1
|
Borowsky AT, Bailey-Serres J. Rewiring gene circuitry for plant improvement. Nat Genet 2024; 56:1574-1582. [PMID: 39075207 DOI: 10.1038/s41588-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Aspirations for high crop growth and yield, nutritional quality and bioproduction of materials are challenged by climate change and limited adoption of new technologies. Here, we review recent advances in approaches to profile and model gene regulatory activity over developmental and response time in specific cells, which have revealed the basis of variation in plant phenotypes: both redeployment of key regulators to new contexts and their repurposing to control different slates of genes. New synthetic biology tools allow tunable, spatiotemporal regulation of transgenes, while recent gene-editing technologies enable manipulation of the regulation of native genes. Ultimately, understanding how gene circuitry is wired to control form and function across varied plant species, combined with advanced technology to rewire that circuitry, will unlock solutions to our greatest challenges in agriculture, energy and the environment.
Collapse
Affiliation(s)
- Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Ma F, Zheng C. Single-cell phylotranscriptomics of developmental and cell type evolution. Trends Genet 2024; 40:495-510. [PMID: 38490933 DOI: 10.1016/j.tig.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Single-cell phylotranscriptomics is an emerging tool to reveal the molecular and cellular mechanisms of evolution. We summarize its utility in studying the hourglass pattern of ontogenetic evolution and for understanding the evolutionary history of cell types. The developmental hourglass model suggests that the mid-embryonic stage is the most conserved period of development across species, which is supported by morphological and molecular studies. Single-cell phylotranscriptomic analysis has revealed previously underappreciated heterogeneity in transcriptome ages among lineages and cell types throughout development, and has identified the lineages and tissues that drive the whole-organism hourglass pattern. Single-cell transcriptome age analyses also provide important insights into the origin of germ layers, the different selective forces on tissues during adaptation, and the evolutionary relationships between cell types.
Collapse
Affiliation(s)
- Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
4
|
Tsuji H, Sato M. The Function of Florigen in the Vegetative-to-Reproductive Phase Transition in and around the Shoot Apical Meristem. PLANT & CELL PHYSIOLOGY 2024; 65:322-337. [PMID: 38179836 PMCID: PMC11020210 DOI: 10.1093/pcp/pcae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Plants undergo a series of developmental phases throughout their life-cycle, each characterized by specific processes. Three critical features distinguish these phases: the arrangement of primordia (phyllotaxis), the timing of their differentiation (plastochron) and the characteristics of the lateral organs and axillary meristems. Identifying the unique molecular features of each phase, determining the molecular triggers that cause transitions and understanding the molecular mechanisms underlying these transitions are keys to gleaning a complete understanding of plant development. During the vegetative phase, the shoot apical meristem (SAM) facilitates continuous leaf and stem formation, with leaf development as the hallmark. The transition to the reproductive phase induces significant changes in these processes, driven mainly by the protein FT (FLOWERING LOCUS T) in Arabidopsis and proteins encoded by FT orthologs, which are specified as 'florigen'. These proteins are synthesized in leaves and transported to the SAM, and act as the primary flowering signal, although its impact varies among species. Within the SAM, florigen integrates with other signals, culminating in developmental changes. This review explores the central question of how florigen induces developmental phase transition in the SAM. Future research may combine phase transition studies, potentially revealing the florigen-induced developmental phase transition in the SAM.
Collapse
Affiliation(s)
- Hiroyuki Tsuji
- Bioscience and Biotechnology Center, Nagoya University, Furocho, Chikusa, Nagoya, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
5
|
Lin X, Xu Y, Wang D, Yang Y, Zhang X, Bie X, Gui L, Chen Z, Ding Y, Mao L, Zhang X, Lu F, Zhang X, Uauy C, Fu X, Xiao J. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses. MOLECULAR PLANT 2024; 17:438-459. [PMID: 38310351 DOI: 10.1016/j.molp.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The spike architecture of wheat plays a crucial role in determining grain number, making it a key trait for optimization in wheat breeding programs. In this study, we used a multi-omic approach to analyze the transcriptome and epigenome profiles of the young spike at eight developmental stages, revealing coordinated changes in chromatin accessibility and H3K27me3 abundance during the flowering transition. We constructed a core transcriptional regulatory network (TRN) that drives wheat spike formation and experimentally validated a multi-layer regulatory module involving TaSPL15, TaAGLG1, and TaFUL2. By integrating the TRN with genome-wide association studies, we identified 227 transcription factors, including 42 with known functions and 185 with unknown functions. Further investigation of 61 novel transcription factors using multiple homozygous mutant lines revealed 36 transcription factors that regulate spike architecture or flowering time, such as TaMYC2-A1, TaMYB30-A1, and TaWRKY37-A1. Of particular interest, TaMYB30-A1, downstream of and repressed by WFZP, was found to regulate fertile spikelet number. Notably, the excellent haplotype of TaMYB30-A1, which contains a C allele at the WFZP binding site, was enriched during wheat breeding improvement in China, leading to improved agronomic traits. Finally, we constructed a free and open access Wheat Spike Multi-Omic Database (http://39.98.48.156:8800/#/). Our study identifies novel and high-confidence regulators and offers an effective strategy for dissecting the genetic basis of wheat spike development, with practical value for wheat breeding.
Collapse
Affiliation(s)
- Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxin Xu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lixuan Gui
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Zhongxu Chen
- Department of Life Science, Tcuni Inc., Chengdu, Sichuan 610000, China
| | - Yiliang Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Lu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
| | - Xiansheng Zhang
- Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China.
| |
Collapse
|
6
|
Li S, Nakayama H, Sinha NR. How to utilize comparative transcriptomics to dissect morphological diversity in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102474. [PMID: 37804608 DOI: 10.1016/j.pbi.2023.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Comparative transcriptomics has emerged as a powerful approach that allows us to unravel the genetic basis of organ morphogenesis and its diversification processes during evolution. However, the application of comparative transcriptomics in studying plant morphological diversity addresses challenges such as identifying homologous gene pairs, selecting appropriate developmental stages for comparison, and extracting biologically meaningful networks. Methods such as phylostratigraphy, clustering, and gene co-expression networks are explored to identify functionally equivalent genes, align developmental stages, and uncover gene regulatory relationships. In the current review, we highlight the importance of these approaches in overcoming the complexity of plant genomes, the impact of heterochrony on stage alignment, and the integration of gene networks with additional data for a comprehensive understanding of morphological evolution.
Collapse
Affiliation(s)
- Siyu Li
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hokuto Nakayama
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku Tokyo, 113-0033, Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Walczyk AM, Hersch-Green EI. Genome-material costs and functional trade-offs in the autopolyploid Solidago gigantea (giant goldenrod) series. AMERICAN JOURNAL OF BOTANY 2023; 110:e16218. [PMID: 37551707 DOI: 10.1002/ajb2.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Increased genome-material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient-dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype-dependent growth, metabolic, and/or resource-use trade-offs is limited. METHODS We grew diploid, autotetraploid, and autohexaploid Solidago gigantea plants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource-use. RESULTS Relative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material-cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N-use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water-use efficiencies than diploids, both of which were more pronounced under nutrient-limiting conditions. CONCLUSIONS N and P material costs increase with ploidy level, but material-cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material-cost constraints in polyploids that could impact ploidy (or genome-size)-specific performances, cytogeographic patterning, and multispecies community structuring.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Biology Department, Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN, 56082, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
8
|
Liu X, Bie XM, Lin X, Li M, Wang H, Zhang X, Yang Y, Zhang C, Zhang XS, Xiao J. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. NATURE PLANTS 2023; 9:908-925. [PMID: 37142750 DOI: 10.1038/s41477-023-01406-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Genetic transformation is important for gene functional study and crop improvement. However, it is less effective in wheat. Here we employed a multi-omic analysis strategy to uncover the transcriptional regulatory network (TRN) responsible for wheat regeneration. RNA-seq, ATAC-seq and CUT&Tag techniques were utilized to profile the transcriptional and chromatin dynamics during early regeneration from the scutellum of immature embryos in the wheat variety Fielder. Our results demonstrate that the sequential expression of genes mediating cell fate transition during regeneration is induced by auxin, in coordination with changes in chromatin accessibility, H3K27me3 and H3K4me3 status. The built-up TRN driving wheat regeneration was found to be dominated by 446 key transcription factors (TFs). Further comparisons between wheat and Arabidopsis revealed distinct patterns of DNA binding with one finger (DOF) TFs in the two species. Experimental validations highlighted TaDOF5.6 (TraesCS6A02G274000) and TaDOF3.4 (TraesCS2B02G592600) as potential enhancers of transformation efficiency in different wheat varieties.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Min Bie
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Menglu Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hongzhe Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Nanjing Agricultural University, Nanjing, China
| | - Chunyan Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xian Sheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing, China.
| |
Collapse
|
9
|
Tornielli GB, Sandri M, Fasoli M, Amato A, Pezzotti M, Zuccolotto P, Zenoni S. A molecular phenology scale of grape berry development. HORTICULTURE RESEARCH 2023; 10:uhad048. [PMID: 37786435 PMCID: PMC10541565 DOI: 10.1093/hr/uhad048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 10/04/2023]
Abstract
Fruit growth and development consist of a continuous succession of physical, biochemical, and physiological changes driven by a genetic program that dynamically responds to environmental cues. Establishing recognizable stages over the whole fruit lifetime represents a fundamental requirement for research and fruit crop cultivation. This is especially relevant in perennial crops like grapevine (Vitis vinifera L.) to scale the development of its fruit across genotypes and growing conditions. In this work, molecular-based information from several grape berry transcriptomic datasets was exploited to build a molecular phenology scale (MPhS) and to map the ontogenic development of the fruit. The proposed statistical pipeline consisted of an unsupervised learning procedure yielding an innovative combination of semiparametric, smoothing, and dimensionality reduction tools. The transcriptomic distance between fruit samples was precisely quantified by means of the MPhS that also enabled to highlight the complex dynamics of the transcriptional program over berry development through the calculation of the rate of variation of MPhS stages by time. The MPhS allowed the alignment of time-series fruit samples proving to be a complementary method for mapping the progression of grape berry development with higher detail compared to classic time- or phenotype-based approaches.
Collapse
Affiliation(s)
| | - Marco Sandri
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Big & Open Data Innovation Laboratory, University of Brescia, C.da S. Chiara 50, 25122 Brescia, Italy
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Paola Zuccolotto
- Big & Open Data Innovation Laboratory, University of Brescia, C.da S. Chiara 50, 25122 Brescia, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
10
|
Takai T, Taniguchi Y, Takahashi M, Nagasaki H, Yamamoto E, Hirose S, Hara N, Akashi H, Ito J, Arai-Sanoh Y, Hori K, Fukuoka S, Sakai H, Tokida T, Usui Y, Nakamura H, Kawamura K, Asai H, Ishizaki T, Maruyama K, Mochida K, Kobayashi N, Kondo M, Tsuji H, Tsujimoto Y, Hasegawa T, Uga Y. MORE PANICLES 3, a natural allele of OsTB1/FC1, impacts rice yield in paddy fields at elevated CO 2 levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:729-742. [PMID: 36974032 DOI: 10.1111/tpj.16143] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
Improving crop yield potential through an enhanced response to rising atmospheric CO2 levels is an effective strategy for sustainable crop production in the face of climate change. Large-sized panicles (containing many spikelets per panicle) have been a recent ideal plant architecture (IPA) for high-yield rice breeding. However, few breeding programs have proposed an IPA under the projected climate change. Here, we demonstrate through the cloning of the rice (Oryza sativa) quantitative trait locus for MORE PANICLES 3 (MP3) that the improvement in panicle number increases grain yield at elevated atmospheric CO2 levels. MP3 is a natural allele of OsTB1/FC1, previously reported as a negative regulator of tiller bud outgrowth. The temperate japonica allele advanced the developmental process in axillary buds, moderately promoted tillering, and increased the panicle number without negative effects on the panicle size or culm thickness in a high-yielding indica cultivar with large-sized panicles. The MP3 allele, containing three exonic polymorphisms, was observed in most accessions in the temperate japonica subgroups but was rarely observed in the indica subgroup. No selective sweep at MP3 in either the temperate japonica or indica subgroups suggested that MP3 has not been involved and utilized in artificial selection during domestication or breeding. A free-air CO2 enrichment experiment revealed a clear increase of grain yield associated with the temperate japonica allele at elevated atmospheric CO2 levels. Our findings show that the moderately increased panicle number combined with large-sized panicles using MP3 could be a novel IPA and contribute to an increase in rice production under climate change with rising atmospheric CO2 levels.
Collapse
Affiliation(s)
- Toshiyuki Takai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Yojiro Taniguchi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Megumu Takahashi
- Institute of Vegetable and Floriculture Science, NARO, Tsukuba, Ibaraki, 305-8519, Japan
| | - Hideki Nagasaki
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Eiji Yamamoto
- Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Naho Hara
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroko Akashi
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - Jun Ito
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| | - Yumiko Arai-Sanoh
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Kiyosumi Hori
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Shuichi Fukuoka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Hidemitsu Sakai
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604, Japan
| | - Takeshi Tokida
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yasuhiro Usui
- Central Region Agricultural Research Center, NARO, Tsukuba, Ibaraki, 305-8666, Japan
| | | | - Kensuke Kawamura
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Hidetoshi Asai
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Takuma Ishizaki
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Keiichi Mochida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8521, Japan
| | - Nobuya Kobayashi
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Motohiko Kondo
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yasuhiro Tsujimoto
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan
| | - Toshihiro Hasegawa
- Institute for Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| |
Collapse
|
11
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Strable J, Unger-Wallace E, Aragón Raygoza A, Briggs S, Vollbrecht E. Interspecies transfer of RAMOSA1 orthologs and promoter cis sequences impacts maize inflorescence architecture. PLANT PHYSIOLOGY 2023; 191:1084-1101. [PMID: 36508348 PMCID: PMC9922432 DOI: 10.1093/plphys/kiac559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/26/2022] [Indexed: 06/18/2023]
Abstract
Grass inflorescences support floral structures that each bear a single grain, where variation in branch architecture directly impacts yield. The maize (Zea mays) RAMOSA1 (ZmRA1) transcription factor acts as a key regulator of inflorescence development by imposing branch meristem determinacy. Here, we show RA1 transcripts accumulate in boundary domains adjacent to spikelet meristems in sorghum (Sorghum bicolor, Sb) and green millet (Setaria viridis, Sv) inflorescences similar as in the developing maize tassel and ear. To evaluate the functional conservation of syntenic RA1 orthologs and promoter cis sequences in maize, sorghum, and setaria, we utilized interspecies gene transfer and assayed genetic complementation in a common inbred background by quantifying recovery of normal branching in highly ramified ra1-R mutants. A ZmRA1 transgene that includes endogenous upstream and downstream flanking sequences recovered normal tassel and ear branching in ra1-R. Interspecies expression of two transgene variants of the SbRA1 locus, modeled as the entire endogenous tandem duplication or just the nonframeshifted downstream copy, complemented ra1-R branching defects and induced unusual fasciation and branch patterns. The SvRA1 locus lacks conserved, upstream noncoding cis sequences found in maize and sorghum; interspecies expression of a SvRA1 transgene did not or only partially recovered normal inflorescence forms. Driving expression of the SvRA1 coding region by the ZmRA1 upstream region, however, recovered normal inflorescence morphology in ra1-R. These data leveraging interspecies gene transfer suggest that cis-encoded temporal regulation of RA1 expression is a key factor in modulating branch meristem determinacy that ultimately impacts grass inflorescence architecture.
Collapse
|
13
|
Julca I, Tan QW, Mutwil M. Toward kingdom-wide analyses of gene expression. TRENDS IN PLANT SCIENCE 2023; 28:235-249. [PMID: 36344371 DOI: 10.1016/j.tplants.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Gene expression data for Archaeplastida are accumulating exponentially, with more than 300 000 RNA-sequencing (RNA-seq) experiments available for hundreds of species. The gene expression data stem from thousands of experiments that capture gene expression in various organs, tissues, cell types, (a)biotic perturbations, and genotypes. Advances in software tools make it possible to process all these data in a matter of weeks on modern office computers, giving us the possibility to study gene expression in a kingdom-wide manner for the first time. We discuss how the expression data can be accessed and processed and outline analyses that take advantage of cross-species analyses, allowing us to generate powerful and robust hypotheses about gene function and evolution.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
14
|
Zhao L, Yang Y, Chen J, Lin X, Zhang H, Wang H, Wang H, Bie X, Jiang J, Feng X, Fu X, Zhang X, Du Z, Xiao J. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat. Genome Biol 2023; 24:7. [PMID: 36639687 PMCID: PMC9837924 DOI: 10.1186/s13059-022-02844-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plant and animal embryogenesis have conserved and distinct features. Cell fate transitions occur during embryogenesis in both plants and animals. The epigenomic processes regulating plant embryogenesis remain largely elusive. RESULTS Here, we elucidate chromatin and transcriptomic dynamics during embryogenesis of the most cultivated crop, hexaploid wheat. Time-series analysis reveals stage-specific and proximal-distal distinct chromatin accessibility and dynamics concordant with transcriptome changes. Following fertilization, the remodeling kinetics of H3K4me3, H3K27ac, and H3K27me3 differ from that in mammals, highlighting considerable species-specific epigenomic dynamics during zygotic genome activation. Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 deposition is important for embryo establishment. Later H3K27ac, H3K27me3, and chromatin accessibility undergo dramatic remodeling to establish a permissive chromatin environment facilitating the access of transcription factors to cis-elements for fate patterning. Embryonic maturation is characterized by increasing H3K27me3 and decreasing chromatin accessibility, which likely participates in restricting totipotency while preventing extensive organogenesis. Finally, epigenomic signatures are correlated with biased expression among homeolog triads and divergent expression after polyploidization, revealing an epigenomic contributor to subgenome diversification in an allohexaploid genome. CONCLUSIONS Collectively, we present an invaluable resource for comparative and mechanistic analysis of the epigenomic regulation of crop embryogenesis.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Zhang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongzhe Wang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Bie
- Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiafu Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoqi Feng
- John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - Xiangdong Fu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Zhuo Du
- University of Chinese Academy of Sciences, Beijing, 100049, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Backhaus AE, Lister A, Tomkins M, Adamski NM, Simmonds J, Macaulay I, Morris RJ, Haerty W, Uauy C. High expression of the MADS-box gene VRT2 increases the number of rudimentary basal spikelets in wheat. PLANT PHYSIOLOGY 2022; 189:1536-1552. [PMID: 35377414 PMCID: PMC9237664 DOI: 10.1093/plphys/kiac156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 05/03/2023]
Abstract
Spikelets are the fundamental building blocks of Poaceae inflorescences, and their development and branching patterns determine the various inflorescence architectures and grain yield of grasses. In wheat (Triticum aestivum), the central spikelets produce the most and largest grains, while spikelet size gradually decreases acropetally and basipetally, giving rise to the characteristic lanceolate shape of wheat spikes. The acropetal gradient corresponds with the developmental age of spikelets; however, the basal spikelets are developed first, and the cause of their small size and rudimentary development is unclear. Here, we adapted G&T-seq, a low-input transcriptomics approach, to characterize gene expression profiles within spatial sections of individual spikes before and after the establishment of the lanceolate shape. We observed larger differences in gene expression profiles between the apical, central, and basal sections of a single spike than between any section belonging to consecutive developmental time points. We found that SHORT VEGETATIVE PHASE MADS-box transcription factors, including VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT-A2), are expressed highest in the basal section of the wheat spike and display the opposite expression gradient to flowering E-class SEPALLATA1 genes. Based on multi-year field trials and transgenic lines, we show that higher expression of VRT-A2 in the basal sections of the spike is associated with increased numbers of rudimentary basal spikelets. Our results, supported by computational modeling, suggest that the delayed transition of basal spikelets from vegetative to floral developmental programs results in the lanceolate shape of wheat spikes. This study highlights the value of spatially resolved transcriptomics to gain insights into developmental genetics pathways of grass inflorescences.
Collapse
Affiliation(s)
- Anna E Backhaus
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ashleigh Lister
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Melissa Tomkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
16
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
17
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
18
|
Wang L, Upadhyaya HD, Zheng J, Liu Y, Singh SK, Gowda CLL, Kumar R, Zhu Y, Wang YH, Li J. Genome-Wide Association Mapping Identifies Novel Panicle Morphology Loci and Candidate Genes in Sorghum. FRONTIERS IN PLANT SCIENCE 2021; 12:743838. [PMID: 34675951 PMCID: PMC8525895 DOI: 10.3389/fpls.2021.743838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Panicle morphology is an important trait in racial classification and can determine grain yield and other agronomic traits in sorghum. In this study, we performed association mapping of panicle length, panicle width, panicle compactness, and peduncle recurving in the sorghum mini core panel measured in multiple environments with 6,094,317 single nucleotide polymorphism (SNP) markers. We mapped one locus each on chromosomes 7 and 9 to recurving peduncles and eight loci for panicle length, panicle width, and panicle compactness. Because panicle length was positively correlated with panicle width, all loci for panicle length and width were colocalized. Among the eight loci, two each were on chromosomes 1, 2, and 6, and one each on chromosomes 8 and 10. The two loci on chromosome 2, i.e., Pm 2-1 and Pm 2-2, were detected in 7 and 5 out of 11 testing environments, respectively. Pm 2-2 colocalized with panicle compactness. Candidate genes were identified from both loci. The rice Erect Panicle2 (EP2) ortholog was among the candidate genes in Pm 2-2. EP2 regulates panicle erectness and panicle length in rice and encodes a novel plant-specific protein with unknown functions. The results of this study may facilitate the molecular identification of panicle morphology-related genes and the enhancement of yield and adaptation in sorghum.
Collapse
Affiliation(s)
- Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hari D. Upadhyaya
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - Jian Zheng
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shailesh Kumar Singh
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - C. L. L. Gowda
- Gene Bank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheruvu, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Yongqun Zhu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences (SAAS), Chengdu, China
| | - Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
19
|
Jin G, Ma PF, Wu X, Gu L, Long M, Zhang C, Li DZ. New Genes Interacted with Recent Whole Genome Duplicates in the Fast Stem Growth of Bamboos. Mol Biol Evol 2021; 38:5752-5768. [PMID: 34581782 PMCID: PMC8662795 DOI: 10.1093/molbev/msab288] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As drivers of evolutionary innovations, new genes allow organisms to explore new niches. However, clear examples of this process remain scarce. Bamboos, the unique grass lineage diversifying into the forest, have evolved with a key innovation of fast growth of woody stem, reaching up to 1 m/day. Here, we identify 1,622 bamboo-specific orphan genes that appeared in recent 46 million years, and 19 of them evolved from noncoding ancestral sequences with entire de novo origination process reconstructed. The new genes evolved gradually in exon−intron structure, protein length, expression specificity, and evolutionary constraint. These new genes, whether or not from de novo origination, are dominantly expressed in the rapidly developing shoots, and make transcriptomes of shoots the youngest among various bamboo tissues, rather than reproductive tissue in other plants. Additionally, the particularity of bamboo shoots has also been shaped by recent whole-genome duplicates (WGDs), which evolved divergent expression patterns from ancestral states. New genes and WGDs have been evolutionarily recruited into coexpression networks to underline fast-growing trait of bamboo shoot. Our study highlights the importance of interactions between new genes and genome duplicates in generating morphological innovation.
Collapse
Affiliation(s)
- Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopei Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
20
|
Hao Z, Zhang Z, Xiang D, Venglat P, Chen J, Gao P, Datla R, Weijers D. Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development. PLANT REPRODUCTION 2021; 34:207-224. [PMID: 33950292 PMCID: PMC8360882 DOI: 10.1007/s00497-021-00413-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Developmental and transcriptomic analysis of Brachypodium embryogenesis and comparison with Arabidopsis identifies conserved and divergent phases of embryogenesis and reveals widespread heterochrony of developmental gene expression. Embryogenesis, transforming the zygote into the mature embryo, represents a fundamental process for all flowering plants. Current knowledge of cell specification and differentiation during plant embryogenesis is largely based on studies of the dicot model plant Arabidopsis thaliana. However, the major crops are monocots and the transcriptional programs associated with the differentiation processes during embryogenesis in this clade were largely unknown. Here, we combined analysis of cell division patterns with development of a temporal transcriptomic resource during embryogenesis of the monocot model plant Brachypodium distachyon. We found that early divisions of the Brachypodium embryo were highly regular, while later stages were marked by less stereotypic patterns. Comparative transcriptomic analysis between Brachypodium and Arabidopsis revealed that early and late embryogenesis shared a common transcriptional program, whereas mid-embryogenesis was divergent between species. Analysis of orthology groups revealed widespread heterochronic expression of potential developmental regulators between the species. Interestingly, Brachypodium genes tend to be expressed at earlier stages than Arabidopsis counterparts, which suggests that embryo patterning may occur early during Brachypodium embryogenesis. Detailed investigation of auxin-related genes shows that the capacity to synthesize, transport and respond to auxin is established early in the embryo. However, while early PIN1 polarity could be confirmed, it is unclear if an active response is mounted. This study presents a resource for studying Brachypodium and grass embryogenesis and shows that divergent angiosperms share a conserved genetic program that is marked by heterochronic gene expression.
Collapse
Affiliation(s)
- Zhaodong Hao
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhongjuan Zhang
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Prakash Venglat
- Department of Plant Sciences, College of Agriculture, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Meir Z, Aviezer I, Chongloi GL, Ben-Kiki O, Bronstein R, Mukamel Z, Keren-Shaul H, Jaitin D, Tal L, Shalev-Schlosser G, Harel TH, Tanay A, Eshed Y. Dissection of floral transition by single-meristem transcriptomes at high temporal resolution. NATURE PLANTS 2021; 7:800-813. [PMID: 34135484 DOI: 10.1038/s41477-021-00936-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/30/2021] [Indexed: 05/21/2023]
Abstract
The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.
Collapse
Affiliation(s)
- Zohar Meir
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Aviezer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Oren Ben-Kiki
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Revital Bronstein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Zohar Mukamel
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Jaitin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Tal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Shalev-Schlosser
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tom Hai Harel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Faculty of Mathematics and Computer Science and Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Calderwood A, Hepworth J, Woodhouse S, Bilham L, Jones DM, Tudor E, Ali M, Dean C, Wells R, Irwin JA, Morris RJ. Comparative transcriptomics reveals desynchronisation of gene expression during the floral transition between Arabidopsis and Brassica rapa cultivars. QUANTITATIVE PLANT BIOLOGY 2021; 2:e4. [PMID: 37077206 PMCID: PMC10095958 DOI: 10.1017/qpb.2021.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 05/03/2023]
Abstract
Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Jo Hepworth
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Shannon Woodhouse
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| | - Lorelei Bilham
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - D. Marc Jones
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
- VIB-UGent Centre for Plant Systems Biology, Gent, Belgium
| | - Eleri Tudor
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Mubarak Ali
- Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Judith A. Irwin
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
23
|
Preston JC. Insights into the evo-devo of plant reproduction using next-generation sequencing approaches. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1536-1545. [PMID: 33367867 DOI: 10.1093/jxb/eraa543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
The development of plant model organisms has traditionally been analyzed using resource-heavy, tailored applications that are not easily transferable to distantly related non-model taxa. Thus, our understanding of plant development has been limited to a subset of traits, and evolutionary studies conducted most effectively either across very wide [e.g. Arabidopsis thaliana and Oryza sativa (rice)] or narrow (i.e. population level) phylogenetic distances. As plant biologists seek to capitalize on natural diversity for crop improvement, enhance ecosystem functioning, and better understand plant responses to climate change, high-throughput and broadly applicable forms of existing molecular biology assays are becoming an invaluable resource. Next-generation sequencing (NGS) is increasingly becoming a powerful tool in evolutionary developmental biology (evo-devo) studies, particularly through its application to understanding trait evolution at different levels of gene regulation. Here, I review some of the most common and emerging NGS-based methods, using exemplar studies in reproductive plant evo-devo to illustrate their potential.
Collapse
Affiliation(s)
- Jill C Preston
- The University of Vermont, Department of Plant Biology, 63 Carrigan Drive, Burlington, VT, USA
| |
Collapse
|
24
|
Onimaru K, Tatsumi K, Tanegashima C, Kadota M, Nishimura O, Kuraku S. Developmental hourglass and heterochronic shifts in fin and limb development. eLife 2021; 10:62865. [PMID: 33560225 PMCID: PMC7932699 DOI: 10.7554/elife.62865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls. Animals come in all shapes and sizes. This diversity arose through genetic mutations during evolution, but it is unclear exactly how these variations led to the formation of new shapes. There is increasing evidence to suggest that not all shapes are possible and that variability between animals is limited by a phenomenon known as “developmental constraint”. These limitations direct parts of the body towards a specific shape as they develop in the embryo. Therefore, understanding the mechanisms underlying these developmental constraints could help explain how different body shapes evolved. The limbs of humans and other mammals evolved from the fins of fish, and this transition is often used to study the role developmental constraints play in evolution. This is an ideal model as there is already a detailed fossil record mapping this evolutionary event, and data pinpointing some of the genes involved in the development of limbs and fins. But this data is incomplete, and a full comparison between the genes activated in the fin and the limb during embryonic development had not been achieved. This is because most fish used for research have undergone recent genetic changes, making it hard to spot which genetic differences are linked to the evolution of the limb. To overcome this barrier, Onimaru et al. compared genetic data from the developing limbs of mice to the developing fins of the brown-banded bamboo shark, which evolves much slower than other fish. This revealed that although many genes commonly played a role in the development of the fin and the limb in the embryo, the activity of these shared genes was not the same. For example, genes that switched on in the late stages of limb development, switched off in the late stages of fin development. But in the middle of development, those differences were relatively small and both species activated very similar sets of genes. Many of these genes were pleiotropic, which means they have important roles in other tissues and therefore mutate less often. This suggests that the mid-stage of limb development is under the strongest level of constraint. Darwin’s theory of natural selection explains that mutations drive evolution. But the theory cannot predict what kinds of new body shapes new mutations will produce. Understanding how the activity levels of different genes affect development could help to fill this knowledge gap. This has potential medical applications, for example, understanding why some genetic changes cause more serious problems than others. This work suggests that mutations in genes that are active during the mid-stage of limb development may have the most serious impact.
Collapse
Affiliation(s)
- Koh Onimaru
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Laboratory for Bioinformatics Research, RIKEN BDR, Wako City, Japan.,Molecular Oncology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
25
|
Tu M, Li Y. Profiling Alternative 3' Untranslated Regions in Sorghum using RNA-seq Data. Front Genet 2020; 11:556749. [PMID: 33193635 PMCID: PMC7649775 DOI: 10.3389/fgene.2020.556749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
Sorghum is an important crop widely used for food, feed, and fuel. Transcriptome-wide studies of 3′ untranslated regions (3′UTR) using regular RNA-seq remain scarce in sorghum, while transcriptomes have been characterized extensively using Illumina short-read sequencing platforms for many sorghum varieties under various conditions or developmental contexts. 3′UTR is a critical regulatory component of genes, controlling the translation, transport, and stability of messenger RNAs. In the present study, we profiled the alternative 3′UTRs at the transcriptome level in three genetically related but phenotypically contrasting lines of sorghum: Rio, BTx406, and R9188. A total of 1,197 transcripts with alternative 3′UTRs were detected using RNA-seq data. Their categorization identified 612 high-confidence alternative 3′UTRs. Importantly, the high-confidence alternative 3′UTR genes significantly overlapped with the genesets that are associated with RNA N6-methyladenosine (m6A) modification, suggesting a clear indication between alternative 3′UTR and m6A methylation in sorghum. Moreover, taking advantage of sorghum genetics, we provided evidence of genotype specificity of alternative 3′UTR usage. In summary, our work exemplifies a transcriptome-wide profiling of alternative 3′UTRs using regular RNA-seq data in non-model crops and gains insights into alternative 3′UTRs and their genotype specificity.
Collapse
Affiliation(s)
- Min Tu
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
26
|
Crop reproductive meristems in the genomic era: a brief overview. Biochem Soc Trans 2020; 48:853-865. [PMID: 32573650 DOI: 10.1042/bst20190441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022]
Abstract
Modulation of traits beneficial for cultivation and yield is one of the main goals of crop improvement. One of the targets for enhancing productivity is changing the architecture of inflorescences since in many species it determines fruit and seed yield. Inflorescence shape and organization is genetically established during the early stages of reproductive development and depends on the number, arrangement, activities, and duration of meristems during the reproductive phase of the plant life cycle. Despite the variety of inflorescence architectures observable in nature, many key aspects of inflorescence development are conserved among different species. For instance, the genetic network in charge of specifying the identity of the different reproductive meristems, which can be indeterminate or determinate, seems to be similar among distantly related species. The availability of a large number of published transcriptomic datasets for plants with different inflorescence architectures, allowed us to identify transcription factor gene families that are differentially expressed in determinate and indeterminate reproductive meristems. The data that we review here for Arabidopsis, rice, barley, wheat, and maize, particularly deepens our knowledge of their involvement in meristem identity specification.
Collapse
|