1
|
Imamura T, Wasilczuk AZ, Reitz SL, Lian J, Imamura M, Keenan BT, Shimizu N, Pack AI, Kelz MB. Parafacial GABAergic neurone ablation induces behavioural resistance to volatile anaesthetic-induced hypnosis without reducing sleep. Br J Anaesth 2025:S0007-0912(25)00165-5. [PMID: 40240218 DOI: 10.1016/j.bja.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND It is hypothesised that general anaesthetics co-opt the neural circuits regulating endogenous sleep and wakefulness to produce hypnosis. To further probe this association, we focused on the GABAergic neurones of the parafacial zone (PZGABA), a brainstem site capable of promoting non-rapid eye movement sleep. METHODS To determine whether PZ neurones are activated by a hypnotic dose of anaesthetics, c-Fos immunohistochemistry was performed. The behavioural and physiological contributions of PZGABA neurones to anaesthetic sensitivity were assessed in mice transfected with an adeno-associated virus (AAV)-driving expression of an mCherry fluorescent control or a caspase that irreversibly eliminates PZGABA neurones. EEG-defined sleep was measured in PZGABA-ablated and mCherry control mice, as was the homeostatic drive to sleep after sleep deprivation. RESULTS Consistent with anaesthetic-induced depolarisation, hypnotic doses of isoflurane significantly increased c-Fos expression three-fold in PZGABA neurones compared with oxygen-exposed mice. PZGABA-ablated mice developed significant and durable behavioural resistance to both isoflurane- and sevoflurane-induced hypnosis, with roughly 50% higher likelihood of intact righting than controls. PZGABA-ablated mice emerged from isoflurane significantly faster than mCherry controls with purposeful movements. The degree of anaesthetic resistance was inversely correlated with the number of surviving PZGABA neurones. Despite confirming that PZGABA ablation reduced the potency of two distinct volatile anaesthetics behaviourally, ablation did not alter the amount of endogenous sleep or wakefulness, nor did it affect the homeostatic sleep drive after sleep deprivation, and it did not produce EEG signatures of anaesthetic resistance during isoflurane exposure. CONCLUSIONS There was an unexpected dissociation in which destruction of up to 70-80% of PZGABA neurones was sufficient to alter anaesthetic susceptibility behaviourally without causing insomnia or altering sleep pressure. These findings suggest that PZGABA neurones are more critical to drug-induced hypnosis than to the regulation of natural sleep and arousal.
Collapse
Affiliation(s)
- Toshihiro Imamura
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrzej Z Wasilczuk
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah L Reitz
- Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Lian
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Miyoko Imamura
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brendan T Keenan
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naoki Shimizu
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Allan I Pack
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Max B Kelz
- Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Neuroscience of Unconsciousness and Reanimation Research Alliance, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Li J, Wu Y, Wang Y, Wu Y, Hu R, Long S, Huang W, Nie L, Wang Z. Activation of Glutamatergic Neurons in the Supramammillary Nucleus Promotes the Recovery of Consciousness under Sevoflurane Anesthesia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406959. [PMID: 40167172 DOI: 10.1002/advs.202406959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Volatile anesthetics have been widely applied during surgery, but the potential mechanisms by which they influence loss of consciousness (LOC), anesthesia maintenance, and recovery of consciousness (ROC) from anesthesia remain largely unknown. Recent studies have suggested that anesthesia-induced unconsciousness may be due to specific interactions between neural circuits that regulate sleep and wakefulness. Supramammillary (SuM) glutamatergic neurons are essential for sleep-wakefulness regulation. However, whether SuM glutamatergic neurons are involved in the modulation of consciousness under sevoflurane anesthesia is unclear. Here, it is shown that the activity of SuM glutamatergic neurons decreased prior to sevoflurane-induced LOC and gradually increased following ROC. Selective lesioning of SuM glutamatergic neurons promoted the induction of and delayed emergence from sevoflurane anesthesia and increased sevoflurane sensitivity. In addition, optogenetic stimulation of SuM glutamatergic neurons or the SuM-MS projection promoted behavioral arousal and cortical activation under steady-state sevoflurane anesthesia (SSSA) and reduced the depth of anesthesia and caused cortical arousal under sevoflurane-induced burst-suppression conditions. Collectively, these results provide compelling evidence that SuM glutamatergic neurons contribute to regulating states of consciousness under sevoflurane anesthesia.
Collapse
Affiliation(s)
- Jiayan Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yehui Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yihan Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yumin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Rong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Si Long
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Zhongxing Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| |
Collapse
|
3
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia decreases the uniqueness of brain functional connectivity across individuals and species. Nat Hum Behav 2025:10.1038/s41562-025-02121-9. [PMID: 40128306 DOI: 10.1038/s41562-025-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/16/2025] [Indexed: 03/26/2025]
Abstract
The human brain is characterized by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI scans acquired under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain, both with respect to the brains of other individuals and the brains of another species. Using functional connectivity, we report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organized: it co-localizes with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol and reversed upon recovery. Providing convergent evidence, we show that anaesthesia shifts the functional connectivity of the human brain closer to the functional connectivity of the macaque brain in a low-dimensional space. Finally, anaesthesia diminishes the match between spontaneous brain activity and cognitive brain patterns aggregated from the Neurosynth meta-analytic engine. Collectively, the present results reveal that anaesthetized human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
- Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- School of Mathematics, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
5
|
Li N, You Z, Ren Y, Kim HH, Yang J, Li G, Doheny JT, Ding W, Xia S, Wang S, Zhou X, Wu X, Shen S, Dong Y, Xie Z, Chen L, Mao J, Martyn JAJ. Microtubule-modulating drugs alter sensitivity to isoflurane in mice. BMC Anesthesiol 2025; 25:109. [PMID: 40021968 PMCID: PMC11869693 DOI: 10.1186/s12871-025-02956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/09/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Microtubules (MTs) have been postulated as one of the molecular targets underlying loss of consciousness induced by inhalational anesthetics. Microtubule-targeting chemotherapy drugs and opioids affect MT stability and function. However, the impact of prolonged administration of these drugs on anesthetic potency and anesthesia induction and emergence times remain unelucidated. METHODS Epothilone D, paclitaxel, vinblastine or opioid morphine were administered alone for a prolonged period (> 2 weeks) to male CD1 mice and their sensitivity to incremental concentrations of isoflurane were examined using loss of righting reflex (LORR) response as a measure of sensivity. The induction and emergence time after administration and termination of fixed concentration of isoflurance (1.2%) were also assessed. RESULTS Compared with saline treatment, epothilone D and vinblastine induced a leftward (more sensitive) shift of LORR response curves (95% confidence intervals for EC50: epothilone D, 0.75[0.73, 0.77] vs. saline, 0.97[0.96, 0.98]; vinblastine, 0.74[0.73, 0.75] vs. saline, 0.98[0.97, 0.99]). In contrast, morphine caused a rightward (more resistant) LORR response curve (morphine, 1.16[1.15, 1.17] vs. saline, 0.97[0.96, 0.98]), while paclitaxel produced a marginal but significant rightward shift of LORR (paclitaxel, 1.05[1.03, 1.06] vs. saline, 0.98[0.97, 0.99]). At concentration of 1.2% isoflurane, morphine treatment prolonged (275 ± 50) and vinblastine treatment reduced (96.5 ± 26) the anesthetic induction latency (in second) relative to saline treatment (211 ± 39). The latency of emergence from anesthesia was shorter in morphine (58 ± 20) and vinblastine-treated (98 ± 43) mice compared to saline (176 ± 50) treatment. The induction or emergence latencies of epothilone D or paclitaxel treatment did not differ from saline treatment between groups. CONCLUSIONS Microtubule-modulating drugs can affect not only sensitivity but also induction and emergence times to inhalational anesthetic isoflurane in mice. This study highlights a possible role of MTDs in modulating anesthetic effects in disparate directions, which has implications for anesthetic concentrations that should be used for induction, maintenance and emergence of anesthesia. These findings in rodents may have relevance to the perioperative care of cancer patients who receive MT-targeting chemotherapy drugs or even opioids for pain for prolonged periods.
Collapse
Affiliation(s)
- Na Li
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA
| | - Yang Ren
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA
| | - Hyung Hwan Kim
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ge Li
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason T Doheny
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weihua Ding
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Suyun Xia
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xue Zhou
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xinbo Wu
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, USA.
- Clinical and Biochemical Pharmacology Laboratory, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Tang B, Tang J, Huang Y. Dexmedetomidine Reduces Presynaptic γ-Aminobutyric Acid Release and Prolongs Postsynaptic Responses in Layer 5 Pyramidal Neurons in the Primary Somatosensory Cortex of Mice. Int J Mol Sci 2025; 26:1931. [PMID: 40076557 PMCID: PMC11900034 DOI: 10.3390/ijms26051931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Dexmedetomidine (DEX) exhibits notable sedative, analgesic, and anesthetic-sparing properties. While growing evidence suggests these effects are linked to the modulation of γ-aminobutyric acid (GABA) system, the precise pre- and postsynaptic mechanisms of DEX action on cortical GABAergic signaling remain unclear. In this study, we applied whole-cell patch-clamp recording to investigate the impact of DEX on GABAergic transmission in layer 5 pyramidal neurons of the mouse primary somatosensory cortex. We recorded spontaneous inhibitory postsynaptic currents (sIPSCs), miniature IPSCs (mIPSCs), and evoked inhibitory postsynaptic potentials (eIPSPs) before and during DEX application. Our findings demonstrated that DEX reduced activity-dependent spontaneous GABAergic transmission, as evidenced by a decrease in sIPSC frequency, while mIPSC frequency was unaffected. eIPSPs were not significantly influenced by DEX either. Additionally, DEX prolonged the kinetics of both sIPSCs and mIPSCs, increasing the rise and decay times of sIPSCs and the decay time of mIPSCs. We proposed that DEX modulated cortical neuronal activity by limiting GABA release and altering GABAA receptor kinetics. Collectively, these results indicated that DEX modulated cortical GABAergic signaling at both presynaptic and postsynaptic sites, which likely underlined its sedative, analgesic, and anesthetic-sparing effects.
Collapse
Affiliation(s)
| | - Jiali Tang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China;
| |
Collapse
|
7
|
Yu L, Zhu X, Duan W, Yang K, Hu J, Zhang Y. Effect of Painful Stimuli on PVNCRH Neurons: Implications for States of Consciousness Under Isoflurane Anesthesia. Anesth Analg 2025:00000539-990000000-01177. [PMID: 39964877 DOI: 10.1213/ane.0000000000007411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BACKGROUND Many patients undergoing surgery experience accompanying pain symptoms preoperatively. The impact of painful stimuli on general anesthesia remains largely unknown. Corticotrophin-releasing hormone neurons in the paraventricular nucleus of the hypothalamus (PVNCRH neurons) are crucial central stress hubs that respond to painful stimuli. These neurons also participate in regulating processes such as sleep and anesthesia. Natural reward can inhibit PVNCRH neurons to relieve stress-induced behavioral changes, but the effect of natural reward on the anesthesia process in patients with pain is not clear. In this study, we assessed the impact of painful stimuli on isoflurane anesthesia and its potential neural mechanism. We also investigated the potential of natural reward therapy for alleviating the impact of painful stimuli on isoflurane anesthesia. METHODS The righting reflex test and cortical electroencephalography (EEG) were used as measures of consciousness in complete Freund's adjuvant (CFA)-injected mice during isoflurane anesthesia. EEG and burst-suppression ratios (BSR) were used to assess the depth of anesthesia. The expression of c-Fos, fiber photometry recording, and brain slice electrophysiology were used to determine neuronal activity changes in PVNCRH neurons after CFA injection or 10% sucrose treatment. Finally, chemogenetic technology was used to specifically manipulate PVNCRH neurons. RESULTS Compared to the saline-injected mice, the CFA-injected mice exhibited an increased the mean[SD] induction time of isoflurane anesthesia (354[48] s vs 258[30] s, P = .0001) and a reduced BSR of isoflurane anesthesia (60.1[10.3] % vs 81.5[9.76] %, P = .002). CFA injection increased PVN c-Fos expression (3667[706] vs 1735[407], P = .0002) and enhanced the population activity of PVNCRH neurons (33.4[13.6] % vs 1.23[3.57] %, P = .0009). Chemogenetic suppression of PVNCRH neurons reversed the anesthesia abnormalities in CFA-injected mice. Natural reward accelerated the induction time of isoflurane anesthesia (252[24] s vs 324[36] s, P = .003) and increased the BSR of isoflurane anesthesia (84.8[5.36] % vs 57.7[14.3] %, P = .0005). Chemogenetic activation of PVNCRH neurons reversed the effect of natural reward on isoflurane anesthesia in CFA-injected mice. CONCLUSIONS Painful stimuli affect the process of isoflurane anesthesia by activating PVNCRH neurons, which implies that these neurons modulate isoflurane anesthesia. Additionally, natural reward alleviates the impact of painful stimuli on isoflurane anesthesia by inhibiting PVNCRH neurons.
Collapse
Affiliation(s)
- Le Yu
- From the Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenying Duan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ye Zhang
- From the Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
De Stasi AM, Zorrilla de San Martin J, Soto N, Aguirre A, Olusakin J, Lourenço J, Gaspar P, Bacci A. Alterations of Adult Prefrontal Circuits Induced by Early Postnatal Fluoxetine Treatment Mediated by 5-HT7 Receptors. J Neurosci 2025; 45:e2393232024. [PMID: 39909574 PMCID: PMC11800747 DOI: 10.1523/jneurosci.2393-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 02/07/2025] Open
Abstract
The prefrontal cortex (PFC) plays a key role in high-level cognitive functions and emotional behaviors, and PFC alterations correlate with different brain disorders including major depression and anxiety. In mice, the first two postnatal weeks represent a critical period of high sensitivity to environmental changes. In this temporal window, serotonin (5-HT) levels regulate the wiring of PFC cortical neurons. Early-life insults and postnatal exposure to the selective serotonin reuptake inhibitor fluoxetine (FLX) affect PFC development leading to depressive and anxiety-like phenotypes in adult mice. However, the mechanisms responsible for these dysfunctions remain obscure. We found that early postnatal FLX exposure (PNFLX) results in reduced overall firing and high-frequency bursting of putative pyramidal neurons (PNs) of deep layers of the medial PFC of adult mice of both sexes in vivo. Ex vivo, patch-clamp recordings revealed that PNFLX abolished high-frequency firing in a distinct subpopulation of deep-layer mPFC PNs, which transiently express the serotonin transporter SERT during the first 2 postnatal weeks. SERT+ and SERT- PNs exhibit distinct morphofunctional properties. Genetic deletion of 5-HT7Rs and pharmacological 5-HT7R blockade partially rescued both the PNFLX-induced reduction of PN firing in vivo and the altered firing of SERT+ PNs in vitro. This indicates a pivotal role of this 5-HTR subtype in mediating 5-HT-dependent maturation of PFC circuits that are susceptible to early-life insults. Overall, our results suggest potential novel neurobiological mechanisms, underlying detrimental neurodevelopmental consequences induced by early-life alterations of 5-HT levels.
Collapse
Affiliation(s)
| | | | - Nina Soto
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Andrea Aguirre
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Jimmy Olusakin
- INSERM UMRS-839 Institut du Fer à Moulin, Paris 75005, France
| | - Joana Lourenço
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Patricia Gaspar
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| | - Alberto Bacci
- Sorbonne Université, ICM-Paris Brain Institute, CNRS, INSERM, Paris 75013, France
| |
Collapse
|
9
|
Song X, Hu J. How does the brain emerge from anesthesia and regain consciousness. Chin Med J (Engl) 2025; 138:298-300. [PMID: 39512228 PMCID: PMC11771597 DOI: 10.1097/cm9.0000000000003378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Xuejun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong 518000, China
| | - Jiangjian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong 518000, China
| |
Collapse
|
10
|
Yang L, Fang F, Wang WX, Xie Y, Cang J, Li SB. Substantia Innominata Glutamatergic Neurons Modulate Sevoflurane Anesthesia in Male Mice. Anesth Analg 2025; 140:353-365. [PMID: 39008422 DOI: 10.1213/ane.0000000000007092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Accumulated evidence suggests that brain regions that promote wakefulness also facilitate emergence from general anesthesia (GA). Glutamatergic neurons in the substantia innominata (SI) regulate motivation-related aversive, depressive, and aggressive behaviors relying on heightened arousal. Here, we hypothesize that glutamatergic neurons in the SI are also involved in the regulation of the effects of sevoflurane anesthesia. METHODS With a combination of fiber photometry, chemogenetic and optogenetic tools, behavioral tests, and cortical electroencephalogram recordings, we investigated whether and how SI glutamatergic neurons and their projections to the lateral hypothalamus (LH) regulate sevoflurane anesthesia in adult male mice. RESULTS Population activity of glutamatergic neurons in the SI gradually decreased upon sevoflurane-induced loss of consciousness (LOC) and slowly returned as soon as inhalation of sevoflurane discontinued before recovery of consciousness (ROC). Chemogenetic activation of SI glutamatergic neurons dampened the animals' sensitivity to sevoflurane exposure, prolonged induction time (mean ± standard deviation [SD]; 389 ± 67 seconds vs 458 ± 53 seconds; P = .047), and shortened emergence time (305 seconds, 95% confidence interval [CI], 242-369 seconds vs 207 seconds, 95% CI, 135-279 seconds; P = .004), whereas chemogenetic inhibition of these neurons facilitated sevoflurane anesthesia. Furthermore, optogenetic activation of SI glutamatergic neurons and their terminals in LH induced cortical activation and behavioral emergence from different depths of sevoflurane anesthesia. CONCLUSIONS Our study shows that SI glutamatergic neuronal activity facilitates emergence from sevoflurane anesthesia and provides evidence for the involvement of the SI-LH glutamatergic pathway in the regulation of consciousness during GA.
Collapse
Affiliation(s)
- Li Yang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Fang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Xu Wang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, Frontiers Center for Brain Science of the Ministry of Education (MOE), Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesiology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Cang
- From the Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Bin Li
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Wu JY, Wang W, Dai XY, He S, Song FH, Gao SJ, Zhang LQ, Li DY, Liu L, Liu DQ, Zhou YQ, Zhang P, Tian B, Mei W. Regulation of states of consciousness by supramammillary nucleus glutamatergic neurones during sevoflurane anaesthesia in mice. Br J Anaesth 2025; 134:425-440. [PMID: 39645516 DOI: 10.1016/j.bja.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/25/2024] [Accepted: 10/03/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND The supramammillary nucleus (SuM), located in the caudal hypothalamus, includes wake-promoting glutamatergic neurones. Their potential role in regulating states of consciousness during general anaesthesia remains unknown. METHODS We used in vivo fibre photometry, c-Fos staining, chemogenetic and optogenetic manipulations, and electroencephalography/electromyography to explore the roles of glutamatergic SuM neurones (SuMVglut2 neurones) at different phases of sevoflurane anaesthesia. Rabies-mediated retrograde and anterograde tract tracing were used to investigate the monosynaptic glutamatergic inputs from the medial septum (MS) to SuM. Their roles in sevoflurane anaesthesia were investigated by in vivo fibre photometry and optogenetic manipulations. RESULTS The population activity of SuMVglut2 neurones decreased at loss of consciousness but increased during recovery of consciousness under sevoflurane anaesthesia. Their activity also decreased during suppression but increased during bursts in sevoflurane-induced burst-suppression oscillations. Activating SuMVglut2 neurones chemogenetically or optogenetically decreased sensitivity to sevoflurane, induced behavioural arousal and cortical activation during continuous steady-state anaesthesia, and stable burst-suppression oscillations under sevoflurane. In contrast, chemogenetic or optogenetic inhibition of SuMVglut2 neurones increased sensitivity to sevoflurane or intensified cortical inhibition during sevoflurane anaesthesia. Retrograde and anterograde tracing verified monosynaptic projections from MSVglut2 neurones to SuMVglut2 neurones. The activity of MSVglut2 SuM terminals increased during loss of consciousness but recovered during recovery of consciousness. Optogenetic activation or inhibition of MSVglut2 SuM terminals induced cortical activation or inhibition, respectively, during sevoflurane anaesthesia. CONCLUSIONS Activation of SuMVglut2 neurones or the glutamatergic septo-supramammillary circuit induces behavioural arousal and cortical activation during sevoflurane anaesthesia.
Collapse
Affiliation(s)
- Jia-Yi Wu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yi Dai
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Si He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan-He Song
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Shao-Jie Gao
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Long-Qing Zhang
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Dan-Yang Li
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Lin Liu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Dai-Qiang Liu
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Ya-Qun Zhou
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Mei
- Department of Anaesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anaesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anaesthesia, Tongji Hospital, China.
| |
Collapse
|
12
|
Rodriguez E, Peng B, Lane N. Anaesthetics disrupt complex I-linked respiration and reverse the ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149511. [PMID: 39326543 DOI: 10.1016/j.bbabio.2024.149511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The mechanism of volatile general anaesthetics has long been a mystery. Anaesthetics have no structural motifs in common, beyond lipid solubility, yet all exert a similar effect. The fact that the inert gas xenon is an anaesthetic suggests their common mechanism might relate to physical rather than chemical properties. Electron transfer through chiral proteins can induce spin polarization. Recent work suggests that anaesthetics dissipate spin polarization during electron transfer to oxygen, slowing respiration. Here we show that the volatile anaesthetics isoflurane and sevoflurane specifically disrupt complex I-linked respiration in the thoraces of Drosophila melanogaster, with less effect on maximal respiration. Suppression of complex I-linked respiration was greatest with isoflurane. Using high-resolution tissue fluorespirometry, we show that these anaesthetics simultaneously increase mitochondrial membrane potential, implying reversal of the ATP synthase. Inhibition of ATP synthase with oligomycin prevented respiration and increased membrane potential back to the maximal (LEAK state) potential. Magnesium-green fluorescence predicted a collapse in ATP availability following a single anaesthetic dose, consistent with ATP hydrolysis through reversal of the ATP synthase. Raised membrane potential corresponded to a rise in ROS flux, especially with isoflurane. Anaesthetic doses causing respiratory suppression were in the same range as those that induce anaesthesia, although we could not establish tissue concentrations. Our findings show that anaesthetics suppress complex I-linked respiration with concerted downstream effects. But we cannot explain why only mutations in complex I, and not elsewhere in the electron-transfer system, confer hypersensitivity to anaesthetics.
Collapse
Affiliation(s)
- Enrique Rodriguez
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Bella Peng
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
13
|
Sylvain Bonfanti L, Arbelet-Bonnin D, Filaine F, Lalanne C, Renault A, Meimoun P, Laurenti P, Grésillon E, Bouteau F. Toxic and signaling effects of the anaesthetic lidocaine on rice cultured cells. PLANT SIGNALING & BEHAVIOR 2024; 19:2388443. [PMID: 39116108 PMCID: PMC11312988 DOI: 10.1080/15592324.2024.2388443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Most studies on anesthesia focus on the nervous system of mammals due to their interest in medicine. The fact that any life form can be anaesthetised is often overlooked although anesthesia targets ion channel activities that exist in all living beings. This study examines the impact of lidocaine on rice (Oryza sativa). It reveals that the cellular responses observed in rice are analogous to those documented in animals, encompassing direct effects, the inhibition of cellular responses, and the long-distance transmission of electrical signals. We show that in rice cells, lidocaine has a cytotoxic effect at a concentration of 1%, since it induces programmed reactive oxygen species (ROS) and caspase-like-dependent cell death, as already demonstrated in animal cells. Additionally, lidocaine causes changes in membrane ion conductance and induces a sharp reduction in electrical long-distance signaling following seedlings leaves burning. Finally, lidocaine was shown to inhibit osmotic stress-induced cell death and the regulation of Ca2+ homeostasis. Thus, lidocaine treatment in rice and tobacco (Nicotiana benthamiana) seedlings induces not only cellular but also systemic effects similar to those induced in mammals.
Collapse
Affiliation(s)
- Lucia Sylvain Bonfanti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Frédéric Filaine
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Christophe Lalanne
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Aurélien Renault
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Patrice Meimoun
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
- Sorbonne Université, Paris, France
| | - Patrick Laurenti
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| | - Etienne Grésillon
- Université Paris-Cité, Laboratoire Dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - François Bouteau
- Université Paris-Cité, Laboratoire Interdisciplinaire des Énergies de Demain (LIED), Paris, France
| |
Collapse
|
14
|
Rodgers MJ, Staves MP. Mechanosensing and anesthesia of single internodal cells of Chara. PLANT SIGNALING & BEHAVIOR 2024; 19:2339574. [PMID: 38601988 PMCID: PMC11017945 DOI: 10.1080/15592324.2024.2339574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The giant (2-3 × 10-2 m long) internodal cells of the aquatic plant, Chara, exhibit a rapid (>100 × 10-6 m s-1) cyclic cytoplasmic streaming which stops in response to mechanical stimuli. Since the streaming - and the stopping of streaming upon stimulation - is easily visible with a stereomicroscope, these single cells are ideal tools to investigate mechanosensing in plant cells, as well as the potential for these cells to be anesthetized. We found that dropping a steel ball (0.88 × 10-3 kg, 6 × 10-3 m in diameter) through a 4.6 cm long tube (delivering ca. 4 × 10-4 J) reliably induced mechanically-stimulated cessation of cytoplasmic streaming. To determine whether mechanically-induced cessation of cytoplasmic streaming in Chara was sensitive to anesthesia, we treated Chara internodal cells to volatilized chloroform in a 9.8 × 10-3 m3 chamber for 2 minutes. We found that low doses (15,000-25,000 ppm) of chloroform did not always anesthetize cells, whereas large doses (46,000 and higher) proved lethal. However, 31,000 ppm chloroform completely, and reversibly, anesthetized these cells in that they did not stop cytoplasmic streaming upon mechanostimulation, but after 24 hours the cells recovered their sensitivity to mechanostimulation. We believe this single-cell model will prove useful for elucidating the still obscure mode of action of volatile anesthetics.
Collapse
Affiliation(s)
- Manya J. Rodgers
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Mark P. Staves
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| |
Collapse
|
15
|
Hu Y, Wang Y, Zhang L, Luo M, Wang Y. Neural Network Mechanisms Underlying General Anesthesia: Cortical and Subcortical Nuclei. Neurosci Bull 2024; 40:1995-2011. [PMID: 39168960 PMCID: PMC11625048 DOI: 10.1007/s12264-024-01286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
General anesthesia plays a significant role in modern medicine. However, the precise mechanism of general anesthesia remains unclear, posing a key scientific challenge in anesthesiology. Advances in neuroscience techniques have enabled targeted manipulation of specific neural circuits and the capture of brain-wide neural activity at high resolution. These advances hold promise for elucidating the intricate mechanisms of action of general anesthetics. This review aims to summarize our current understanding of the role of cortical and subcortical nuclei in modulating general anesthesia, providing new evidence of cortico-cortical and thalamocortical networks in relation to anesthesia and consciousness. These insights contribute to a comprehensive understanding of the neural network mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingjing Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
16
|
Pavlovič A. Touch, light, wounding: how anaesthetics affect plant sensing abilities. PLANT CELL REPORTS 2024; 43:293. [PMID: 39580775 PMCID: PMC11586303 DOI: 10.1007/s00299-024-03369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Anaesthetics affect not only humans and animals but also plants. Plants exposed to certain anaesthetics lose their ability to respond adequately to various stimuli such as touch, injury or light. Available results indicate that anaesthetics modulate ion channel activities in plants, e.g. Ca2+ influx. The word anaesthesia means loss of sensation. Plants, as all living creatures, can also sense their environment and they are susceptible to anaesthesia. Although some anaesthetics are often known as drugs with well-defined target to their animal/human receptors, some other are promiscuous in their binding. Both have effects on plants. Application of general volatile anaesthetics (GVAs) inhibits plant responses to different stimuli but also induces strong cellular response. Of particular interest is the ability of GVAs inhibit long-distance electrical and Ca2+ signalling probably through inhibition of GLUTAMATE RECEPTOR-LIKE proteins (GLRs), the effect which is surprisingly very similar to inhibition of nerve impulse transmission in animals or human. However, GVAs act also as a stressor for plants and can induce their own Ca2+ signature, which strongly reprograms gene expression . Down-regulation of genes encoding enzymes of chlorophyll biosynthesis and pigment-protein complexes are responsible for inhibited de-etiolation and photomorphogenesis. Vesicle trafficking, germination, and circumnutation movement of climbing plants are also strongly inhibited. On the other hand, other cellular processes can be upregulated, for example, heat shock response and generation of reactive oxygen species (ROS). Upregulation of stress response by GVAs results in preconditioning/priming and can be helpful to withstand abiotic stresses in plants. Thus, anaesthetic drugs may become a useful tool for scientists studying plant responses to environmental stimuli.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Zhang Z, Huang Y, Chen X, Li J, Yang Y, Lv L, Wang J, Wang M, Wang Y, Wang Z. State-specific Regulation of Electrical Stimulation in the Intralaminar Thalamus of Macaque Monkeys: Network and Transcriptional Insights into Arousal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402718. [PMID: 38938001 PMCID: PMC11434125 DOI: 10.1002/advs.202402718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Long-range thalamocortical communication is central to anesthesia-induced loss of consciousness and its reversal. However, isolating the specific neural networks connecting thalamic nuclei with various cortical regions for state-specific anesthesia regulation is challenging, with the biological underpinnings still largely unknown. Here, simultaneous electroencephalogram-fuctional magnetic resonance imaging (EEG-fMRI) and deep brain stimulation are applied to the intralaminar thalamus in macaques under finely-tuned propofol anesthesia. This approach led to the identification of an intralaminar-driven network responsible for rapid arousal during slow-wave oscillations. A network-based RNA-sequencing analysis is conducted of region-, layer-, and cell-specific gene expression data from independent transcriptomic atlases and identifies 2489 genes preferentially expressed within this arousal network, notably enriched in potassium channels and excitatory, parvalbumin-expressing neurons, and oligodendrocytes. Comparison with human RNA-sequencing data highlights conserved molecular and cellular architectures that enable the matching of homologous genes, protein interactions, and cell types across primates, providing novel insight into network-focused transcriptional signatures of arousal.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Yichun Huang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Xiaoyu Chen
- Institute of Natural Sciences and School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan RD, Minhang District, Shanghai, 200240, China
| | - Jiahui Li
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Yi Yang
- Department of Neurosurgery, Brain Computer Interface Transition Research Center, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring Rd West, Fengtai District, Beijing, 100070, China
| | - Longbao Lv
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Jianhong Wang
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East of Jiaochang Rd, Kunming, Yunnan, 650223, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, 450003, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, 12 Urumqi Middle Rd, Jing'an District, Shanghai, 200040, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, State Key Laboratory of General Artificial Intelligence, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
- School of Biomedical Engineering, Hainan University, 58 Renmin Avenue, Haikou, Hainan, 570228, China
| |
Collapse
|
18
|
Khan S, Huang Y, Timuçin D, Bailey S, Lee S, Lopes J, Gaunce E, Mosberger J, Zhan M, Abdelrahman B, Zeng X, Wiest MC. Microtubule-Stabilizer Epothilone B Delays Anesthetic-Induced Unconsciousness in Rats. eNeuro 2024; 11:ENEURO.0291-24.2024. [PMID: 39147581 PMCID: PMC11363512 DOI: 10.1523/eneuro.0291-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Volatile anesthetics are currently believed to cause unconsciousness by acting on one or more molecular targets including neural ion channels, receptors, mitochondria, synaptic proteins, and cytoskeletal proteins. Anesthetic gases including isoflurane bind to cytoskeletal microtubules (MTs) and dampen their quantum optical effects, potentially contributing to causing unconsciousness. This possibility is supported by the finding that taxane chemotherapy consisting of MT-stabilizing drugs reduces the effectiveness of anesthesia during surgery in human cancer patients. In order to experimentally assess the contribution of MTs as functionally relevant targets of volatile anesthetics, we measured latencies to loss of righting reflex (LORR) under 4% isoflurane in male rats injected subcutaneously with vehicle or 0.75 mg/kg of the brain-penetrant MT-stabilizing drug epothilone B (epoB). EpoB-treated rats took an average of 69 s longer to become unconscious as measured by latency to LORR. This was a statistically significant difference corresponding to a standardized mean difference (Cohen's d) of 1.9, indicating a "large" normalized effect size. The effect could not be accounted for by tolerance from repeated exposure to isoflurane. Our results suggest that binding of the anesthetic gas isoflurane to MTs causes unconsciousness and loss of purposeful behavior in rats (and presumably humans and other animals). This finding is predicted by models that posit consciousness as a property of a quantum physical state of neural MTs.
Collapse
Affiliation(s)
- Sana Khan
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Yixiang Huang
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Derin Timuçin
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Shantelle Bailey
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Sophia Lee
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Jessica Lopes
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Emeline Gaunce
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Jasmine Mosberger
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Michelle Zhan
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | | | - Xiran Zeng
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| | - Michael C Wiest
- Neuroscience Department, Wellesley College, Wellesley, Massachusetts 01760
| |
Collapse
|
19
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Wu Y, Zhang D, Liu J, Jiang J, Xie K, Wu L, Leng Y, Liang P, Zhu T, Zhou C. Activity of the Sodium Leak Channel Maintains the Excitability of Paraventricular Thalamus Glutamatergic Neurons to Resist Anesthetic Effects of Sevoflurane in Mice. Anesthesiology 2024; 141:56-74. [PMID: 38625708 DOI: 10.1097/aln.0000000000005015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
BACKGROUND Stimulation of the paraventricular thalamus has been found to enhance anesthesia recovery; however, the underlying molecular mechanism by which general anesthetics modulate paraventricular thalamus is unclear. This study aimed to test the hypothesis that the sodium leak channel (NALCN) maintains neuronal activity in the paraventricular thalamus to resist anesthetic effects of sevoflurane in mice. METHODS Chemogenetic and optogenetic manipulations, in vivo multiple-channel recordings, and electroencephalogram recordings were used to investigate the role of paraventricular thalamus neuronal activity in sevoflurane anesthesia. Virus-mediated knockdown and/or overexpression was applied to determine how NALCN influenced excitability of paraventricular thalamus glutamatergic neurons under sevoflurane. Viral tracers and local field potentials were used to explore the downstream pathway. RESULTS Single neuronal spikes in the paraventricular thalamus were suppressed by sevoflurane anesthesia and recovered during emergence. Optogenetic activation of paraventricular thalamus glutamatergic neurons shortened the emergence period from sevoflurane anesthesia, while chemogenetic inhibition had the opposite effect. Knockdown of the NALCN in the paraventricular thalamus delayed the emergence from sevoflurane anesthesia (recovery time: from 24 ± 14 to 64 ± 19 s, P < 0.001; concentration for recovery of the righting reflex: from 1.13% ± 0.10% to 0.97% ± 0.13%, P < 0.01). As expected, the overexpression of the NALCN in the paraventricular thalamus produced the opposite effects. At the circuit level, knockdown of the NALCN in the paraventricular thalamus decreased the neuronal activity of the nucleus accumbens, as indicated by the local field potential and decreased single neuronal spikes in the nucleus accumbens. Additionally, the effects of NALCN knockdown in the paraventricular thalamus on sevoflurane actions were reversed by optical stimulation of the nucleus accumbens. CONCLUSIONS Activity of the NALCN maintains the excitability of paraventricular thalamus glutamatergic neurons to resist the anesthetic effects of sevoflurane in mice.
Collapse
Affiliation(s)
- Yujie Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Keyu Xie
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Leng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Chen S, Li B, Hu Y, Zhang Y, Dai W, Zhang X, Zhou Y, Su D. Common functional mechanisms underlying dynamic brain network changes across five general anesthetics: A rat fMRI study. CNS Neurosci Ther 2024; 30:e14866. [PMID: 39014472 PMCID: PMC11251872 DOI: 10.1111/cns.14866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Reversible loss of consciousness is the primary therapeutic endpoint of general anesthesia; however, the drug-invariant mechanisms underlying anesthetic-induced unconsciousness are still unclear. This study aimed to investigate the static, dynamic, topological and organizational changes in functional brain network induced by five clinically-used general anesthetics in the rat brain. METHOD Male Sprague-Dawley rats (n = 57) were randomly allocated to received propofol, isoflurane, ketamine, dexmedetomidine, or combined isoflurane plus dexmedetomidine anesthesia. Resting-state functional magnetic resonance images were acquired under general anesthesia and analyzed for changes in dynamic functional brain networks compared to the awake state. RESULTS Different general anesthetics induced distinct patterns of functional connectivity inhibition within brain-wide networks, resulting in multi-level network reorganization primarily by impairing the functional connectivity of cortico-subcortical networks as well as by reducing information transmission capacity, intrinsic connectivity, and network architecture stability of subcortical regions. Conversely, functional connectivity and topological properties were preserved within cortico-cortical networks, albeit with fewer dynamic fluctuations under general anesthesia. CONCLUSIONS Our findings highlighted the effects of different general anesthetics on functional brain network reorganization, which might shed light on the drug-invariant mechanism of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Bo Li
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ying Hu
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yizhe Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Wanbing Dai
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Xiao Zhang
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| | - Yan Zhou
- Department of Radiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Diansan Su
- Department of Anesthesiology, Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of EducationShanghaiChina
| |
Collapse
|
22
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Robinson DG, Mallatt J, Peer WA, Sourjik V, Taiz L. Cell consciousness: a dissenting opinion : The cellular basis of consciousness theory lacks empirical evidence for its claims that all cells have consciousness. EMBO Rep 2024; 25:2162-2167. [PMID: 38548972 PMCID: PMC11094104 DOI: 10.1038/s44319-024-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024] Open
Abstract
The proponents of CBC claim that all living organisms down to prokaryotes have consciousness. However, their arguments lack empirical evidence or are refuted by established facts.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| | - Jon Mallatt
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA
| | - Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cell, & Developmental Biology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
24
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
25
|
Luppi AI. What anaesthesia reveals about human brains and consciousness. Nat Hum Behav 2024; 8:801-804. [PMID: 38589704 DOI: 10.1038/s41562-024-01860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Affiliation(s)
- Andrea I Luppi
- Department of Psychiatry and Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK.
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
26
|
Pavlovič A, Ševčíková L, Hřivňacký M, Rác M. Effect of the General Anaesthetic Ketamine on Electrical and Ca 2+ Signal Propagation in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:894. [PMID: 38592882 PMCID: PMC10975207 DOI: 10.3390/plants13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.Š.); (M.H.); (M.R.)
| | | | | | | |
Collapse
|
27
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Li J, Hu R, Tan W, Li J, Huang W, Wang Z. Activation of glutamatergic neurones in the pedunculopontine tegmental nucleus promotes cortical activation and behavioural emergence from sevoflurane-induced unconsciousness in mice. Br J Anaesth 2024; 132:320-333. [PMID: 37953203 DOI: 10.1016/j.bja.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The neural mechanisms underlying sevoflurane-induced loss of consciousness and recovery of consciousness after anaesthesia remain unknown. We investigated whether glutamatergic pedunculopontine tegmental nucleus (PPT) neurones are involved in the regulation of states of consciousness under sevoflurane anaesthesia. METHODS In vivo fibre photometry combined with electroencephalography (EEG)/electromyography recording was used to record changes in the activity of glutamatergic PPT neurones under sevoflurane anaesthesia. Chemogenetic and cortical EEG recordings were used to explore their roles in the induction of and emergence from sevoflurane anaesthesia. Optogenetic methods combined with EEG recordings were used to explore the roles of glutamatergic PPT neurones and of the PPT-ventral tegmental area pathway in maintenance of anaesthesia. RESULTS The population activity of glutamatergic PPT neurones was reduced before sevoflurane-induced loss of righting reflex and gradually recovered after return of righting reflex. Chemogenetic inhibition of glutamatergic PPT neurones accelerated induction of anaesthesia (hM4Di-CNO vs mCherry-CNO, 76 [17] vs 121 [27] s, P<0.0001) and delayed emergence from sevoflurane anaesthesia (278 [98] vs 145 [53] s, P<0.0001) but increased sevoflurane sensitivity. Optogenetic stimulation of glutamatergic PPT neurons or of the PPT-ventral tegmental area pathway promoted cortical activation and behavioural emergence during steady-state sevoflurane anaesthesia, reduced the depth of anaesthesia, and caused cortical arousal during sevoflurane-induced EEG burst suppression. CONCLUSIONS Glutamatergic PPT neurones regulate induction and emergence of sevoflurane anaesthesia.
Collapse
Affiliation(s)
- Jiayan Li
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Hu
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wulin Tan
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhongxing Wang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
30
|
He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. ULTRASONICS 2023; 135:107132. [PMID: 37604030 DOI: 10.1016/j.ultras.2023.107132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Delayed arousal and cognitive dysfunction are common, especially in older patients after general anesthesia (GA). Elevating central nervous system serotonin (5-HT) levels can promote recovery from GA and increase synaptic plasticity to improve cognition. Ultrasound neuromodulation has become a noninvasive physical intervention therapy with high spatial resolution and penetration depth, which can modulate neuronal excitability to treat psychiatric and neurodegenerative diseases. This study aims to use ultrasound to noninvasively modulate the brain 5-HT levels of mice to promote recovery from GA and improve cognition in mice. The dorsal raphe nucleus (DRN) of mice during GA was stimulated by the 1.1 MHz ultrasound with a negative pressure of 356 kPa, and the liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) method was used to measure the DRN 5-HT concentrations. The mice's recovery time from GA was assessed, and the cognition was evaluated through spontaneous alternation Y-maze and novel object recognition (NOR) tests. After ultrasound stimulation, the mice's DRN 5-HT levels were significantly increased (control: 554.0 ± 103.2 ng/g, anesthesia + US: 664.2 ± 84.1 ng/g, *p = 0.0389); the GA recovery time (return of the righting reflex (RORR) emergence latency time) of mice was significantly reduced (anesthesia: 331.6 ± 70 s, anesthesia + US: 223.2 ± 67.7 s, *p = 0.0215); the spontaneous rotation behavior score of mice was significantly increased (anesthesia: 59.46 ± 5.26 %, anesthesia + US: 68.55 ± 5.24 %; *p = 0.0126); the recognition index was significantly increased (anesthesia: 55.02 ± 6.23 %, anesthesia + US: 78.52 ± 12.21 %; ***p = 0.0009). This study indicates that ultrasound stimulation of DRN increases serotonin levels, accelerates recovery from anesthesia, and improves cognition, which could be an important strategy for treating delayed arousal, postoperative delirium, or even lasting cognitive dysfunction after GA.
Collapse
Affiliation(s)
- Jiaru He
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiyue Zhu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Canwen Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Junwei Wu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhongwen Cheng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
31
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia reduces the uniqueness of brain connectivity across individuals and across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566332. [PMID: 38014199 PMCID: PMC10680788 DOI: 10.1101/2023.11.08.566332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- Neuro-X Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
32
|
Sylvain-Bonfanti L, Page J, Arbelet-Bonnin D, Meimoun P, Grésillon É, Bouteau F, Laurenti P. [Anaesthesia, a process common to all living organisms]. Med Sci (Paris) 2023; 39:738-743. [PMID: 37943134 DOI: 10.1051/medsci/2023123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Because of their interest in medicine, most studies of anaesthesia focus on the nervous system of metazoans, and the fact that any life form can be anaesthetised is often underlooked. If electrical signalling is an essential phenomenon for the success of animals, it appears to be widespread beyond metazoans. Indeed, anaesthesia targets Na+/Ca2+ voltage-gated channels that exist in a wide variety of species and originate from ancestral channels that predate eukaryotes in the course of evolution. The fact that the anaesthetic capacity that leads to loss of sensitivity is common to all phyla may lead to two hypotheses: to be investigated is the evolutionary maintenance of the ability to be anaesthetised due to an adaptive advantage or to a simple intrinsic defect in ion channels? The study of anaesthesia in organisms phylogenetically distant from animals opens up promising prospects for the discovery of new anaesthetic treatments. Moreover, it should also lead to a better understanding of a still poorly understood phenomenon that yet unifies all living organisms. We hope that this new understanding of the unity of life will help humans to assume their responsibilities towards all species, at a time when we are threatening biodiversity with mass extinction.
Collapse
Affiliation(s)
- Lucia Sylvain-Bonfanti
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France - Université Paris-Cité, laboratoire dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - Julien Page
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France
| | - Patrice Meimoun
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France - Sorbonne université, Paris, France
| | - Étienne Grésillon
- Université Paris-Cité, laboratoire dynamiques sociales et recomposition des espaces (LADYSS UMR 7533), Paris, France
| | - François Bouteau
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France
| | - Patrick Laurenti
- Université Paris-Cité, laboratoire interdisciplinaire des énergies de demain (LIED UMR 8236), Paris, France
| |
Collapse
|
33
|
Hogarth K, Tarazi D, Maynes JT. The effects of general anesthetics on mitochondrial structure and function in the developing brain. Front Neurol 2023; 14:1179823. [PMID: 37533472 PMCID: PMC10390784 DOI: 10.3389/fneur.2023.1179823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
The use of general anesthetics in modern clinical practice is commonly regarded as safe for healthy individuals, but exposures at the extreme ends of the age spectrum have been linked to chronic cognitive impairments and persistent functional and structural alterations to the nervous system. The accumulation of evidence at both the epidemiological and experimental level prompted the addition of a warning label to inhaled anesthetics by the Food and Drug Administration cautioning their use in children under 3 years of age. Though the mechanism by which anesthetics may induce these detrimental changes remains to be fully elucidated, increasing evidence implicates mitochondria as a potential primary target of anesthetic damage, meditating many of the associated neurotoxic effects. Along with their commonly cited role in energy production via oxidative phosphorylation, mitochondria also play a central role in other critical cellular processes including calcium buffering, cell death pathways, and metabolite synthesis. In addition to meeting their immense energy demands, neurons are particularly dependent on the proper function and spatial organization of mitochondria to mediate specialized functions including neurotransmitter trafficking and release. Mitochondrial dependence is further highlighted in the developing brain, requiring spatiotemporally complex and metabolically expensive processes such as neurogenesis, synaptogenesis, and synaptic pruning, making the consequence of functional alterations potentially impactful. To this end, we explore and summarize the current mechanistic understanding of the effects of anesthetic exposure on mitochondria in the developing nervous system. We will specifically focus on the impact of anesthetic agents on mitochondrial dynamics, apoptosis, bioenergetics, stress pathways, and redox homeostasis. In addition, we will highlight critical knowledge gaps, pertinent challenges, and potential therapeutic targets warranting future exploration to guide mechanistic and outcomes research.
Collapse
Affiliation(s)
- Kaley Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Doorsa Tarazi
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Rózsa ZB, Hantal G, Szőri M, Fábián B, Jedlovszky P. Understanding the Molecular Mechanism of Anesthesia: Effect of General Anesthetics and Structurally Similar Non-Anesthetics on the Properties of Lipid Membranes. J Phys Chem B 2023; 127:6078-6090. [PMID: 37368412 PMCID: PMC11404830 DOI: 10.1021/acs.jpcb.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
General anesthesia can be caused by various, chemically very different molecules, while several other molecules, many of which are structurally rather similar to them, do not exhibit anesthetic effects at all. To understand the origin of this difference and shed some light on the molecular mechanism of general anesthesia, we report here molecular dynamics simulations of the neat dipalmitoylphosphatidylcholine (DPPC) membrane as well as DPPC membranes containing the anesthetics diethyl ether and chloroform and the structurally similar non-anesthetics n-pentane and carbon tetrachloride, respectively. To also account for the pressure reversal of anesthesia, these simulations are performed both at 1 bar and at 600 bar. Our results indicate that all solutes considered prefer to stay both in the middle of the membrane and close to the boundary of the hydrocarbon domain, at the vicinity of the crowded region of the polar headgroups. However, this latter preference is considerably stronger for the (weakly polar) anesthetics than for the (apolar) non-anesthetics. Anesthetics staying in this outer preferred position increase the lateral separation between the lipid molecules, giving rise to a decrease of the lateral density. The lower lateral density leads to an increased mobility of the DPPC molecules, a decreased order of their tails, an increase of the free volume around this outer preferred position, and a decrease of the lateral pressure at the hydrocarbon side of the apolar/polar interface, a change that might well be in a causal relation with the occurrence of the anesthetic effect. All these changes are clearly reverted by the increase of pressure. Furthermore, non-anesthetics occur in this outer preferred position in a considerably smaller concentration and hence either induce such changes in a much weaker form or do not induce them at all.
Collapse
Affiliation(s)
- Zsófia B Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - György Hantal
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, A-1190 Vienna, Austria
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Pál Jedlovszky
- Department of Chemistry, Eszterházy Károly Catholic University, Leányka utca 6, H-3300 Eger, Hungary
| |
Collapse
|
35
|
Chang AS, Wirak GS, Li D, Gabel CV, Connor CW. Measures of Information Content during Anesthesia and Emergence in the Caenorhabditis elegans Nervous System. Anesthesiology 2023; 139:49-62. [PMID: 37027802 PMCID: PMC10266588 DOI: 10.1097/aln.0000000000004579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
BACKGROUND Suppression of behavioral and physical responses defines the anesthetized state. This is accompanied, in humans, by characteristic changes in electroencephalogram patterns. However, these measures reveal little about the neuron or circuit-level physiologic action of anesthetics nor how information is trafficked between neurons. This study assessed whether entropy-based metrics can differentiate between the awake and anesthetized state in Caenorhabditis elegans and characterize emergence from anesthesia at the level of interneuronal communication. METHODS Volumetric fluorescence imaging measured neuronal activity across a large portion of the C. elegans nervous system at cellular resolution during distinct states of isoflurane anesthesia, as well as during emergence from the anesthetized state. Using a generalized model of interneuronal communication, new entropy metrics were empirically derived that can distinguish the awake and anesthetized states. RESULTS This study derived three new entropy-based metrics that distinguish between stable awake and anesthetized states (isoflurane, n = 10) while possessing plausible physiologic interpretations. State decoupling is elevated in the anesthetized state (0%: 48.8 ± 3.50%; 4%: 66.9 ± 6.08%; 8%: 65.1 ± 5.16%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), while internal predictability (0%: 46.0 ± 2.94%; 4%: 27.7 ± 5.13%; 8%: 30.5 ± 4.56%; 0% vs. 4%, P < 0.001; 0% vs. 8%, P < 0.001), and system consistency (0%: 2.64 ± 1.27%; 4%: 0.97 ± 1.38%; 8%: 1.14 ± 0.47%; 0% vs. 4%, P = 0.006; 0% vs. 8%, P = 0.015) are suppressed. These new metrics also resolve to baseline during gradual emergence of C. elegans from moderate levels of anesthesia to the awake state (n = 8). The results of this study show that early emergence from isoflurane anesthesia in C. elegans is characterized by the rapid resolution of an elevation in high frequency activity (n = 8, P = 0.032). The entropy-based metrics mutual information and transfer entropy, however, did not differentiate well between the awake and anesthetized states. CONCLUSIONS Novel empirically derived entropy metrics better distinguish the awake and anesthetized states compared to extant metrics and reveal meaningful differences in information transfer characteristics between states. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Andrew S Chang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston University, Boston, Massachusetts
| | - Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| |
Collapse
|
36
|
Deverett B. Anesthesia for non-traditional consciousness. Front Hum Neurosci 2023; 17:1146242. [PMID: 37228852 PMCID: PMC10203240 DOI: 10.3389/fnhum.2023.1146242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
|
37
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
38
|
Kippenberger S, Pipa G, Steinhorst K, Zöller N, Kleemann J, Özistanbullu D, Kaufmann R, Scheller B. Learning in the Single-Cell Organism Physarum polycephalum: Effect of Propofol. Int J Mol Sci 2023; 24:ijms24076287. [PMID: 37047260 PMCID: PMC10094176 DOI: 10.3390/ijms24076287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Propofol belongs to a class of molecules that are known to block learning and memory in mammals, including rodents and humans. Interestingly, learning and memory are not tied to the presence of a nervous system. There are several lines of evidence indicating that single-celled organisms also have the capacity for learning and memory which may be considered as basal intelligence. Here, we introduce a new experimental model for testing the learning ability of Physarum polycephalum, a model organism frequently used to study single-celled “intelligence”. In this study, the impact of propofol on Physarum’s “intelligence” was tested. The model consists of a labyrinth of subsequent bifurcations in which food (oat flakes soaked with coconut oil-derived medium chain triglycerides [MCT] and soybean oil-derived long chain triglycerides [LCT]) or propofol in MCT/LCT) is placed in one of each Y-branch. In this setting, it was tested whether Physarum memorized the rewarding branch. We saw that Physarum was a quick learner when capturing the first bifurcations of the maze; thereafter, the effect decreased, perhaps due to reaching a state of satiety. In contrast, when oat flakes were soaked with propofol, Physarum’s preference for oat flakes declined significantly. Several possible actions, including the blocking of gamma-aminobutyric acid (GABA) receptor signaling, are suggested to account for this behavior, many of which can be tested in our new model.
Collapse
|
39
|
The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:437-457. [PMID: 36799986 DOI: 10.1007/s00359-022-01606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Urethane and MS-222 are agents widely employed for general anesthesia, yet, besides inducing a state of unconsciousness, little is known about their neurophysiological effects. To investigate these effects, we developed an in vivo assay using the electric organ discharge (EOD) of the weakly electric fish Apteronotus leptorhynchus as a proxy for the neural output of the pacemaker nucleus. The oscillatory neural activity of this brainstem nucleus drives the fish's EOD in a one-to-one fashion. Anesthesia induced by urethane or MS-222 resulted in pronounced decreases of the EOD frequency, which lasted for up to 3 h. In addition, each of the two agents caused a manifold increase in the generation of transient modulations of the EOD known as chirps. The reduction in EOD frequency can be explained by the modulatory effect of urethane on neurotransmission, and by the blocking of voltage-gated sodium channels by MS-222, both within the circuitry controlling the neural oscillations of the pacemaker nucleus. The present study demonstrates a marked effect of urethane and MS-222 on neural activity within the central nervous system and on the associated animal's behavior. This calls for caution when conducting neurophysiological experiments under general anesthesia and interpreting their results.
Collapse
|
40
|
Zhou F, Wang D, Li H, Wang S, Zhang X, Li A, Tong T, Zhong H, Yang Q, Dong H. Orexinergic innervations at GABAergic neurons of the lateral habenula mediates the anesthetic potency of sevoflurane. CNS Neurosci Ther 2023; 29:1332-1344. [PMID: 36740262 PMCID: PMC10068468 DOI: 10.1111/cns.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
AIMS The circuitry mechanism associated with anesthesia-induced unconsciousness is still largely unknown. It has been reported that orexinergic neurons of the lateral hypothalamus (LHA) facilitate the emergence from anesthesia through their neuronal projections to the arousal-promoting brain areas. However, the lateral habenula (LHb), as one of the orexin downstream targets, is known for its anesthesia-promoting effect. Therefore, the current study aimed to explore whether and how the orexinergic projections from the LHA to the LHb have a regulatory effect on unconsciousness induced by general anesthesia. METHODS We applied optogenetic, chemogenetic, or pharmacological approaches to regulate the orexinergicLHA-LHb pathway. Fiber photometry was used to assess neuronal activity. Loss or recovery of the righting reflex was used to evaluate the induction or emergence time of general anesthesia. The burst-suppression ratio and electroencephalography spectra were used to measure the anesthetic depth. RESULTS We found that activation of the orexinergicLHA-LHb pathway promoted emergence and reduced anesthetic depth during sevoflurane anesthesia. Surprisingly, the arousal-promoting effect of the orexinergicLHA-LHb pathway was mediated by excitation of glutamate decarboxylase (GAD2)-expressing neurons, but not glutamatergic neurons in the LHb. CONCLUSION The orexinergicLHA-LHb pathway facilitates emergence from sevoflurane anesthesia, and this effect was mediated by OxR2 in GAD2-expressing GABA neurons.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haixing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Luo M, Fei X, Liu X, Jin Z, Wang Y, Xu M. Divergent Neural Activity in the VLPO During Anesthesia and Sleep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203395. [PMID: 36461756 PMCID: PMC9839870 DOI: 10.1002/advs.202203395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The invention of general anesthesia (GA) represents a significant advance in modern clinical practices. However, the exact mechanisms of GA are not entirely understood. Because of the multitude of similarities between GA and sleep, one intriguing hypothesis is that anesthesia may engage the sleep-wake regulation circuits. Here, using fiber photometry and micro-endoscopic imaging of Ca2+ signals at both population and single-cell levels, it investigates how various anesthetics modulate the neural activity in the ventrolateral preoptic nucleus (vLPO), a brain region essential for the initiation of sleep. It is found that different anesthetics primarily induced suppression of neural activity and tended to recruit a similar group of vLPO neurons; however, each anesthetic caused comparable modulations of both wake-active and sleep-active neurons. These results demonstrate that anesthesia creates a different state of neural activity in the vLPO than during natural sleep, suggesting that anesthesia may not engage the same vLPO circuits for sleep generation.
Collapse
Affiliation(s)
- Mengqiang Luo
- Department of AnesthesiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Xiang Fei
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Xiaotong Liu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Zikang Jin
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
| | - Yingwei Wang
- Department of AnesthesiologyHuashan HospitalFudan UniversityShanghai200040China
| | - Min Xu
- Institute of NeuroscienceState Key Laboratory of NeuroscienceCenter for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghai200031China
- Shanghai Center for Brain Science and Brain‐Inspired Intelligence TechnologyShanghai201210China
| |
Collapse
|
42
|
Frank M, Nabb AT, Gilbert SP, Bentley M. Propofol attenuates kinesin-mediated axonal vesicle transport and fusion. Mol Biol Cell 2022; 33:ar119. [PMID: 36103253 PMCID: PMC9634964 DOI: 10.1091/mbc.e22-07-0276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Propofol is a widely used general anesthetic, yet the understanding of its cellular effects is fragmentary. General anesthetics are not as innocuous as once believed and have a wide range of molecular targets that include kinesin motors. Propofol, ketamine, and etomidate reduce the distances that Kinesin-1 KIF5 and Kinesin-2 KIF3 travel along microtubules in vitro. These transport kinesins are highly expressed in the CNS, and their dysfunction leads to a range of human pathologies including neurodevelopmental and neurodegenerative diseases. While in vitro data suggest that general anesthetics may disrupt kinesin transport in neurons, this hypothesis remains untested. Here we find that propofol treatment of hippocampal neurons decreased vesicle transport mediated by Kinesin-1 KIF5 and Kinesin-3 KIF1A ∼25-60%. Propofol treatment delayed delivery of the KIF5 cargo NgCAM to the distal axon. Because KIF1A participates in axonal transport of presynaptic vesicles, we tested whether prolonged propofol treatment affects synaptic vesicle fusion mediated by VAMP2. The data show that propofol-induced transport delay causes a significant decrease in vesicle fusion in distal axons. These results are the first to link a propofol-induced delay in neuronal trafficking to a decrease in axonal vesicle fusion, which may alter physiological function during and after anesthesia.
Collapse
Affiliation(s)
- Madeline Frank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Alec T. Nabb
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Susan P. Gilbert
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Marvin Bentley
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180,*Address correspondence to: Marvin Bentley ()
| |
Collapse
|
43
|
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci 2022; 45:722-732. [PMID: 35995629 PMCID: PMC9492635 DOI: 10.1016/j.tins.2022.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The role of the prefrontal cortex (PFC) in the mechanism of consciousness is a matter of active debate. Most theoretical and empirical investigations have focused on whether the PFC is critical for the content of consciousness (i.e., the qualitative aspects of conscious experience). However, there is emerging evidence that, in addition to its well-established roles in cognition, the PFC is a key regulator of the level of consciousness (i.e., the global state of arousal). In this opinion article we review recent data supporting the hypothesis that the medial PFC is a critical node in arousal-promoting networks.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
BACKGROUND BIS (a brand of processed electroencephalogram [EEG] depth-of-anesthesia monitor) scores have become interwoven into clinical anesthesia care and research. Yet, the algorithms used by such monitors remain proprietary. We do not actually know what we are measuring. If we knew, we could better understand the clinical prognostic significance of deviations in the score and make greater research advances in closed-loop control or avoiding postoperative cognitive dysfunction or juvenile neurological injury. In previous work, an A-2000 BIS monitor was forensically disassembled and its algorithms (the BIS Engine) retrieved as machine code. Development of an emulator allowed BIS scores to be calculated from arbitrary EEG data for the first time. We now address the fundamental questions of how these algorithms function and what they represent physiologically. METHODS EEG data were obtained during induction, maintenance, and emergence from 12 patients receiving customary anesthetic management for orthopedic, general, vascular, and neurosurgical procedures. These data were used to trigger the closely monitored execution of the various parts of the BIS Engine, allowing it to be reimplemented in a high-level language as an algorithm entitled ibis. Ibis was then rewritten for concision and physiological clarity to produce a novel completely clear-box depth-of-anesthesia algorithm titled openibis . RESULTS The output of the ibis algorithm is functionally indistinguishable from the native BIS A-2000, with r = 0.9970 (0.9970-0.9971) and Bland-Altman mean difference between methods of -0.25 ± 2.6 on a unitless 0 to 100 depth-of-anesthesia scale. This precision exceeds the performance of any earlier attempt to reimplement the function of the BIS algorithms. The openibis algorithm also matches the output of the native algorithm very closely ( r = 0.9395 [0.9390-0.9400], Bland-Altman 2.62 ± 12.0) in only 64 lines of readable code whose function can be unambiguously related to observable features in the EEG signal. The operation of the openibis algorithm is described in an intuitive, graphical form. CONCLUSIONS The openibis algorithm finally provides definitive answers about the BIS: the reliance of the most important signal components on the low-gamma waveband and how these components are weighted against each other. Reverse engineering allows these conclusions to be reached with a clarity and precision that cannot be obtained by other means. These results contradict previous review articles that were believed to be authoritative: the BIS score does not appear to depend on a bispectral index at all. These results put clinical anesthesia research using depth-of-anesthesia scores on a firm footing by elucidating their physiological basis and enabling comparison to other animal models for mechanistic research.
Collapse
Affiliation(s)
- Christopher W Connor
- From the Harvard Medical School, Boston, Massachusetts
- Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Departments of Physiology and Biophysics
- Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
45
|
Pavlovič A, Jakšová J, Kučerová Z, Špundová M, Rác M, Roudnický P, Mithöfer A. Diethyl ether anesthesia induces transient cytosolic [Ca 2+] increase, heat shock proteins, and heat stress tolerance of photosystem II in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:995001. [PMID: 36172556 PMCID: PMC9511054 DOI: 10.3389/fpls.2022.995001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 05/27/2023]
Abstract
General volatile anesthetic diethyl ether blocks sensation and responsive behavior not only in animals but also in plants. Here, using a combination of RNA-seq and proteomic LC-MS/MS analyses, we investigated the effect of anesthetic diethyl ether on gene expression and downstream consequences in plant Arabidopsis thaliana. Differential expression analyses revealed reprogramming of gene expression under anesthesia: 6,168 genes were upregulated, 6,310 genes were downregulated, while 9,914 genes were not affected in comparison with control plants. On the protein level, out of 5,150 proteins identified, 393 were significantly upregulated and 227 were significantly downregulated. Among the highest significantly downregulated processes in etherized plants were chlorophyll/tetrapyrrole biosynthesis and photosynthesis. However, measurements of chlorophyll a fluorescence did not show inhibition of electron transport through photosystem II. The most significantly upregulated process was the response to heat stress (mainly heat shock proteins, HSPs). Using transgenic A. thaliana expressing APOAEQUORIN, we showed transient increase of cytoplasmic calcium level [Ca2+]cyt in response to diethyl ether application. In addition, cell membrane permeability for ions also increased under anesthesia. The plants pre-treated with diethyl ether, and thus with induced HSPs, had increased tolerance of photosystem II to subsequent heat stress through the process known as cross-tolerance or priming. All these data indicate that diethyl ether anesthesia may partially mimic heat stress in plants through the effect on plasma membrane.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Jakšová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Marek Rác
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
46
|
Wang JH, Lv M, Zhang HX, Gao Y, Chen TT, Wan TT, Wang YL. Impact of propofol versus sevoflurane on the incidence of postoperative delirium in elderly patients after spine surgery: study protocol of a randomized controlled trial. Trials 2022; 23:720. [PMID: 36042484 PMCID: PMC9426016 DOI: 10.1186/s13063-022-06687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background Postoperative delirium in elderly patients is a common and costly complication after surgery. Propofol and sevoflurane are commonly used anesthetics during general anesthesia, and the sedative and anti-inflammatory mechanisms of the two medications are different. The aim of this trial is to compare the impact of propofol with sevoflurane on the incidence of postoperative delirium in elderly patients after spine surgery. Methods A single-center randomized controlled trial will be performed at First Affiliated Hospital of Shandong First Medical University, China. A total of 298 participants will be enrolled in the study and randomized to propofol infusion or sevoflurane inhalation groups. The primary outcome is the incidence of delirium within 7 days after surgery. Secondary outcomes include the day of postoperative delirium onset, duration (time from first to last delirium-positive day), and total delirium-positive days among patients who developed delirium; tracheal intubation time in PACU; the length of stay in PACU; the rate of postoperative shivering; the rate of postoperative nausea and vomiting; the rate of emergence agitation; pain severity; QoR40 at the first day after surgery; the length of stay in hospital after surgery; and the incidence of non-delirium complications within 30 days after surgery. Discussion The primary objective of this study is to compare the impact of propofol and sevoflurane on the incidence of postoperative delirium for elderly patients undergoing spine surgery. The results may help inform strategies to the optimal selection of maintenance drugs for general anesthesia in elderly patients undergoing spine surgery. Trial registration ClinicalTrials.govNCT05158998. Registered on 14 December 2021
Collapse
Affiliation(s)
- Ji-Hua Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China
| | - Meng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China.
| | - Hai-Xia Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China
| | - Yang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China.,Shandong First Medical University, Ji'nan, 250000, Shandong, China
| | - Ting-Ting Chen
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China.,Shandong First Medical University, Ji'nan, 250000, Shandong, China
| | - Tian-Tian Wan
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China
| | - Yue-Lan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, 250000, Shandong, China.
| |
Collapse
|
47
|
Hypoxia-triggered O-GlcNAcylation in the brain drives the glutamate-glutamine cycle and reduces sensitivity to sevoflurane in mice. Br J Anaesth 2022; 129:703-715. [PMID: 36031420 DOI: 10.1016/j.bja.2022.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Hypersensitivity to general anaesthetics predicts adverse postoperative outcomes in patients. Hypoxia exerts extensive pathophysiological effects on the brain; however, whether hypoxia influences sevoflurane sensitivity and its underlying mechanisms remain poorly understood. METHODS Mice were acclimated to hypoxia (oxygen 10% for 8 h day-1) for 28 days and anaesthetised with sevoflurane; the effective concentrations for 50% of the animals (EC50) showing loss of righting reflex (LORR) and loss of tail-pinch withdrawal response (LTWR) were determined. Positron emission tomography-computed tomography, O-glycoproteomics, seahorse analysis, carbon-13 tracing, site-specific mutagenesis, and electrophysiological techniques were performed to explore the underlying mechanisms. RESULTS Compared with the control group, the hypoxia-acclimated mice required higher concentrations of sevoflurane to present LORR and LTWR (EC50LORR: 1.61 [0.03]% vs 1.46 [0.04]%, P<0.01; EC50LTWR: 2.46 [0.14]% vs 2.22 [0.06]%, P<0.01). Hypoxia-induced reduction in sevoflurane sensitivity was correlated with elevation of protein O-linked N-acetylglucosamine (O-GlcNAc) modification in brain, especially in the thalamus, and could be abolished by 6-diazo-5-oxo-l-norleucine, a glutamine fructose-6-phosphate amidotransferase inhibitor, and mimicked by thiamet-G, a selective O-GlcNAcase inhibitor. Mechanistically, O-GlcNAcylation drives de novo synthesis of glutamine from glucose in astrocytes and promotes the glutamate-glutamine cycle, partially via glycolytic flux and activation of glutamine synthetase. CONCLUSIONS Intermittent hypoxia exposure decreased mouse sensitivity to sevoflurane anaesthesia through enhanced O-GlcNAc-dependent modulation of the glutamate-glutamine cycle in the brain.
Collapse
|
48
|
Anesthesia: Synaptic power failure. Curr Biol 2022; 32:R781-R783. [PMID: 35882199 DOI: 10.1016/j.cub.2022.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the greatest unresolved mysteries in medicine relates to the molecular and neuronal mechanisms through which general anesthetics abolish perception. A new study in mice with mutations affecting mitochondrial complex 1 suggests that anesthetic-disruption of cellular energetics impairs endocytosis to alter synaptic function.
Collapse
|
49
|
Affiliation(s)
- George A. Mashour
- From the Departments of Anesthesiology and Pharmacology, Center for Consciousness Science, Michigan Neuroscience Institute, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|