1
|
Wynn J, Kürten N, Moiron M, Bouwhuis S. Selective disappearance based on navigational efficiency in a long-lived seabird. J Anim Ecol 2025; 94:535-544. [PMID: 39871090 PMCID: PMC11962229 DOI: 10.1111/1365-2656.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 01/29/2025]
Abstract
Whilst efficient movement through space is thought to increase the fitness of long-distance migrants, evidence that selection acts upon such traits remains elusive. Here, using 228 migratory tracks collected from 102 adult breeding common terns (Sterna hirundo) aged 3-22 years, we find evidence that older terns navigate more efficiently than younger terns and that efficient navigation leads to a reduced migration duration and earlier arrival at the breeding and wintering grounds. We additionally find that the age-specificity of navigational efficiency in adult breeding birds cannot be explained by within-individual change with age (i.e. learning), suggesting the selective disappearance of less navigationally efficient individuals. This suggests that, at least in common terns, learning of navigational skills may be largely absent in adulthood, and limited to the pre-breeding phase of life where tracking is more difficult. We propose that selection might explain parts of the age-specificity of navigational performance observed in migratory taxa more generally; discuss the causes and evolutionary implications of variation in navigational traits and the selective agents acting upon them; and highlight the necessity of longitudinal studies when considering changes in behaviour with age.
Collapse
Affiliation(s)
- Joe Wynn
- Institute of Avian ResearchWilhelmshavenGermany
- School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
| | | | - Maria Moiron
- Institute of Avian ResearchWilhelmshavenGermany
- Department of Evolutionary BiologyBielefeld UniversityBielefeldGermany
| | | |
Collapse
|
2
|
Goforth KM, Lohmann CMF, Gavin A, Henning R, Harvey A, Hinton TL, Lim DS, Lohmann KJ. Learned magnetic map cues and two mechanisms of magnetoreception in turtles. Nature 2025; 638:1015-1022. [PMID: 39939776 DOI: 10.1038/s41586-024-08554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/19/2024] [Indexed: 02/14/2025]
Abstract
Growing evidence indicates that migratory animals exploit the magnetic field of the Earth for navigation, both as a compass to determine direction and as a map to determine geographical position1. It has long been proposed that, to navigate using a magnetic map, animals must learn the magnetic coordinates of the destination2,3, yet the pivotal hypothesis that animals can learn magnetic signatures of geographical areas has, to our knowledge, yet to be tested. Here we report that an iconic navigating species, the loggerhead turtle (Caretta caretta), can learn such information. When fed repeatedly in magnetic fields replicating those that exist in particular oceanic locations, juvenile turtles learned to distinguish magnetic fields in which they encountered food from magnetic fields that exist elsewhere, an ability that might underlie foraging site fidelity. Conditioned responses in this new magnetic map assay were unaffected by radiofrequency oscillating magnetic fields, a treatment expected to disrupt radical-pair-based chemical magnetoreception4-6, suggesting that the magnetic map sense of the turtle does not rely on this mechanism. By contrast, orientation behaviour that required use of the magnetic compass was disrupted by radiofrequency oscillating magnetic fields. The findings provide evidence that two different mechanisms of magnetoreception underlie the magnetic map and magnetic compass in sea turtles.
Collapse
Affiliation(s)
- Kayla M Goforth
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Gavin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reyco Henning
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Harvey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara L Hinton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana S Lim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Packmor F, Kishkinev D, Zechmeister T, Mouritsen H, Holland RA. Migratory birds can extract positional information from magnetic inclination and magnetic declination alone. Proc Biol Sci 2024; 291:rspb20241363. [PMID: 39532133 DOI: 10.1098/rspb.2024.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/23/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Migratory birds are able to navigate over great distances with remarkable accuracy. The mechanism they use to achieve this feat is thought to involve two distinct steps: locating their position (the 'map') and heading towards the direction determined (the 'compass'). For decades, this map-and-compass concept has shaped our perception of navigation in animals, although the nature of the map remains debated. However, some recent studies suggest the involvement of the Earth's magnetic field in the map step. Here, we tested whether migratory songbirds, Eurasian reed warblers (Acrocephalus scirpaceus), can determine their position based on two magnetic field components that are also associated with direction finding, i.e. magnetic inclination and magnetic declination. During a virtual magnetic displacement experiment, the birds were exposed to altered magnetic inclination and magnetic declination values that would indicate a displacement from their natural migratory corridor, but the total intensity of the field remained unchanged, creating a spatial mismatch between these components. The response was a change in the birds' migratory direction consistent with a compensatory re-orientation. This suggests that birds can extract positional as well as directional information from these cues, even when they are in conflict with another component of the magnetic field. It remains to be seen whether birds use the total intensity of Earth's magnetic field for navigation.
Collapse
Affiliation(s)
- Florian Packmor
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
- Lower Saxon Wadden Sea National Park Authority, Wilhelmshaven 26382, Germany
| | - Dmitry Kishkinev
- School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | | | - Henrik Mouritsen
- Research group 'Neurosensorik/Animal Navigation', Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, Oldenburg 26129, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
4
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
5
|
Lohmann KJ, Putman NF, Johnsen S, Lohmann CMF. Animal magnetic sensitivity and magnetic displacement experiments. Commun Biol 2024; 7:650. [PMID: 38802463 PMCID: PMC11130290 DOI: 10.1038/s42003-024-06269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, USA
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Schneider WT, Wynn J, Packmor F, Lindecke O, Holland RA. Reply to: Animal magnetic sensitivity and magnetic displacement experiments. Commun Biol 2024; 7:651. [PMID: 38802583 PMCID: PMC11130198 DOI: 10.1038/s42003-024-06270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Will T Schneider
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Joe Wynn
- Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Florian Packmor
- Lower Saxon Wadden Sea National Park Authority, 26382, Wilhelmshaven, Germany
| | - Oliver Lindecke
- Institute of Biology and Environmental Sciences, University Oldenburg, 26111, Oldenburg, Germany
| | - Richard A Holland
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
7
|
Lewin PJ, Wynn J, Arcos JM, Austin RE, Blagrove J, Bond S, Carrasco G, Delord K, Fisher-Reeves L, García D, Gillies N, Guilford T, Hawkins I, Jaggers P, Kirk C, Louzao M, Maurice L, McMinn M, Micol T, Morford J, Morgan G, Moss J, Riera EM, Rodriguez A, Siddiqi-Davies K, Weimerskirch H, Wynn RB, Padget O. Climate change drives migratory range shift via individual plasticity in shearwaters. Proc Natl Acad Sci U S A 2024; 121:e2312438121. [PMID: 38285933 PMCID: PMC10861922 DOI: 10.1073/pnas.2312438121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/08/2023] [Indexed: 01/31/2024] Open
Abstract
How individual animals respond to climate change is key to whether populations will persist or go extinct. Yet, few studies investigate how changes in individual behavior underpin these population-level phenomena. Shifts in the distributions of migratory animals can occur through adaptation in migratory behaviors, but there is little understanding of how selection and plasticity contribute to population range shift. Here, we use long-term geolocator tracking of Balearic shearwaters (Puffinus mauretanicus) to investigate how year-to-year changes in individual birds' migrations underpin a range shift in the post-breeding migration. We demonstrate a northward shift in the post-breeding range and show that this is brought about by individual plasticity in migratory destination, with individuals migrating further north in response to changes in sea-surface temperature. Furthermore, we find that when individuals migrate further, they return faster, perhaps minimizing delays in return to the breeding area. Birds apparently judge the increased distance that they will need to migrate via memory of the migration route, suggesting that spatial cognitive mechanisms may contribute to this plasticity and the resulting range shift. Our study exemplifies the role that individual behavior plays in populations' responses to environmental change and highlights some of the behavioral mechanisms that might be key to understanding and predicting species persistence in response to climate change.
Collapse
Affiliation(s)
- Patrick J. Lewin
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Joe Wynn
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
- Institut für Vogelforschung “Vogelwarte Helgoland”, Wilhelmshaven26386, Germany
| | - José Manuel Arcos
- Programa Marino, Sociedad Española de Ornitología/BirdLife, Delegació de Catalunya, Barcelona08026, Spain
| | - Rhiannon E. Austin
- National Oceanography Centre–Southampton, SouthamptonSO14 3ZH, United Kingdom
- Earth Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, LiverpoolL69 3GP, United Kingdom
| | - Josephine Blagrove
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Sarah Bond
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
- School of Ocean Sciences, College of Science and Engineering, Bangor University, Menai BridgeLL59 5AB, United Kingdom
| | - Gemma Carrasco
- Iniciativa de Recerca de la Biodiversitat de les Illes, Alaior, Balearic Islands07730, Spain
| | - Karine Delord
- Centre d’Etudes Biologiques de Chizé, Laboratoire des Sciences de l'Environnement Marin, UMR 7372, Centre National de la Recherche Scientifique, Villiers en Bois79360, France
| | | | - David García
- Iniciativa de Recerca de la Biodiversitat de les Illes, Alaior, Balearic Islands07730, Spain
| | - Natasha Gillies
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
- Earth Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, LiverpoolL69 3GP, United Kingdom
| | - Tim Guilford
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Isobel Hawkins
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Paris Jaggers
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Christian Kirk
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Maite Louzao
- AZTI, Marine Research, Basque Research and Technology Alliance, Pasaia20110, Spain
| | - Lou Maurice
- British Geological Survey, WallingfordOX10 8ED, United Kingdom
| | - Miguel McMinn
- Grupo Biogeografía, geodinámica y sedimentación del Mediterráneo occidental, Ciències i Tecnologies Mediambientals, Universitat de les Illes Balears,Palma, Balearic IslandsE07122, Spain
| | - Thierry Micol
- Ligue pour la Protection des Oiseaux, BirdLife International Partner in France, Rochefort Cedex17305, France
| | - Joe Morford
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Greg Morgan
- Royal Society for the Protection of Birds, Ramsey Island, St. Davids, PembrokeshireSA62 6PY, United Kingdom
| | - Jason Moss
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Elisa Miquel Riera
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
| | - Ana Rodriguez
- Grupo Biogeografía, geodinámica y sedimentación del Mediterráneo occidental, Ciències i Tecnologies Mediambientals, Universitat de les Illes Balears,Palma, Balearic IslandsE07122, Spain
| | | | - Henri Weimerskirch
- Centre d’Etudes Biologiques de Chizé, Laboratoire des Sciences de l'Environnement Marin, UMR 7372, Centre National de la Recherche Scientifique, Villiers en Bois79360, France
| | - Russell B. Wynn
- National Oceanography Centre–Southampton, SouthamptonSO14 3ZH, United Kingdom
| | - Oliver Padget
- Department of Biology, University of Oxford, OxfordOX1 3SZ, United Kingdom
- Earth Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, LiverpoolL69 3GP, United Kingdom
| |
Collapse
|
8
|
Züst Z, Mukhin A, Taylor PD, Schmaljohann H. Pre-migratory flights in migrant songbirds: the ecological and evolutionary importance of understudied exploratory movements. MOVEMENT ECOLOGY 2023; 11:78. [PMID: 38115134 PMCID: PMC10731812 DOI: 10.1186/s40462-023-00440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Across the animal kingdom, from honeybees to cranes to beavers, exploratory movements to exploit resources, scout prospective territories, or otherwise gain valuable experiences and information that promote fitness have been documented. For example, exploratory movements to investigate potential dispersal targets have been observed in roe deer, Northern cardinals, and tigers alike. However, despite how widespread these movements are, a cohesive definition of exploratory movements has been lacking. We first provide a clear definition of exploratory movements, and use one particular group-migratory songbirds-to catalogue exploratory movements across the annual cycle. The exceptional mobility of migratory songbirds results in exploratory movements not only at a local scale, but also on a regional scale, both in and out of the breeding season. We review the extent to which these movements are made within this group, paying particular attention to how such movements confer fitness benefits, as by securing high-quality territories, prospecting for extra-pair paternity, or even exploiting ephemeral resources. We then zoom in one step further to a particular exploratory movement that has been, to date, almost completely overlooked within this group: that of pre-migratory flights. These flights, which occur during the transitional period between the stationary breeding period and the onset of migration, occur at night and may not be made by all individuals in a population-reasons why these flights have been heretofore critically understudied. We provide the first definition for this behaviour, summarise the current knowledge of this cryptic movement, and hypothesise what evolutionary/ecological advantages conducting it may confer to the individuals that undertake it. As these flights provide experience to the individuals that undertake them, we expect that birds that make pre-migratory flights are better equipped to survive migration (direct fitness benefits) and, due to orientation/navigation abilities, may also reach preferred territories on breeding and wintering grounds faster (indirect fitness benefits). We hope to encourage ecologists to consider such hidden movements in their research concepts and to enhance the framework of movement ecology by this behaviour due to its presumed high biological importance to the annual cycle of birds.
Collapse
Affiliation(s)
- Zephyr Züst
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Andrey Mukhin
- Zoological Institute Russian Academy of Science, Biological Station Rybachy, Kaliningrad Oblast, Russia
| | - Philip D Taylor
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Gulson-Castillo ER, Van Doren BM, Bui MX, Horton KG, Li J, Moldwin MB, Shedden K, Welling DT, Winger BM. Space weather disrupts nocturnal bird migration. Proc Natl Acad Sci U S A 2023; 120:e2306317120. [PMID: 37812699 PMCID: PMC10589677 DOI: 10.1073/pnas.2306317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth's magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.
Collapse
Affiliation(s)
- Eric R. Gulson-Castillo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI48109
| | | | - Michelle X. Bui
- Department of Physics, University of Texas, Arlington, TX76019
| | - Kyle G. Horton
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO80523
| | - Jing Li
- Department of Statistics, University of Michigan, Ann Arbor, MI48109
| | - Mark B. Moldwin
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI48109
| | - Daniel T. Welling
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI48109
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
10
|
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, Solov’yov IA. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a. ACS OMEGA 2023; 8:26425-26436. [PMID: 37521624 PMCID: PMC10373462 DOI: 10.1021/acsomega.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Maja Hanić
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Georg Manthey
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Henrik Mouritsen
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Miriam Liedvogel
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- MPRG
Behavioural Genomics, Max Planck Institute
for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Department
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
11
|
Spiecker L, Curdt F, Bally A, Janzen N, Kraemer P, Leberecht B, Kingsford MJ, Mouritsen H, Winklhofer M, Gerlach G. Coral reef fish larvae show no evidence for map-based navigation after physical displacement. iScience 2023; 26:106950. [PMID: 37378340 PMCID: PMC10291465 DOI: 10.1016/j.isci.2023.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/12/2022] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Millions of minute, newly hatched coral reef fish larvae get carried into the open ocean by highly complex and variable currents. To survive, they must return to a suitable reef habitat within a species-specific time. Strikingly, previous studies have demonstrated that return to home reefs is much more frequent than would be expected by chance. It has been shown that magnetic and sun compass orientation can help cardinalfish maintain their innate swimming direction but do they also have a navigational map to cope with unexpected displacements? If displaced settling-stage cardinalfish Ostorhinchus doederleini use positional information during their pelagic dispersal, we would expect them to re-orient toward their home reef. However, after physical displacement by 180 km, the fish showed a swimming direction indistinguishable from original directions near the capture site. This suggests that the tested fish rely on innate or learned compass directions and show no evidence for map-based navigation.
Collapse
Affiliation(s)
- Lisa Spiecker
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Franziska Curdt
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Andreas Bally
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Nadja Janzen
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Philipp Kraemer
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Bo Leberecht
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Michael J. Kingsford
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Henrik Mouritsen
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Michael Winklhofer
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Gabriele Gerlach
- Institute of Biology and Environmental Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- ARC Centre of Excellence for Coral Reef Studies and College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Research Center for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity HIFMB Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
12
|
Wynn J, Leberecht B, Liedvogel M, Burnus L, Chetverikova R, Döge S, Karwinkel T, Kobylkov D, Xu J, Mouritsen H. Naive songbirds show seasonally appropriate spring orientation in the laboratory despite having never completed first migration. Biol Lett 2023; 19:20220478. [PMCID: PMC9943868 DOI: 10.1098/rsbl.2022.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The role of inherited orientation programmes in determining the outbound migratory routes of birds is increasingly well understood, though less is known about the influence of inherited information on return migration. Previous studies suggest that spatial gradient cues learnt through experience could be of considerable importance when relocating the natal site, though such cues could, in principle, augment rather than replace inherited migratory information. Here, we show that juvenile Eurasian blackcaps (Sylvia atricapilla) that have never left northwest Europe (i.e. never had the opportunity to learn navigational information on a continental scale) show significant spring orientation in a direction near-identical to that expected based on ringing recoveries from free-flying individuals. We suggest that this is probably indicative of birds inheriting an orientation programme for spring as well as autumn migration and speculate that, as long as the birds are not displaced far from their normal migration route, the use of inherited spring migratory trajectories might make uni-coordinate ‘stop signs’ sufficiently accurate for the long-distance targeting of their breeding sites.
Collapse
Affiliation(s)
- Joe Wynn
- Institut für Vogelforschung “Vogelwarte Helgoland”, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Bo Leberecht
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Miriam Liedvogel
- Institut für Vogelforschung “Vogelwarte Helgoland”, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany,MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Lars Burnus
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Raisa Chetverikova
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Sara Döge
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Thiemo Karwinkel
- Institut für Vogelforschung “Vogelwarte Helgoland”, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany,AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Dmitry Kobylkov
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany,Center for Mind/Brain Science, University of Trento, Piazza Manifattura 1, 38068 Rovereto, TN, Italy
| | - Jingjing Xu
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Henrik Mouritsen
- AG ‘Neurosensorik/Animal Navigation’, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
13
|
Case Report of Puffinosis in a Manx Shearwater ( Puffinus puffinus) Suggesting Environmental Aetiology. Animals (Basel) 2022; 12:ani12243457. [PMID: 36552377 PMCID: PMC9774697 DOI: 10.3390/ani12243457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Puffinosis is a disease of a range of seabirds characterised by dorsal and ventral blistering of their webbed feet, conjunctivitis, dry necrosis, leg spasticity, head shaking, loss of balance, tremors, and death. It is associated with Manx shearwaters (Puffinus puffinus), frequently affecting chicks within their underground nesting burrows. The aetiology of the disease is unclear but has been attributed to a type-2 coronavirus associated with Neotombicula mites as a potential vector. However, there is some uncertainty given potential laboratory contamination with mouse hepatitis virus and failure to fulfil Koch's postulates, with birds injected with isolates remaining healthy. We describe a detailed case report of puffinosis in a Manx Shearwater covering necropsy, histology, bacteriology, and metagenomics including viral sequencing. We found no evidence of viral infection or parasites. Our results are consistent with an entirely environmental aetiology, with caustic faecal ammonia in damp nesting burrows causing conjunctivitis and foot dermatitis breaking the skin, allowing common soil bacteria (i.e., Flavobacterium, Staphylococcus and Serratia spp., Clostridia perfringens and Enterococcus faecalis) to cause opportunistic infection, debilitating the bird and leading to death. A similar condition (foot pad dermatitis or FPD) has been reported in broiler chickens, attributed to caustic faeces, high humidity, and poor environmental conditions during indoor rearing, preventable by adequate ventilation and husbandry. This is consistent with puffinosis being observed in Shearwater nesting burrows situated in tall, dense, vegetation (e.g., bracken Pteridium aquilinum) but rarely reported in burrows situated in well-ventilated, short coastal grasslands. This proposed environmental aetiology accounts for the disease's non-epizootic prevalence, spatial variation within colonies, and higher frequency in chicks that are restricted to nesting burrows.
Collapse
|
14
|
Brown TM, Wilhelm SI, Mastromonaco GF, Burness G. A path forward in the investigation of seabird strandings attributed to light attraction. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Taylor Marie Brown
- Environmental and Life Sciences Graduate Program Trent University Peterborough Ontario Canada
| | - Sabina I. Wilhelm
- Environment and Climate Change Canada Mount Pearl Newfoundland Canada
| | | | - Gary Burness
- Department of Biology Trent University Peterborough Ontario Canada
| |
Collapse
|
15
|
Spatial-temporal interpolation of satellite geomagnetic data to study long-distance animal migration. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein. Cells 2022; 11:cells11132043. [PMID: 35805127 PMCID: PMC9265643 DOI: 10.3390/cells11132043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Night-migratory birds sense the Earth’s magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. Methods: Protein–protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. Results: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. Conclusions: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.
Collapse
|
17
|
Frankish CK, Manica A, Clay TA, Wood AG, Phillips RA. Ontogeny of movement patterns and habitat selection in juvenile albatrosses. OIKOS 2022. [DOI: 10.1111/oik.09057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caitlin K. Frankish
- British Antarctic Survey, Natural Environment Research Council Cambridge UK
- Dept of Zoology, Univ. of Cambridge Cambridge UK
| | | | - Thomas A. Clay
- School of Environmental Sciences, Univ. of Liverpool Liverpool UK
- Inst. of Marine Sciences, Univ. of California Santa Cruz Santa Cruz CA USA
| | - Andrew G. Wood
- British Antarctic Survey, Natural Environment Research Council Cambridge UK
| | | |
Collapse
|
18
|
Wynn J, Padget O, Morford J, Jaggers P, Davies K, Borsier E, Guilford T. How might magnetic secular variation impact avian philopatry? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:145-154. [PMID: 35152316 PMCID: PMC8918480 DOI: 10.1007/s00359-021-01533-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
A tendency to return to the natal/breeding site, 'philopatry', is widespread amongst migratory birds. It has been suggested that a magnetic 'map' could underpin such movements, though it is unclear how a magnetic map might be impacted by gradual drift in the Earth's magnetic field ('secular variation'). Here, using the International Geomagnetic Reference Field, we quantified how secular variation translates to movement in the implied positions at which combinations of different magnetic cues (inclination, declination and intensity) intersect, noting that the magnitude of such movements is determined by the magnitude of the movements of each of the two isolines, and the angle between their movement vectors. We propose that magnetic parameters varying in a near-parallel arrangement are unlikely to be used as a bi-coordinate map during philopatry, but that birds could use near-orthogonal magnetic gradient cues as a bi-coordinate map if augmented with navigation using more local cues. We further suggest that uni-coordinate magnetic information could also provide a philopatry mechanism that is substantially less impacted by secular variation than a bi-coordinate 'map'. We propose that between-year shifts in the position of magnetic coordinates might provide a priori predictions for changes in the breeding sites of migratory birds.
Collapse
Affiliation(s)
- Joe Wynn
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK.
| | - Oliver Padget
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Joe Morford
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Paris Jaggers
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Katrina Davies
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Emma Borsier
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK
| | - Tim Guilford
- Department of Zoology, Oxford Navigation Group, 11a Mansfield Road, Oxford, OX1 3SZ, Oxfordshire, UK.
| |
Collapse
|
19
|
Putman NF. Magnetosensation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:1-7. [PMID: 35098367 DOI: 10.1007/s00359-021-01538-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
20
|
Wynn J, Padget O, Mouritsen H, Morford J, Jaggers P, Guilford T. Magnetic stop signs signal a European songbird's arrival at the breeding site after migration. Science 2022; 375:446-449. [PMID: 35084979 DOI: 10.1126/science.abj4210] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although it is known that birds can return to their breeding grounds with exceptional precision, it has remained a mystery how they know when and where to stop migrating. Using nearly a century's worth of Eurasian reed warbler (Acrocephalus scirpaceus) ringing recoveries, we investigated whether fluctuations in Earth's magnetic field predict variation in the sites to which birds return. Ringing recoveries suggest that magnetic inclination is learned before departure and is subsequently used as a uni-coordinate "stop sign" when relocating the natal or breeding site. However, many locations have the same inclination angle. Data from populations with different migratory directions indicate that birds solve this ambiguity by stopping at the first place where the right inclination is encountered on an inherited return vector.
Collapse
Affiliation(s)
- Joe Wynn
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Oliver Padget
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Henrik Mouritsen
- AG "Neurosensorik/(Animal Navigation)," Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - Joe Morford
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Paris Jaggers
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| | - Tim Guilford
- Oxford Navigation Group, Department of Zoology, Oxford OX1 3SZ, UK
| |
Collapse
|
21
|
Naisbett-Jones LC, Lohmann KJ. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:19-40. [PMID: 35031832 DOI: 10.1007/s00359-021-01527-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/15/2023]
Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth's magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth's magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Collapse
Affiliation(s)
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
22
|
Magnetic maps in animal navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:41-67. [PMID: 34999936 PMCID: PMC8918461 DOI: 10.1007/s00359-021-01529-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022]
Abstract
In addition to providing animals with a source of directional or ‘compass’ information, Earth’s magnetic field also provides a potential source of positional or ‘map’ information that animals might exploit to assess location. In less than a generation, the idea that animals use Earth’s magnetic field as a kind of map has gone from a contentious hypothesis to a well-established tenet of animal navigation. Diverse animals ranging from lobsters to birds are now known to use magnetic positional information for a variety of purposes, including staying on track along migratory pathways, adjusting food intake at appropriate points in a migration, remaining within a suitable oceanic region, and navigating toward specific goals. Recent findings also indicate that sea turtles, salmon, and at least some birds imprint on the magnetic field of their natal area when young and use this information to facilitate return as adults, a process that may underlie long-distance natal homing (a.k.a. natal philopatry) in many species. Despite recent progress, much remains to be learned about the organization of magnetic maps, how they develop, and how animals use them in navigation.
Collapse
|
23
|
Patrick SC, Assink JD, Basille M, Clusella-Trullas S, Clay TA, den Ouden OFC, Joo R, Zeyl JN, Benhamou S, Christensen-Dalsgaard J, Evers LG, Fayet AL, Köppl C, Malkemper EP, Martín López LM, Padget O, Phillips RA, Prior MK, Smets PSM, van Loon EE. Infrasound as a Cue for Seabird Navigation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements.
Collapse
|
24
|
Verhoeven MA, Loonstra AHJ, McBride AD, Kaspersma W, Hooijmeijer JCEW, Both C, Senner NR, Piersma T. Age-dependent timing and routes demonstrate developmental plasticity in a long-distance migratory bird. J Anim Ecol 2021; 91:566-579. [PMID: 34822170 PMCID: PMC9299929 DOI: 10.1111/1365-2656.13641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 11/18/2021] [Indexed: 12/01/2022]
Abstract
Longitudinal tracking studies have revealed consistent differences in the migration patterns of individuals from the same populations. The sources or processes causing this individual variation are largely unresolved. As a result, it is mostly unknown how much, how fast and when animals can adjust their migrations to changing environments. We studied the ontogeny of migration in a long‐distance migratory shorebird, the black‐tailed godwit Limosa limosa limosa, a species known to exhibit marked individuality in the migratory routines of adults. By observing how and when these individual differences arise, we aimed to elucidate whether individual differences in migratory behaviour are inherited or emerge as a result of developmental plasticity. We simultaneously tracked juvenile and adult godwits from the same breeding area on their south‐ and northward migrations. To determine how and when individual differences begin to arise, we related juvenile migration routes, timing and mortality rates to hatch date and hatch year. Then, we compared adult and juvenile migration patterns to identify potential age‐dependent differences. In juveniles, the timing of their first southward departure was related to hatch date. However, their subsequent migration routes, orientation, destination, migratory duration and likelihood of mortality were unrelated to the year or timing of migration, or their sex. Juveniles left the Netherlands after all tracked adults. They then flew non‐stop to West Africa more often and incurred higher mortality rates than adults. Some juveniles also took routes and visited stopover sites far outside the well‐documented adult migratory corridor. Such juveniles, however, were not more likely to die. We found that juveniles exhibited different migratory patterns than adults, but no evidence that these behaviours are under natural selection. We thus eliminate the possibility that the individual differences observed among adult godwits are present at hatch or during their first migration. This adds to the mounting evidence that animals possess the developmental plasticity to change their migration later in life in response to environmental conditions as those conditions are experienced.
Collapse
Affiliation(s)
- Mo A Verhoeven
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - A H Jelle Loonstra
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Alice D McBride
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Wiebe Kaspersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jos C E W Hooijmeijer
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Nathan R Senner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| |
Collapse
|
25
|
Collet J, Sasaki T, Biro D. Pigeons retain partial memories of homing paths years after learning them individually, collectively or culturally. Proc Biol Sci 2021; 288:20212110. [PMID: 34784759 PMCID: PMC8595992 DOI: 10.1098/rspb.2021.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Memory of past experience is central to many animal decisions, but how long specific memories can influence behaviour is poorly understood. Few studies have reported memories retrieved after several years in non-human animals, especially for spatial tasks, and whether the social context during learning could affect long-term memory retention. We investigated homing pigeons' spatial memory by GPS-recording their homing paths from a site 9 km from their loft. We compared solo flights of naive pigeons with those of pigeons that had last homed from this site 3-4 years earlier, having learnt a homing route either alone (individual learning), together with a naive partner (collective learning) or within cultural transmission chains (cultural learning). We used as a control a second release site unfamiliar to all pigeons. Pigeons from all learning treatments outperformed naive birds at the familiar (but not the unfamiliar) site, but the idiosyncratic routes they formerly used several years before were now partially forgotten. Our results show that non-human animals can use their memory to solve a spatial task years after they last performed it, irrespective of the social context during learning. They also suggest that without reinforcement, landmarks and culturally acquired 'route traditions' are gradually forgotten.
Collapse
Affiliation(s)
- Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Dora Biro
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11A Mansfield Road, Oxford OX1 3SZ, UK
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
26
|
Packmor F, Kishkinev D, Bittermann F, Kofler B, Machowetz C, Zechmeister T, Zawadzki LC, Guilford T, Holland RA. A magnet attached to the forehead disrupts magnetic compass orientation in a migratory songbird. J Exp Biol 2021; 224:jeb243337. [PMID: 34713887 PMCID: PMC8645232 DOI: 10.1242/jeb.243337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
For studies on magnetic compass orientation and navigation performance in small bird species, controlled experiments with orientation cages inside an electromagnetic coil system are the most prominent methodological paradigm. These are, however, not applicable when studying larger bird species and/or orientation behaviour during free flight. For this, researchers have followed a very different approach, attaching small magnets to birds, with the intention of depriving them of access to meaningful magnetic information. Unfortunately, results from studies using this approach appear rather inconsistent. As these are based on experiments with birds under free-flight conditions, which usually do not allow exclusion of other potential orientation cues, an assessment of the overall efficacy of this approach is difficult to conduct. Here, we directly tested the efficacy of small magnets for temporarily disrupting magnetic compass orientation in small migratory songbirds using orientation cages under controlled experimental conditions. We found that birds which have access to the Earth's magnetic field as their sole orientation cue show a general orientation towards their seasonally appropriate migratory direction. When carrying magnets on their forehead under these conditions, the same birds become disoriented. However, under changed conditions that allow birds access to other (i.e. celestial) orientation cues, any disruptive effect of the magnets they carry appears obscured. Our results provide clear evidence for the efficacy of the magnet approach for temporarily disrupting magnetic compass orientation in birds, but also reveal its limitations for application in experiments under free-flight conditions.
Collapse
Affiliation(s)
- Florian Packmor
- School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
- Institute of Avian Research ‘Vogelwarte Helgoland’, Wilhelmshaven 26386, Germany
| | - Dmitry Kishkinev
- School of Life Sciences, Keele University, Newcastle-under-Lyme ST5 5BG, UK
| | - Flora Bittermann
- Biological Station Lake Neusiedl, Illmitz 7142, Austria
- Nationalpark Neusiedler See – Seewinkel, Apetlon 7143, Austria
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria
| | | | - Clara Machowetz
- Biological Station Lake Neusiedl, Illmitz 7142, Austria
- Nationalpark Neusiedler See – Seewinkel, Apetlon 7143, Austria
- Austrian Ornithological Centre, Konrad-Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, 1160 Wien, Austria
| | | | | | - Tim Guilford
- Department of Zoology, Oxford University, Oxford OX1 3SZ, UK
| | | |
Collapse
|
27
|
Benitez-Paez F, Brum-Bastos VDS, Beggan CD, Long JA, Demšar U. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. MOVEMENT ECOLOGY 2021; 9:31. [PMID: 34116722 PMCID: PMC8196450 DOI: 10.1186/s40462-021-00268-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Migratory animals use information from the Earth's magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. METHODS We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency's Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. RESULTS We find that the average absolute error of intensity is - 21.6 nT (95% CI [- 22.26555, - 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. CONCLUSIONS By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.
Collapse
Affiliation(s)
- Fernando Benitez-Paez
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- The Alan Turing Institute British Library, England, London, UK
| | - Vanessa da Silva Brum-Bastos
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
| | - Ciarán D Beggan
- British Geological Survey, Research Ave South, Riccarton, Edinburgh, Scotland, UK
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- Department of Geography and Environment, Western University, London, Ontario, Canada
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK.
| |
Collapse
|
28
|
Keller BA, Putman NF, Grubbs RD, Portnoy DS, Murphy TP. Map-like use of Earth's magnetic field in sharks. Curr Biol 2021; 31:2881-2886.e3. [PMID: 33961785 DOI: 10.1016/j.cub.2021.03.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/25/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Migration is common in marine animals,1-5 and use of the map-like information of Earth's magnetic field appears to play an important role.2,6-9 While sharks are iconic migrants10-12 and well known for their sensitivity to electromagnetic fields,13-20 whether this ability is used for navigation is unresolved.14,17,21,22 We conducted magnetic displacement experiments on wild-caught bonnetheads (Sphyrna tiburo) and show that magnetic map cues can elicit homeward orientation. We further show that use of a magnetic map to derive positional information may help explain aspects of the genetic structure of bonnethead populations in the northwest Atlantic.23-26 These results offer a compelling explanation for the puzzle of how migratory routes and population structure are maintained in marine environments, where few physical barriers limit movements of vagile species. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Bryan A Keller
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA.
| | - Nathan F Putman
- LGL Ecological Research Associates, 4103 South Texas Avenue, Suite 211, Bryan, TX 77802, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA
| | - David S Portnoy
- Marine Genomics Laboratory, Texas A&M University, Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Timothy P Murphy
- Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
29
|
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G. Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS One 2021; 16:e0248141. [PMID: 33667278 PMCID: PMC7935302 DOI: 10.1371/journal.pone.0248141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
Several marine species have developed a magnetic perception that is essential for navigation and detection of prey and predators. One of these species is the transparent glass catfish that contains an ampullary organ dedicated to sense magnetic fields. Here we examine the behavior of the glass catfish in response to static magnetic fields which will provide valuable insight on function of this magnetic response. By utilizing state of the art animal tracking software and artificial intelligence approaches, we quantified the effects of magnetic fields on the swimming direction of glass catfish. The results demonstrate that glass catfish placed in a radial arm maze, consistently swim away from magnetic fields over 20 μT and show adaptability to changing magnetic field direction and location.
Collapse
Affiliation(s)
- Ryan D. Hunt
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Ryan C. Ashbaugh
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Mark Reimers
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Lalita Udpa
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Gabriela Saldana De Jimenez
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Moore
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- Synthetic Biology Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Neuroengineering Division, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
30
|
Bonadonna F, Gagliardo A. Not only pigeons: avian olfactory navigation studied by satellite telemetry. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1871967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francesco Bonadonna
- CEFE-CNRS, University of Montpellier, EPHE, IRD, University Paul Valéry Montpellier 3, Montpellier, France
| | | |
Collapse
|
31
|
Taylor BK, Lohmann KJ, Havens LT, Lohmann CMF, Granger J. Long-distance transequatorial navigation using sequential measurements of magnetic inclination angle. J R Soc Interface 2021; 18:20200887. [PMID: 33402018 PMCID: PMC7879752 DOI: 10.1098/rsif.2020.0887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 11/12/2022] Open
Abstract
Diverse taxa use Earth's magnetic field in combination with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. Several animals have the ability to use the inclination or tilt of magnetic field lines as a component of a magnetic compass sense that can be used to maintain migratory headings. In addition, a few animals are able to distinguish among different inclination angles and, in effect, exploit inclination as a surrogate for latitude. Little is known, however, about the role that magnetic inclination plays in guiding long-distance migrations. In this paper, we use an agent-based modelling approach to investigate whether an artificial agent can successfully execute a series of transequatorial migrations by using sequential measurements of magnetic inclination. The agent was tested with multiple navigation strategies in both present-day and reversed magnetic fields. The findings (i) demonstrate that sequential inclination measurements can enable migrations between the northern and southern hemispheres, and (ii) demonstrate that an inclination-based strategy can tolerate a reversed magnetic field, which could be useful in the development of autonomous engineered systems that must be robust to magnetic field changes. The findings also appear to be consistent with the results of some animal navigation experiments, although whether any animal exploits a strategy of using sequential measurements of inclination remains unknown.
Collapse
Affiliation(s)
- Brian K. Taylor
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth J. Lohmann
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luke T. Havens
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine M. F. Lohmann
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse Granger
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
32
|
|