1
|
Yan H. Insect olfactory neurons: receptors, development, and function. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101288. [PMID: 39490981 DOI: 10.1016/j.cois.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Insects represent the most diverse group of animals in the world. While the olfactory systems of different species share general principles of organization, they also exhibit a wide range of structural and functional diversity. Scientists have gained tremendous insight into olfactory neural development and function, notably in Drosophila, but also in other insect species (see reviews by Benton, 2022; Robertson, 2019; Yan et al., 2020). In the last few years, new evidence has steadily mounted, for example, the stoichiometry of odorant receptor and co-receptor (OR-Orco) complex. This review aims to highlight the recent progress on four aspects: (1) the structure and function of the OR-Orco complex, (2) chemosensory gene co-expression, (3) diverse neural developmental processes, and (4) the role of genes and neurons in olfactory development and olfactory-mediated behavior.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
2
|
Adavi ED, dos Anjos VL, Kotb S, Metz HC, Tian D, Zhao Z, Zung JL, Rose NH, McBride CS. Olfactory receptor coexpression and co-option in the dengue mosquito. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608847. [PMID: 39229077 PMCID: PMC11370346 DOI: 10.1101/2024.08.21.608847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The olfactory sensory neurons of vinegar flies and mice tend to express a single ligand-specific receptor. While this 'one neuron-one receptor' motif has long been expected to apply broadly across insects, recent evidence suggests it may not extend to mosquitoes. We sequenced and analyzed the transcriptomes of 46,000 neurons from antennae of the dengue mosquito Aedes aegypti to resolve all olfactory, thermosensory, and hygrosensory neuron subtypes and identify the receptors expressed therein. We find that half of all olfactory subtypes coexpress multiple receptors. However, coexpression occurs almost exclusively among genes from the same family-among odorant receptors (ORs) or among ionotropic receptors (IRs). Coexpression of ORs with IRs is exceedingly rare. Many coexpressed receptors are recent duplicates. In other cases, the recruitment or co-option of single receptors by multiple neuron subtypes has placed these genes together in the same cells with distant paralogs. Close examination of data from Drosophila reveal rare cases of both phenomena, indicating that the olfactory systems of these two species are not fundamentally different, but instead fall at different locations along a continuum likely to encompass diverse insects.
Collapse
Affiliation(s)
- Elisha David Adavi
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Vitor L. dos Anjos
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Summer Kotb
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Hillery C. Metz
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - David Tian
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Jessica L. Zung
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Noah H. Rose
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| | - Carolyn S. McBride
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
- Department of Ecology and Evolutionary Biology, Princeton University; Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Wang Q, Smid HM, Dicke M, Haverkamp A. The olfactory system of Pieris brassicae caterpillars: from receptors to glomeruli. INSECT SCIENCE 2024; 31:469-488. [PMID: 38105530 DOI: 10.1111/1744-7917.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023]
Abstract
The olfactory system of adult lepidopterans is among the best described neuronal circuits. However, comparatively little is known about the organization of the olfactory system in the larval stage of these insects. Here, we explore the expression of olfactory receptors and the organization of olfactory sensory neurons in caterpillars of Pieris brassicae, a significant pest species in Europe and a well-studied species for its chemical ecology. To describe the larval olfactory system in this species, we first analyzed the head transcriptome of third-instar larvae (L3) and identified 16 odorant receptors (ORs) including the OR coreceptor (Orco), 13 ionotropic receptors (IRs), and 8 gustatory receptors (GRs). We then quantified the expression of these 16 ORs in different life stages, using qPCR, and found that the majority of ORs had significantly higher expression in the L4 stage than in the L3 and L5 stages, indicating that the larval olfactory system is not static throughout caterpillar development. Using an Orco-specific antibody, we identified all olfactory receptor neurons (ORNs) expressing the Orco protein in L3, L4, and L5 caterpillars and found a total of 34 Orco-positive ORNs, distributed among three sensilla on the antenna. The number of Orco-positive ORNs did not differ among the three larval instars. Finally, we used retrograde axon tracing of the antennal nerve and identified a mean of 15 glomeruli in the larval antennal center (LAC), suggesting that the caterpillar olfactory system follows a similar design as the adult olfactory system, although with a lower numerical redundancy. Taken together, our results provide a detailed analysis of the larval olfactory neurons in P. brassicae, highlighting both the differences as well as the commonalities with the adult olfactory system. These findings contribute to a better understanding of the development of the olfactory system in insects and its life-stage-specific adaptations.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Brahma A, Frank DD, Pastor PDH, Piekarski PK, Wang W, Luo JD, Carroll TS, Kronauer DJC. Transcriptional and post-transcriptional control of odorant receptor choice in ants. Curr Biol 2023; 33:5456-5466.e5. [PMID: 38070504 PMCID: PMC11025690 DOI: 10.1016/j.cub.2023.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/07/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
Insects and mammals have independently evolved odorant receptor genes that are arranged in large genomic tandem arrays. In mammals, each olfactory sensory neuron chooses to express a single receptor in a stochastic process that includes substantial chromatin rearrangements. Here, we show that ants, which have the largest odorant receptor repertoires among insects, employ a different mechanism to regulate gene expression from tandem arrays. Using single-nucleus RNA sequencing, we found that ant olfactory sensory neurons choose different transcription start sites along an array but then produce mRNA from many downstream genes. This can result in transcripts from dozens of receptors being present in a single nucleus. Such rampant receptor co-expression at first seems difficult to reconcile with the narrow tuning of the ant olfactory system. However, RNA fluorescence in situ hybridization showed that only mRNA from the most upstream transcribed odorant receptor seems to reach the cytoplasm where it can be translated into protein, whereas mRNA from downstream receptors gets sequestered in the nucleus. This implies that, despite the extensive co-expression of odorant receptor genes, each olfactory sensory neuron ultimately only produces one or very few functional receptors. Evolution has thus found different molecular solutions in insects and mammals to the convergent challenge of selecting small subsets of receptors from large odorant receptor repertoires.
Collapse
Affiliation(s)
- Anindita Brahma
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - P Daniel H Pastor
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Patrick K Piekarski
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
6
|
Hart T, Frank DD, Lopes LE, Olivos-Cisneros L, Lacy KD, Trible W, Ritger A, Valdés-Rodríguez S, Kronauer DJC. Sparse and stereotyped encoding implicates a core glomerulus for ant alarm behavior. Cell 2023; 186:3079-3094.e17. [PMID: 37321218 PMCID: PMC10334690 DOI: 10.1016/j.cell.2023.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Ants communicate via large arrays of pheromones and possess expanded, highly complex olfactory systems, with antennal lobes in the brain comprising up to ∼500 glomeruli. This expansion implies that odors could activate hundreds of glomeruli, which would pose challenges for higher-order processing. To study this problem, we generated transgenic ants expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon imaging, we mapped complete glomerular responses to four ant alarm pheromones. Alarm pheromones robustly activated ≤6 glomeruli, and activity maps for the three pheromones inducing panic alarm in our study species converged on a single glomerulus. These results demonstrate that, rather than using broadly tuned combinatorial encoding, ants employ precise, narrowly tuned, and stereotyped representations of alarm pheromones. The identification of a central sensory hub glomerulus for alarm behavior suggests that a simple neural architecture is sufficient to translate pheromone perception into behavioral outputs.
Collapse
Affiliation(s)
- Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Dominic D Frank
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lindsey E Lopes
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Leonora Olivos-Cisneros
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Waring Trible
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, 52 Oxford Street, NW Cambridge, MA 02138, USA
| | - Amelia Ritger
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Marine Science Research Building, Bldg. 520, Santa Barbara, CA 93106, USA
| | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
7
|
Fan XB, Mo BT, Li GC, Huang LQ, Guo H, Gong XL, Wang CZ. Mutagenesis of the odorant receptor co-receptor (Orco) reveals severe olfactory defects in the crop pest moth Helicoverpa armigera. BMC Biol 2022; 20:214. [PMID: 36175945 PMCID: PMC9524114 DOI: 10.1186/s12915-022-01411-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/16/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Odorant receptors (ORs) as odorant-gated ion channels play a crucial role in insect olfaction. They are formed by a heteromultimeric complex of the odorant receptor co-receptor (Orco) and a ligand-selective Or. Other types of olfactory receptor proteins, such as ionotropic receptors (IRs) and some gustatory receptors (GRs), are also involved in the olfactory system of insects. Orco as an obligatory subunit of ORs is highly conserved, providing an opportunity to systematically evaluate OR-dependent olfactory responses. RESULTS Herein, we successfully established a homozygous mutant (Orco-/-) of Helicoverpa armigera, a notorious crop pest, using the CRISPR/Cas9 gene editing technique. We then compared the olfactory response characteristics of wild type (WT) and Orco-/- adults and larvae. Orco-/- males were infertile, while Orco-/- females were fertile. The lifespan of Orco-/- females was longer than that of WT females. The expressions of most Ors, Irs, and other olfaction-related genes in adult antennae of Orco-/- moths were not obviously affected, but some of them were up- or down-regulated. In addition, there was no change in the neuroanatomical phenotype of Orco-/- moths at the level of the antennal lobe (including the macroglomerular complex region of the male). Using EAG and SSR techniques, we discovered that electrophysiological responses of Orco-/- moths to sex pheromone components and many host plant odorants were absent. The upwind flight behaviors toward sex pheromones of Orco-/- males were severely reduced in a wind tunnel experiment. The oviposition selectivity of Orco-/- females to the host plant (green pepper) has completely disappeared, and the chemotaxis toward green pepper was also lost in Orco-/- larvae. CONCLUSIONS Our study indicates that OR-mediated olfaction is essential for pheromone communication, oviposition selection, and larval chemotaxis of H. armigera, suggesting a strategy in which mate searching and host-seeking behaviors of moth pests could be disrupted by inhibiting or silencing Orco expression.
Collapse
Affiliation(s)
- Xiao-Bin Fan
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bao-Tong Mo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Guo-Cheng Li
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ling-Qiao Huang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China
| | - Hao Guo
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin-Lin Gong
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Chen-Zhu Wang
- grid.9227.e0000000119573309State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 People’s Republic of China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Hayashi TT, MacKenzie AJ, Ganguly I, Ellis KE, Smihula HM, Jacob MS, Litwin-Kumar A, Caron SJC. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster. Curr Biol 2022; 32:4000-4012.e5. [PMID: 35977547 PMCID: PMC9533768 DOI: 10.1016/j.cub.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
Associative brain centers, such as the insect mushroom body, need to represent sensory information in an efficient manner. In Drosophila melanogaster, the Kenyon cells of the mushroom body integrate inputs from a random set of olfactory projection neurons, but some projection neurons-namely those activated by a few ethologically meaningful odors-connect to Kenyon cells more frequently than others. This biased and random connectivity pattern is conceivably advantageous, as it enables the mushroom body to represent a large number of odors as unique activity patterns while prioritizing the representation of a few specific odors. How this connectivity pattern is established remains largely unknown. Here, we test whether the mechanisms patterning the connections between Kenyon cells and projection neurons depend on sensory activity or whether they are hardwired. We mapped a large number of mushroom body input connections in partially anosmic flies-flies lacking the obligate odorant co-receptor Orco-and in wild-type flies. Statistical analyses of these datasets reveal that the random and biased connectivity pattern observed between Kenyon cells and projection neurons forms normally in the absence of most olfactory sensory activity. This finding supports the idea that even comparatively subtle, population-level patterns of neuronal connectivity can be encoded by fixed genetic programs and are likely to be the result of evolved prioritization of ecologically and ethologically salient stimuli.
Collapse
Affiliation(s)
- Tatsuya Tatz Hayashi
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander John MacKenzie
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Ishani Ganguly
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Kaitlyn Elizabeth Ellis
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Hayley Marie Smihula
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Miles Solomon Jacob
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, Jerome L Greene Science Center, 3227 Broadway, New York, NY 10027, USA
| | - Sophie Jeanne Cécile Caron
- School of Biological Sciences, University of Utah, Aline Skaggs Wilmot Biology Building, 257 South 1400 East, Salt Lake City, UT 84112, USA; Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, Schmid FR, Uhl M, Vuong MP, Weber V, Schachtner J. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST). BMC Biol 2021; 19:155. [PMID: 34330268 PMCID: PMC8323255 DOI: 10.1186/s12915-021-01055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This process includes the integration of new neurons, as well as remodeling and elimination of larval neurons. RESULTS We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the larval antennal lobe gets transformed into its adult version. The beetle's larval antennal lobe is already glomerularly structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the latter during a postmetamorphic phase. CONCLUSIONS We provide insights into the metamorphic development of the red flour beetle's olfactory system and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed that some aspects, such as the formation of the antennal lobe's adult glomeruli at mid-metamorphosis, are common, while others like the development of sensory appendages or the role of Orco seemingly differ.
Collapse
Affiliation(s)
- Björn Trebels
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Brigitte Goetz
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Maria Graebner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Carolin Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Florian Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Freya-Rebecca Schmid
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Mara Uhl
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Minh-Phung Vuong
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Vanessa Weber
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
- Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
11
|
Riveros AJ, Entler BV, Seid MA. Stimulus-dependent learning and memory in the neotropical ant Ectatomma ruidum. J Exp Biol 2021; 224:261761. [PMID: 33948646 DOI: 10.1242/jeb.238535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 11/20/2022]
Abstract
Learning and memory are major cognitive processes strongly tied to the life histories of animals. In ants, chemotactile information generally plays a central role in social interaction, navigation and resource exploitation. However, in hunters, visual information should take special relevance during foraging, thus leading to differential use of information from different sensory modalities. Here, we aimed to test whether a hunter, the neotropical ant Ectatomma ruidum, differentially learns stimuli acquired through multiple sensory channels. We evaluated the performance of E. ruidum workers when trained using olfactory, mechanical, chemotactile and visual stimuli under a restrained protocol of appetitive learning. Conditioning of the maxilla labium extension response enabled control of the stimuli provided. Our results show that ants learn faster and remember for longer when trained using chemotactile or visual stimuli than when trained using olfactory and mechanical stimuli separately. These results agree with the life history of E. ruidum, characterized by a high relevance of chemotactile information acquired through antennation as well as the role of vision during hunting.
Collapse
Affiliation(s)
- Andre J Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Cra. 26 #63B-48, Bogotá, Colombia
| | - Brian V Entler
- Program in Neuroscience, Biology Department, University of Scranton, Scranton, PA 18510, USA
| | - Marc A Seid
- Program in Neuroscience, Biology Department, University of Scranton, Scranton, PA 18510, USA
| |
Collapse
|
12
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
13
|
Jernigan CM, Zaba NC, Sheehan MJ. Age and social experience induced plasticity across brain regions of the paper wasp Polistes fuscatus. Biol Lett 2021; 17:20210073. [PMID: 33849349 PMCID: PMC8086938 DOI: 10.1098/rsbl.2021.0073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Developmental studies of brain volumes can reveal which portions of neural circuits are sensitive to environmental inputs. In social insects, differences in relative investment across brain regions emerge as behavioural repertoires change during ontogeny or as a result of experience. Here, we test the effects of maturation and social experience on morphological brain development in Polistes fuscatus paper wasps, focusing on brain regions involved in visual and olfactory processing. We find that mature wasps regardless of social experience have relatively larger brains than newly emerged wasps and this difference is driven by changes to mushroom body calyx and visual regions but not olfactory processing neuropils. Notably, social wasps invest more in the anterior optic tubercle (AOT), a visual glomerulus involved in colour and object processing in other taxa, relative to other visual integration centres the mushroom body calyces compared with aged socially naive wasps. Differences in developmental plasticity between visual and olfactory neuropil volumes are discussed in light of behavioural maturation in paper wasps, especially as it relates to social recognition. Previous research has shown that P. fuscatus need social experience to develop specialized visual processing of faces, which is used to individually recognize conspecifics. The present study suggests that the AOT is a candidate brain region that could mediate facial processing in this species.
Collapse
Affiliation(s)
| | - Natalie C. Zaba
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Ferguson ST, Bakis I, Zwiebel LJ. Advances in the Study of Olfaction in Eusocial Ants. INSECTS 2021; 12:252. [PMID: 33802783 PMCID: PMC8002415 DOI: 10.3390/insects12030252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, spurred in part by the sequencing of the first ant genomes, there have been major advances in the field of olfactory myrmecology. With the discovery of a significant expansion of the odorant receptor gene family, considerable efforts have been directed toward understanding the olfactory basis of complex social behaviors in ant colonies. Here, we review recent pivotal studies that have begun to reveal insights into the development of the olfactory system as well as how olfactory stimuli are peripherally and centrally encoded. Despite significant biological and technical impediments, substantial progress has been achieved in the application of gene editing and other molecular techniques that notably distinguish the complex olfactory system of ants from other well-studied insect model systems, such as the fruit fly. In doing so, we hope to draw attention not only to these studies but also to critical knowledge gaps that will serve as a compass for future research endeavors.
Collapse
Affiliation(s)
| | | | - Laurence J. Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; (S.T.F.); (I.B.)
| |
Collapse
|
15
|
Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021; 383:75-90. [PMID: 33475852 PMCID: PMC7873006 DOI: 10.1007/s00441-020-03407-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
There are 3559 species of mosquitoes in the world (Harbach 2018) but, so far, only a handful of them have been a focus of olfactory neuroscience and neurobiology research. Here we discuss mosquito olfactory anatomy and function and connect these to mosquito ecology. We highlight the least well-known and thus most interesting aspects of mosquito olfactory systems and discuss promising future directions. We hope this review will encourage the insect neuroscience community to work more broadly across mosquito species instead of focusing narrowly on the main disease vectors.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Catherine R Whittle
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Olena Riabinina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
16
|
Abstract
A detailed description of olfactory system development in ants reveals that - unlike in Drosophila and as in mammals - olfactory receptors may play a role, providing new insights into the developmental evolution of complex chemosensory systems.
Collapse
Affiliation(s)
- Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|