A Magnuson
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States.,Center for Stem Cell Biology, Vanderbilt University, Nashville, United States
| | - Marija Zanic
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Biochemistry, Vanderbilt University, Nashville, United States
| | - Guoqiang Gu
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, United States.,Department of Mathematics, Vanderbilt University, Nashville, United States.,Quantitative Systems Biology Center, Vanderbilt University, Nashville, United States
| | - Irina Kaverina
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
16
|
Hu R, Zhu X, Yuan M, Ho KH, Kaverina I, Gu G. Microtubules and Gαo-signaling modulate the preferential secretion of young insulin secretory granules in islet β cells via independent pathways. PLoS One 2021; 16:e0241939. [PMID: 34292976 PMCID: PMC8297875 DOI: 10.1371/journal.pone.0241939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
For sustainable function, each pancreatic islet β cell maintains thousands of insulin secretory granules (SGs) at all times. Glucose stimulation induces the secretion of a small portion of these SGs and simultaneously boosts SG biosynthesis to sustain this stock. The failure of these processes, often induced by sustained high-insulin output, results in type 2 diabetes. Intriguingly, young insulin SGs are more likely secreted during glucose-stimulated insulin secretion (GSIS) for unknown reasons, while older SGs tend to lose releasability and be degraded. Here, we examine the roles of microtubule (MT) and Gαo-signaling in regulating the preferential secretion of young versus old SGs. We show that both MT-destabilization and Gαo inactivation results in more SGs localization near plasma membrane (PM) despite higher levels of GSIS and reduced SG biosynthesis. Intriguingly, MT-destabilization or Gαo-inactivation results in higher secretion probabilities of older SGs, while combining both having additive effects on boosting GSIS. Lastly, Gαo inactivation does not detectably destabilize the β-cell MT network. These findings suggest that Gαo and MT can modulate the preferential release of younger insulin SGs via largely parallel pathways.
Collapse
Affiliation(s)
- Ruiying Hu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Mingyang Yuan
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Kung-Hsien Ho
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Irina Kaverina
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, The Program of Developmental Biology and the Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
17
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
18
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
19
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
21
|
Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, Gu G, Kaverina I. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes 2020; 69:1936-1947. [PMID: 32540877 PMCID: PMC7458041 DOI: 10.2337/db19-1186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
The microtubule cytoskeleton of pancreatic islet β-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in β-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual β-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet β-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Xiaodun Yang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Anna B Osipovich
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | | | - Mark A Magnuson
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
22
|
Hao H, Niu J, Xue B, Su QP, Liu M, Yang J, Qin J, Zhao S, Wu C, Sun Y. Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration. EMBO Rep 2020; 21:e48385. [PMID: 31984633 DOI: 10.15252/embr.201948385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Microtubules derived from the Golgi (Golgi MTs) have been implicated to play critical roles in persistent cell migration, but the underlying mechanisms remain elusive, partially due to the lack of direct observation of Golgi MT-dependent vesicular trafficking. Here, using super-resolution stochastic optical reconstruction microscopy (STORM), we discovered that post-Golgi cargos are more enriched on Golgi MTs and also surprisingly move much faster than on non-Golgi MTs. We found that, compared to non-Golgi MTs, Golgi MTs are morphologically more polarized toward the cell leading edge with significantly fewer inter-MT intersections. In addition, Golgi MTs are more stable and contain fewer lattice repair sites than non-Golgi MTs. Our STORM/live-cell imaging demonstrates that cargos frequently pause at the sites of both MT intersections and MT defects. Furthermore, by optogenetic maneuvering of cell direction, we demonstrate that Golgi MTs are essential for persistent cell migration but not for cells to change direction. Together, our study unveils the role of Golgi MTs in serving as a group of "fast tracks" for anterograde trafficking of post-Golgi cargos.
Collapse
Affiliation(s)
- Huiwen Hao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Jiahao Niu
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Qian Peter Su
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Menghan Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Jinshan Qin
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Shujuan Zhao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|