1
|
Schavemaker PE, Lynch M. Quantifying the evolutionary paths to endomembranes. Cell Rep 2025; 44:115533. [PMID: 40198222 DOI: 10.1016/j.celrep.2025.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
Eukaryotes exhibit a complex and dynamic internal meshwork of membranes-the endomembrane system-used to insert membrane proteins and ingest food. Verbal models explaining the origin of endomembranes abound, but quantitative considerations of fitness are lacking. Drawing on quantitative data on endomembranes allows for the derivation of two biologically grounded analytical models of endomembrane evolution that quantify organismal fitness: (1) vesicle-based uptake of small nutrient molecules, pinocytosis, and (2) vesicle-based insertion of membrane proteins, proto-endoplasmic reticulum. Surprisingly, pinocytosis of small-molecule nutrients does not provide a net fitness gain under biologically sensible parameter ranges, explaining why pinocytosis is primarily used for protein uptake in contemporary organisms. The proto-endoplasmic reticulum does provide net fitness gains, making it the more likely candidate for initiating the endomembrane system. With modifications, the approach developed here can be used more generally to understand the present-day endomembrane system and illuminate the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Paul E Schavemaker
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA.
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Saier MH. Cooperation and Competition Were Primary Driving Forces for Biological Evolution. Microb Physiol 2025; 35:13-29. [PMID: 39999802 PMCID: PMC11999638 DOI: 10.1159/000544890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND For many years, scientists have accepted Darwin's conclusion that "Survival of the Fittest" involves successful competition with other organisms for life-endowing molecules and conditions. SUMMARY Newly discovered "partial" organisms with minimal genomes that require symbiotic or parasitic relationships for growth and reproduction suggest that cooperation in addition to competition was and still is a primary driving force for survival. These two phenomena are not mutually exclusive, and both can confer a competitive advantage for survival. In fact, cooperation may have been more important in the early evolution of life on earth before autonomous organisms developed, becoming large genome organisms. KEY MESSAGES This suggestion has tremendous consequences with respect to our conception of the early evolution of life on earth as well as the appearance of intercellular interactions, multicellularity and the nature of interactions between humans and their societies (e.g., social Darwinism).
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, School of Biological Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Melnikov N, Junglas B, Halbi G, Nachmias D, Zerbib E, Gueta N, Upcher A, Zalk R, Sachse C, Bernheim-Groswasser A, Elia N. The Asgard archaeal ESCRT-III system forms helical filaments and remodels eukaryotic-like membranes. EMBO J 2025; 44:665-681. [PMID: 39753954 PMCID: PMC11791191 DOI: 10.1038/s44318-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025] Open
Abstract
The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved. Here we show that Asgard ESCRT-III proteins of the Lokiarcheota self-assemble into helical filaments, a hallmark of the ESCRT system. We determined the cryo-EM structure of the filaments at 3.6 Å resolution and found that they share features of bacterial and eukaryotic ESCRT-III assemblies. Markedly, Asgard ESCRT-III filaments bound and deformed eukaryotic-like membrane vesicles. Oligonucleotides facilitated the assembly of ESCRT-III filaments and tuned the extent of membrane remodeling. The ability of Asgard archaeal ESCRTs to remodel eukaryotic-like membranes, which are fundamentally different from archaeal membranes, and the structural properties of these proteins places them at the junction between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gal Halbi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Erez Zerbib
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Noam Gueta
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Anne Bernheim-Groswasser
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
4
|
Vargová R, Chevreau R, Alves M, Courbin C, Terry K, Legrand P, Eliáš M, Ménétrey J, Dacks JB, Jackson CL. The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat Microbiol 2025; 10:495-508. [PMID: 39849086 DOI: 10.1038/s41564-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation. The Arf family is ubiquitous among eukaryotes, but its origins remain elusive. Here we report a group of prokaryotic GTPases, the ArfRs, which are widely present in Asgardarchaeota. Phylogenetic analyses reveal that eukaryotic Arf family proteins arose from the ArfR group. Expression of representative Asgardarchaeota ArfR proteins in yeast and X-ray crystallographic studies show that ArfR GTPases possess the mechanism of membrane binding and structural features unique to Arf family proteins. Our results indicate that Arf family GTPases originated in the archaeal ancestor of eukaryotes, consistent with aspects of the endomembrane system evolving early in eukaryogenesis.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roxanne Chevreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Alves
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Camille Courbin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre Legrand
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, France
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK.
| | | |
Collapse
|
5
|
Vosseberg J, van Hooff JJE, Köstlbacher S, Panagiotou K, Tamarit D, Ettema TJG. The emerging view on the origin and early evolution of eukaryotic cells. Nature 2024; 633:295-305. [PMID: 39261613 DOI: 10.1038/s41586-024-07677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 09/13/2024]
Abstract
The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Julian Vosseberg
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jolien J E van Hooff
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Kassiani Panagiotou
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Daniel Tamarit
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
6
|
Yadav D, Hacisuleyman A, Dergai M, Khalifeh D, Abriata LA, Peraro MD, Fasshauer D. A look beyond the QR code of SNARE proteins. Protein Sci 2024; 33:e5158. [PMID: 39180485 PMCID: PMC11344281 DOI: 10.1002/pro.5158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptor (SNARE) proteins catalyze the fusion process of vesicles with target membranes in eukaryotic cells. To do this, they assemble in a zipper-like fashion into stable complexes between the membranes. Structural studies have shown that the complexes consist of four different helices, which we subdivide into Qa-, Qb-, Qc-, and R-helix on the basis of their sequence signatures. Using a combination of biochemistry, modeling and molecular dynamics, we investigated how the four different types are arranged in a complex. We found that there is a matching pattern in the core of the complex that dictates the position of the four fundamental SNARE types in the bundle, resulting in a QabcR complex. In the cell, several different cognate QabcR-SNARE complexes catalyze the different transport steps between the compartments of the endomembrane system. Each of these cognate QabcR complexes is compiled from a repertoire of about 20 SNARE subtypes. Our studies show that exchange within the four types is largely tolerated structurally, although some non-cognate exchanges lead to structural imbalances. This suggests that SNARE complexes have evolved for a catalytic mechanism, a mechanism that leaves little scope for selectivity beyond the QabcR rule.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Aysima Hacisuleyman
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Mykola Dergai
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Dany Khalifeh
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | - Luciano A. Abriata
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life SciencesÉcole Polytechnique FÉdÉrale de Lausanne (EPFL)LausanneSwitzerland
| | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Chatterjee R, Setty SRG, Chakravortty D. SNAREs: a double-edged sword for intravacuolar bacterial pathogens within host cells. Trends Microbiol 2024; 32:477-493. [PMID: 38040624 DOI: 10.1016/j.tim.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
In the tug-of-war between host and pathogen, both evolve to combat each other's defence arsenals. Intracellular phagosomal bacteria have developed strategies to modify the vacuolar niche to suit their requirements best. Conversely, the host tries to target the pathogen-containing vacuoles towards the degradative pathways. The host cells use a robust system through intracellular trafficking to maintain homeostasis inside the cellular milieu. In parallel, intracellular bacterial pathogens have coevolved with the host to harbour strategies to manipulate cellular pathways, organelles, and cargoes, facilitating the conversion of the phagosome into a modified pathogen-containing vacuole (PCV). Key molecular regulators of intracellular traffic, such as changes in the organelle (phospholipid) composition, recruitment of small GTPases and associated effectors, soluble N-ethylmaleimide-sensitive factor-activating protein receptors (SNAREs), etc., are hijacked to evade lysosomal degradation. Legionella, Salmonella, Coxiella, Chlamydia, Mycobacterium, and Brucella are examples of pathogens which diverge from the endocytic pathway by using effector-mediated mechanisms to overcome the challenges and establish their intracellular niches. These pathogens extensively utilise and modulate the end processes of secretory pathways, particularly SNAREs, in repurposing the PCV into specialised compartments resembling the host organelles within the secretory network; at the same time, they avoid being degraded by the host's cellular mechanisms. Here, we discuss the recent research advances on the host-pathogen interaction/crosstalk that involves host SNAREs, conserved cellular processes, and the ongoing host-pathogen defence mechanisms in the molecular arms race against each other. The current knowledge of SNAREs, and intravacuolar bacterial pathogen interactions, enables us to understand host cellular innate immune pathways, maintenance of homeostasis, and potential therapeutic strategies to combat ever-growing antimicrobial resistance.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, Karnataka, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
8
|
Romero H, Aguilar PS, Graña M, Langleib M, Gudiño V, Podbilewicz B. Membrane fusion and fission during eukaryogenesis. Curr Opin Cell Biol 2024; 86:102321. [PMID: 38219525 DOI: 10.1016/j.ceb.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
All eukaryotes can be traced back to a single shared ancestral lineage that emerged from interactions between different prokaryotic cells. Current models of eukaryogenesis describe various selective forces and evolutionary mechanisms that contributed to the formation of eukaryotic cells. Central to this process were significant changes in cellular structure, resulting in the configuration of a new cell type characterized by internal membrane compartments. Additionally, eukaryogenesis results in a life cycle that relies on cell-cell fusion. We discuss the potential roles of proteins involved in remodeling cellular membranes, highlighting two critical stages in the evolution of eukaryotes: the internalization of symbiotic partners and a scenario wherein the emergence of sexual reproduction is linked to a polyploid ancestor generated by cell-cell fusion.
Collapse
Affiliation(s)
- Héctor Romero
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias/CURE, Universidad de la República, Uruguay; Centro Interdisciplinario de Ciencia de Datos y Aprendizaje Automático (CICADA), Espacio Interdisciplinario, Universidad de la República, Uruguay.
| | - Pablo S Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina.
| | - Martin Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mauricio Langleib
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias/CURE, Universidad de la República, Uruguay; Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Virginia Gudiño
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
| | - Benjamin Podbilewicz
- Department of Biology, Technion Israel Institute of Technology, Haifa, Israel; Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| |
Collapse
|
9
|
Chelaghma S, Ke H, Barylyuk K, Krueger T, Koreny L, Waller RF. Apical annuli are specialised sites of post-invasion secretion of dense granules in Toxoplasma. eLife 2024; 13:e94201. [PMID: 38270431 PMCID: PMC10857790 DOI: 10.7554/elife.94201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
Apicomplexans are ubiquitous intracellular parasites of animals. These parasites use a programmed sequence of secretory events to find, invade, and then re-engineer their host cells to enable parasite growth and proliferation. The secretory organelles micronemes and rhoptries mediate the first steps of invasion. Both secrete their contents through the apical complex which provides an apical opening in the parasite's elaborate inner membrane complex (IMC) - an extensive subpellicular system of flattened membrane cisternae and proteinaceous meshwork that otherwise limits access of the cytoplasm to the plasma membrane for material exchange with the cell exterior. After invasion, a second secretion programme drives host cell remodelling and occurs from dense granules. The site(s) of dense granule exocytosis, however, has been unknown. In Toxoplasma gondii, small subapical annular structures that are embedded in the IMC have been observed, but the role or significance of these apical annuli to plasma membrane function has also been unknown. Here, we determined that integral membrane proteins of the plasma membrane occur specifically at these apical annular sites, that these proteins include SNARE proteins, and that the apical annuli are sites of vesicle fusion and exocytosis. Specifically, we show that dense granules require these structures for the secretion of their cargo proteins. When secretion is perturbed at the apical annuli, parasite growth is strongly impaired. The apical annuli, therefore, represent a second type of IMC-embedded structure to the apical complex that is specialised for protein secretion, and reveal that in Toxoplasma there is a physical separation of the processes of pre- and post-invasion secretion that mediate host-parasite interactions.
Collapse
Affiliation(s)
- Sara Chelaghma
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Huiling Ke
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | | | - Thomas Krueger
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ludek Koreny
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Ross F Waller
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
10
|
Raval PK, Garg SG, Gould SB. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022; 11:e81033. [PMID: 36355038 PMCID: PMC9648965 DOI: 10.7554/elife.81033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.
Collapse
Affiliation(s)
- Parth K Raval
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| | - Sriram G Garg
- Evolutionary Biochemistry Group, Max-Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University DüsseldorfDusseldorfGermany
| |
Collapse
|
11
|
Chen Y, Fan J, Xiao D, Li X. The role of SCAMP5 in central nervous system diseases. Neurol Res 2022; 44:1024-1037. [PMID: 36217917 DOI: 10.1080/01616412.2022.2107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/26/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Secretory carrier membrane proteins (SCAMPs) constitute a group of membrane transport proteins in plants, insects and mammals. The mammalian genome contains five types of SCAMP genes, namely, SCAMP1-SCAMP5. SCAMPs participate in the vesicle cycling fusion of vesicles and cell membranes and play roles in regulating exocytosis and endocytosis, activating synaptic function and transmitting nerve signals. Among these proteins, SCAMP5 is highly expressed in the brain and has direct or indirect effects on the function of the central nervous system. This paper may allow us to better understand the role of SCAMP5 in the central nervous system diseases. SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases. METHODS Through PubMed, this paper examined and analyzed the role of SCAMP5 in the central nervous system, as well as the relationship between SCAMP5 and various neurological diseases using the key terms "secretory carrier membrane proteins"," SCAMP5"," exocytosis"," endocytosis", "synaptic function", "central nervous system diseases" up to 01 March 2022. RESULTS SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. CONCLUSION This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
12
|
Khalifeh D, Neveu E, Fasshauer D. Megaviruses contain various genes encoding for eukaryotic vesicle trafficking factors. Traffic 2022; 23:414-425. [PMID: 35701729 PMCID: PMC9546365 DOI: 10.1111/tra.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Many intracellular pathogens, such as bacteria and large viruses, enter eukaryotic cells via phagocytosis, then replicate and proliferate inside the host. To avoid degradation in the phagosomes, they have developed strategies to modify vesicle trafficking. Although several strategies of bacteria have been characterized, it is not clear whether viruses also interfere with the vesicle trafficking of the host. Recently, we came across SNARE proteins encoded in the genomes of several bacteria of the order Legionellales. These pathogenic bacteria may use SNAREs to interfere with vesicle trafficking, since SNARE proteins are the core machinery for vesicle fusion during transport. They assemble into membrane-bridging SNARE complexes that bring membranes together. We now have also discovered SNARE proteins in the genomes of diverse giant viruses. Our biochemical experiments showed that these proteins are able to form SNARE complexes. We also found other key trafficking factors that work together with SNAREs such as NSF, SM, and Rab proteins encoded in the genomes of giant viruses, suggesting that viruses can make use of a large genetic repertoire of trafficking factors. Most giant viruses possess different collections, suggesting that these factors entered the viral genome multiple times. In the future, the molecular role of these factors during viral infection need to be studied.
Collapse
Affiliation(s)
- Dany Khalifeh
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Emilie Neveu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Akıl C, Ali S, Tran LT, Gaillard J, Li W, Hayashida K, Hirose M, Kato T, Oshima A, Fujishima K, Blanchoin L, Narita A, Robinson RC. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. SCIENCE ADVANCES 2022; 8:eabm2225. [PMID: 35333570 PMCID: PMC8956254 DOI: 10.1126/sciadv.abm2225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin). The guanosine 5'-triphosphate (GTP)-bound structure resembles a microtubule protofilament, with GTP bound between subunits, coordinating the "+" end subunit through a network of water molecules and unexpectedly by two cations. A water molecule is located suitable for GTP hydrolysis. Time course crystallography and electron microscopy revealed conformational changes on GTP hydrolysis. OdinTubulin forms tubules at high temperatures, with short curved protofilaments coiling around the tubule circumference, more similar to FtsZ, rather than running parallel to its length, as in microtubules. Thus, OdinTubulin represents an evolutionary stage intermediate between prokaryotic FtsZ and eukaryotic microtubule-forming tubulins.
Collapse
Affiliation(s)
- Caner Akıl
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Tokyo Institute of Technology, Earth-Life Science Institute (ELSI), Tokyo 152-8551, Japan
| | - Samson Ali
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Linh T. Tran
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jérémie Gaillard
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 38054 Grenoble, France
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China
| | - Kenichi Hayashida
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mika Hirose
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Atsunori Oshima
- Cellular and Structural Physiology Institute (CeSPI), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kosuke Fujishima
- Tokyo Institute of Technology, Earth-Life Science Institute (ELSI), Tokyo 152-8551, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Laurent Blanchoin
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 38054 Grenoble, France
- Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Akihiro Narita
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert C. Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
14
|
Hugoson E, Guliaev A, Ammunét T, Guy L. Host-adaptation in Legionellales is 1.9 Ga, coincident with eukaryogenesis. Mol Biol Evol 2022; 39:6527638. [PMID: 35167692 PMCID: PMC8896642 DOI: 10.1093/molbev/msac037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapting to living in a host cell caused the most salient events in the evolution of eukaryotes, namely the seminal fusion with an archaeon, and the emergence of both mitochondrion and chloroplast. A bacterial clade that may hold the key to understanding these events is the deep-branching gammaproteobacterial order Legionellales-containing among others Coxiella and Legionella-of which all known members grow inside eukaryotic cells. Here, by analyzing 35 novel Legionellales genomes mainly acquired through metagenomics, we show that this group is much more diverse than previously thought, and that key host-adaptation events took place very early in its evolution. Crucial virulence factors like the Type IVB secretion (Dot/Icm) system and two shared effector proteins were gained in the last Legionellales common ancestor (LLCA). Many metabolic gene families were lost in LLCA and its immediate descendants, including functions directly and indirectly related to molybdenum metabolism. On the other hand, genome sizes increased in the ancestors of the Legionella genus. We estimate that LLCA lived circa 1.89 Ga ago, probably predating the last eukaryotic common ancestor (LECA) by circa 0.4-1.0 Ga. These elements strongly indicate that host-adaptation arose only once in Legionellales, and that these bacteria were using advanced molecular machinery to exploit and manipulate host cells early in eukaryogenesis.
Collapse
Affiliation(s)
- Eric Hugoson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, D-24306, Germany
| | - Andrei Guliaev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Tea Ammunét
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Box 582, 75123, Uppsala, Sweden
| |
Collapse
|
15
|
Mehlhorn DG, Asseck LY, Grefen C. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. PLANT PHYSIOLOGY 2021; 187:1916-1928. [PMID: 35235667 PMCID: PMC8644595 DOI: 10.1093/plphys/kiab298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/05/2021] [Indexed: 06/14/2023]
Abstract
Insertion of membrane proteins into the lipid bilayer is a crucial step during their biosynthesis. Eukaryotic cells face many challenges in directing these proteins to their predestined target membrane. The hydrophobic signal peptide or transmembrane domain (TMD) of the nascent protein must be shielded from the aqueous cytosol and its target membrane identified followed by transport and insertion. Components that evolved to deal with each of these challenging steps range from chaperones to receptors, insertases, and sophisticated translocation complexes. One prominent translocation pathway for most proteins is the signal recognition particle (SRP)-dependent pathway which mediates co-translational translocation of proteins across or into the endoplasmic reticulum (ER) membrane. This textbook example of protein insertion is stretched to its limits when faced with secretory or membrane proteins that lack an amino-terminal signal sequence or TMD. Particularly, a large group of so-called tail-anchored (TA) proteins that harbor a single carboxy-terminal TMD require an alternative, post-translational insertion route into the ER membrane. In this review, we summarize the current research in TA protein insertion with a special focus on plants, address challenges, and highlight future research avenues.
Collapse
Affiliation(s)
- Dietmar G Mehlhorn
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Lisa Y Asseck
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christopher Grefen
- Faculty of Biology and Biotechnology, Molecular and Cellular Botany, University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
16
|
Nobs SJ, MacLeod FI, Wong HL, Burns BP. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol 2021; 30:421-431. [PMID: 34863611 DOI: 10.1016/j.tim.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
One of the most significant events in the evolution of life is the origin of the eukaryotic cell, an increase in cellular complexity that occurred approximately 2 billion years ago. Ground-breaking research has centered around unraveling the characteristics of the Last Eukaryotic Common Ancestor (LECA) and the nuanced archaeal and bacterial contributions in eukaryogenesis, resulting in fundamental changes in our understanding of the Tree of Life. The archaeal and bacterial roles are covered by theories of endosymbiogenesis wherein an ancestral host archaeon and a bacterial endosymbiont merged to create a new complex cell type - Eukarya - and its mitochondrion. Eukarya is often regarded as a unique and distinct domain due to complex innovations not found in archaea or bacteria, despite housing a chimeric genome containing genes of both archaeal and bacterial origin. However, the discovery of complex cell machineries in recently described Asgard archaeal lineages, and the growing support for diverse bacterial gene transfers prior to and during the time of LECA, is redefining our understanding of eukaryogenesis. Indeed, the uniqueness of Eukarya, as a domain, is challenged. It is likely that many microbial syntrophies, encompassing a 'microbial village', were required to 'raise' a eukaryote during the process of eukaryogenesis.
Collapse
Affiliation(s)
- Stephanie-Jane Nobs
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
17
|
Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME JOURNAL 2021; 16:606-610. [PMID: 34465898 PMCID: PMC8776820 DOI: 10.1038/s41396-021-01098-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022]
Abstract
The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments (Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution microscopy revealed 1–2 µm large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially separated from ribosome-originated FISH signals by 50–280 nm. This suggests that the genomic material is condensed and spatially distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.
Collapse
|
18
|
Knopp M, Stockhorst S, van der Giezen M, Garg SG, Gould SB. The Asgard Archaeal-Unique Contribution to Protein Families of the Eukaryotic Common Ancestor Was 0.3. Genome Biol Evol 2021; 13:6248096. [PMID: 33892498 PMCID: PMC8220308 DOI: 10.1093/gbe/evab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
The identification of the asgard archaea has fueled speculations regarding the nature of the archaeal host in eukaryogenesis and its level of complexity prior to endosymbiosis. Here, we analyzed the coding capacity of 150 eukaryotes, 1,000 bacteria, and 226 archaea, including the only cultured member of the asgard archaea. Clustering methods that consistently recover endosymbiotic contributions to eukaryotic genomes recover an asgard archaeal-unique contribution of a mere 0.3% to protein families present in the last eukaryotic common ancestor, while simultaneously suggesting that this group's diversity rivals that of all other archaea combined. The number of homologs shared exclusively between asgard archaea and eukaryotes is only 27 on average. This tiny asgard archaeal-unique contribution to the root of eukaryotic protein families questions claims that archaea evolved complexity prior to eukaryogenesis. Genomic and cellular complexity remains a eukaryote-specific feature and is best understood as the archaeal host's solution to housing an endosymbiont.
Collapse
Affiliation(s)
- Michael Knopp
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Simon Stockhorst
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
19
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
20
|
Baluška F, Lyons S. Archaeal Origins of Eukaryotic Cell and Nucleus. Biosystems 2021; 203:104375. [PMID: 33549602 DOI: 10.1016/j.biosystems.2021.104375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023]
Abstract
Symbiosis is a major evolutionary force, especially at the cellular level. Here we discuss several older and new discoveries suggesting that besides mitochondria and plastids, eukaryotic nuclei also have symbiotic origins. We propose an archaea-archaea scenario for the evolutionary origin of the eukaryotic cells. We suggest that two ancient archaea-like cells, one based on the actin cytoskeleton and another one based on the tubulin-centrin cytoskeleton, merged together to form the first nucleated eukaryotic cell. This archaeal endosymbiotic origin of eukaryotic cells and their nuclei explains several features of eukaryotic cells which are incompatible with the currently preferred autogenous scenarios of eukaryogenesis.
Collapse
Affiliation(s)
| | - Sherrie Lyons
- Union College, 130 N. College, St. - Schenectady, NY, 12305, USA.
| |
Collapse
|