1
|
Klug C, Scheyer TM, Klein N, Liu J, Albisetti D, Furrer H, Stockar R. Special Issue: 100 years of scientific excavations at UNESCO World Heritage Site Monte San Giorgio and global research on Triassic marine Lagerstätten. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:37. [PMID: 39376472 PMCID: PMC11457694 DOI: 10.1186/s13358-024-00328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 10/09/2024]
Abstract
Only a few Swiss fossil localities are known globally and of which, the UNESCO World Heritage Site Monte San Giorgio, which extends from Switzerland into Italy, is the most important one. Following the discovery of the occurrence of articulated skeletons of marine reptiles in the local mines, large excavations were organized by Bernhard Peyer from the University of Zurich starting 1924. With this collection of articles, we commemorate the successful excavations and research, which initiated the publication of a series of monographies, mostly on the vertebrates but also on the invertebrates of this locality. Especially with the discovery of several remarkably similar Konservat-Lagerstätten in China, the discoveries from Monte San Giorgio gained global relevance. New methodologies such as computed tomography produced a wealth of new data, particularly on endocranial anatomy of several tetrapods.
Collapse
Affiliation(s)
- Christian Klug
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Nicole Klein
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, Nußallee 8, 53115 Bonn, Germany
| | - Jun Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009 China
- Chengdu Center, China Geological Survey, Chengdu, 610081 China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, 210008 China
| | - Daniele Albisetti
- Museo dei Fossili del Monte San Giorgio, Via Bernardo Peyer 9, 6866 Meride, Switzerland
| | - Heinz Furrer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Rudolf Stockar
- Repubblica e Cantone Ticino, Dipartimento del Territorio, Museo Cantonale di Storia Naturale, Viale Carlo Cattaneo 4, 6900 Lugano, Switzerland
| |
Collapse
|
2
|
Bastiaans D. Thalattosauria in time and space: a review of thalattosaur spatiotemporal occurrences, presumed evolutionary relationships and current ecological hypotheses. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:36. [PMID: 39345254 PMCID: PMC11427521 DOI: 10.1186/s13358-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024]
Abstract
In the wake of the greatest mass extinction in Earth's history, the End-Permian Mass Extinction, the Triassic was a time of recovery and innovation. Aided by warm climatic conditions and favorable ecological circumstances, many reptilian clades originated and rapidly diversified during this time. This set the stage for numerous independent invasions of the marine realm by several reptilian clades, such as Ichthyosauriformes and Sauropterygia, shaping the oceanic ecosystems for the entire Mesozoic. Although comparatively less speciose, and temporally and latitudinally more restricted, another marine reptile clade, the Thalattosauriformes, stands out because of their unusual and highly disparate cranial, dental and skeletal morphology. Research on Thalattosauriformes has been hampered by a historic dearth of material, with the exception of rare material from Lagerstätten and highly fossiliferous localities, such as that from the UNESCO world heritage site of Monte San Giorgio. Consequently, their evolutionary origins and paleobiology remain poorly understood. The recent influx of new material from southwestern China and North America has renewed interest in this enigmatic group prompting the need for a detailed review of historic work and current views. The earliest representatives of the group may have been present from the late Early Triassic onwards in British Columbia. By the Ladinian the group had achieved a wide distribution across the northern hemisphere, spanning the eastern Panthalassic as well as the eastern and western Tethyan provinces. Distinct morphological and likely ecological differences exist between the two major clades of Thalattosauriformes, the Askeptosauroidea and the Thalattosauroidea, with the latter showing a higher degree of cranial and skeletal morphological disparity. In-group relationships remain poorly resolved beyond this bipartition. Overall, thalattosaurs may be closely related to other marine reptile groups such as ichthyopterygians and sauropterygians. However, their exact position within Diapsida remains elusive. Future focal points should utilize modern digital paleontological approaches to explore the many fragmentary specimens of otherwise poorly sampled localities.
Collapse
Affiliation(s)
- Dylan Bastiaans
- Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Natural History Museum Maastricht, Centre Céramique, De Bosquetplein 7, 6211 KJ Maastricht, The Netherlands
| |
Collapse
|
3
|
Foffa D, Young MT, Brusatte SL. Comparative functional morphology indicates niche partitioning among sympatric marine reptiles. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231951. [PMID: 39076819 PMCID: PMC11285779 DOI: 10.1098/rsos.231951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/31/2024]
Abstract
Mesozoic marine ecosystems were dominated by diverse lineages of aquatic tetrapods. For over 50 Ma in the Jurassic until the Early Cretaceous, plesiosaurians, ichthyosaurians and thalattosuchian crocodylomorphs coexisted at the top levels of trophic food webs. We created a functional dataset of continuous craniomandibular and dental characters known from neontological studies to be functionally significant in modern aquatic tetrapods. We analysed this dataset with multivariate ordination and inferential statistics to assess functional similarities and differences in the marine reptile faunas of two well-sampled Jurassic ecosystems deposited in the same seaway: the Oxford Clay Formation (OCF, Callovian-early Oxfordian, Middle-Late Jurassic) and the Kimmeridge Clay Formation (KCF, Kimmeridgian-Tithonian, Late Jurassic) of the UK. Lower jaw-based macroevolutionary trends are similar to those of tooth-based diversity studies. Closely related species cluster together, with minimal overlaps in the morphospace. Marine reptile lineages were characterized by the distinctive combinations of features, but we reveal multiple instances of morphofunctional convergence among different groups. We quantitatively corroborate previous observations that the ecosystems in the OCF and KCF were markedly distinct in faunal composition and structure. Morphofunctional differentiation may have enabled specialization and was an important factor facilitating the coexistence of diverse marine reptile assemblages in deep time.
Collapse
Affiliation(s)
- Davide Foffa
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
| | - Mark T. Young
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| | - Stephen L. Brusatte
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK
- School of GeoSciences, Grant Institute, University of Edinburgh, EdinburghEH9 3FE, UK
| |
Collapse
|
4
|
Rytel A, Böhmer C, Spiekman SNF, Tałanda M. Extreme neck elongation evolved despite strong developmental constraints in bizarre Triassic reptiles-implications for neck modularity in archosaurs. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240233. [PMID: 39076823 PMCID: PMC11285776 DOI: 10.1098/rsos.240233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/27/2024] [Indexed: 07/31/2024]
Abstract
The Triassic radiation of vertebrates saw the emergence of the modern vertebrate groups, as well as numerous extinct animals exhibiting conspicuous, unique anatomical characteristics. Among these, members of Tanystropheidae (Reptilia: Archosauromorpha) displayed cervical vertebral elongation to an extent unparalleled in any other vertebrate. Tanystropheids were exceptionally ecologically diverse and had a wide spatial and temporal distribution. This may have been related to their neck anatomy, yet its evolution and functional properties remain poorly understood. We used geometric morphometrics to capture the intraspecific variation between the vertebrae comprising the cervical column among early archosauromorphs, to trace the evolutionary history of neck elongation in these animals. Our results show that the cervical series of these reptiles can be divided into modules corresponding to those of extant animals. Tanystropheids achieved neck elongation through somite elongation and a shift between cervical and thoracic regions, without presacral vertebrae count increase-contrary to crown archosaurs. This suggests a peculiar developmental constraint that strongly affected the evolution of tanystropheids. The data obtained just at the base of the archosauromorph phylogenetic tree are crucial for further studies on the modularity of vertebral columns of not only Triassic reptile groups but extant and other extinct animals as well.
Collapse
Affiliation(s)
- Adam Rytel
- Institute of Paleobiology, Polish Academy of Sciences, , Warsaw00818, Poland
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, , Warsaw02089, Poland
| | - Christine Böhmer
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, , Kiel24118, Germany
| | | | - Mateusz Tałanda
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, , Warsaw02089, Poland
| |
Collapse
|
5
|
Curry Rogers K, Martínez RN, Colombi C, Rogers RR, Alcober O. Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries. PLoS One 2024; 19:e0298242. [PMID: 38568908 PMCID: PMC10990230 DOI: 10.1371/journal.pone.0298242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/21/2024] [Indexed: 04/05/2024] Open
Abstract
Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity. Members of other tetrapod clades, including synapsids and pseudosuchians, shared convergently evolved features related to locomotion, feeding, respiration, and metabolism and could have risen to later dominance. However, it was Dinosauria that radiated in the later Mesozoic most significantly in terms of body size, diversity, and global distribution. Elevated growth rates are one of the adaptations that set later Mesozoic dinosaurs apart, particularly from their contemporary crocodilian and mammalian compatriots. When did the elevated growth rates of dinosaurs first evolve? How did the growth strategies of the earliest known dinosaurs compare with those of other tetrapods in their ecosystems? We studied femoral bone histology of an array of early dinosaurs alongside that of non-dinosaurian contemporaries from the Ischigualasto Formation in order to test whether the oldest known dinosaurs exhibited novel growth strategies. Our results indicate that the Ischigualasto vertebrate fauna collectively exhibits relatively high growth rates. Dinosaurs are among the fastest growing taxa in the sample, but they occupied this niche alongside crocodylomorphs, archosauriformes, and large-bodied pseudosuchians. Interestingly, these dinosaurs grew at least as quickly, but more continuously than sauropodomorph and theropod dinosaurs of the later Mesozoic. These data suggest that, while elevated growth rates were ancestral for Dinosauria and likely played a significant role in dinosaurs' ascent within Mesozoic ecosystems, they did not set them apart from their contemporaries.
Collapse
Affiliation(s)
- Kristina Curry Rogers
- Biology and Geology Departments, Macalester College, St. Paul, Minnesota, United States of America
| | - Ricardo N. Martínez
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Carina Colombi
- CIGEOBIO - Centro de Investigaciones de la Geósfera y Biósfera, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de San Juan, San Juan, Argentina
| | - Raymond R. Rogers
- Geology Department, Macalester College, St. Paul, Minnesota, United States of America
| | - Oscar Alcober
- Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| |
Collapse
|
6
|
Klug C, Spiekman SNF, Bastiaans D, Scheffold B, Scheyer TM. The marine conservation deposits of Monte San Giorgio (Switzerland, Italy): the prototype of Triassic black shale Lagerstätten. SWISS JOURNAL OF PALAEONTOLOGY 2024; 143:11. [PMID: 38450287 PMCID: PMC10912274 DOI: 10.1186/s13358-024-00308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Marine conservation deposits ('Konservat-Lagerstätten') are characterized by their mode of fossil preservation, faunal composition and sedimentary facies. Here, we review these characteristics with respect to the famous conservation deposit of the Besano Formation (formerly Grenzbitumenzone; including the Anisian-Ladinian boundary), and the successively younger fossil-bearing units Cava inferiore, Cava superiore, Cassina beds and the Kalkschieferzone of Monte San Giorgio (Switzerland and Italy). We compare these units to a selection of important black shale-type Lagerstätten of the global Phanerozoic plus the Ediacaran in order to detect commonalities in their facies, genesis, and fossil content using principal component and hierarchical cluster analyses. Further, we put the Monte San Giorgio type Fossillagerstätten into the context of other comparable Triassic deposits worldwide based on their fossil content. The results of the principal component and cluster analyses allow a subdivision of the 45 analysed Lagerstätten into four groups, for which we suggest the use of the corresponding pioneering localities: Burgess type for the early Palaeozoic black shales, Monte San Giorgio type for the Triassic black shales, Holzmaden type for the pyrite-rich black shales and Solnhofen type for platy limestones.
Collapse
Affiliation(s)
- Christian Klug
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | | | - Dylan Bastiaans
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Beat Scheffold
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Torsten M. Scheyer
- Universität Zürich, Paläontologisches Institut, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
7
|
Brownstein CD, Simões TR, Caldwell MW, Lee MSY, Meyer DL, Scarpetta SG. The affinities of the Late Triassic Cryptovaranoides and the age of crown squamates. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230968. [PMID: 37830017 PMCID: PMC10565374 DOI: 10.1098/rsos.230968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023]
Abstract
Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlanius from the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30-65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoides and other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoides as a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.
Collapse
Affiliation(s)
- Chase D. Brownstein
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Stamford Museum and Nature Center, Stamford, CT 06903, USA
| | - Tiago R. Simões
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michael W. Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
- Earth Sciences Section, South Australian Museum, North Terrace, Adelaide 5000, Australia
| | - Dalton L. Meyer
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA
| | - Simon G. Scarpetta
- Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
8
|
Laboury A, Scheyer TM, Klein N, Stubbs TL, Fischer V. High phenotypic plasticity at the dawn of the eosauropterygian radiation. PeerJ 2023; 11:e15776. [PMID: 37671356 PMCID: PMC10476616 DOI: 10.7717/peerj.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 09/07/2023] Open
Abstract
The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals.
Collapse
Affiliation(s)
- Antoine Laboury
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| | | | - Nicole Klein
- Institute of Geosciences, Paleontology, University of Bonn, Bonn, Germany
| | - Thomas L. Stubbs
- School of Life, Health & Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Valentin Fischer
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| |
Collapse
|
9
|
Klein N, Sander PM, Liu J, Druckenmiller P, Metz ET, Kelley NP, Scheyer TM. Comparative bone histology of two thalattosaurians (Diapsida: Thalattosauria): Askeptosaurus italicus from the Alpine Triassic (Middle Triassic) and a Thalattosauroidea indet. from the Carnian of Oregon (Late Triassic). SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:15. [PMID: 37601161 PMCID: PMC10432342 DOI: 10.1186/s13358-023-00277-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023]
Abstract
Here, we present the first bone histological and microanatomical study of thalattosaurians, an enigmatic group among Triassic marine reptiles. Two taxa of thalattosaurians, the askeptosauroid Askeptosaurus italicus and one as yet undescribed thalattosauroid, are examined. Both taxa have a rather different microanatomy, tissue type, and growth pattern. Askeptosaurus italicus from the late Anisian middle Besano Formation of the southern Alpine Triassic shows very compact tissue in vertebrae, rib, a gastralium, and femora, and all bones are without medullary cavities. The tissue shows moderate to low vascularization, dominated by highly organized and very coarse parallel-fibred bone, resembling interwoven tissue. Vascularization is dominated by simple longitudinal vascular canals, except for the larger femur of Askeptosaurus, where simple vascular canals dominate in a radial arrangement. Growth marks stratify the cortex of femora. The vertebrae and humeri from the undescribed thalattosauroid from the late Carnian of Oregon have primary and secondary cancellous bone, resulting in an overall low bone compactness. Two dorsal vertebral centra show dominantly secondary trabeculae, whereas a caudal vertebral centrum shows much primary trabecular bone, globuli ossei, and cartilage, indicating an earlier ontogenetic stage of the specimens or paedomorphosis. The humeri of the thalattosauroid show large, simple vascular canals that are dominantly radially oriented in a scaffold of woven and loosely organized parallel-fibred tissue. Few of the simple vascular canals are thinly but only incompletely lined by parallel-fibered tissue. In the Oregon material, changes in growth rate are only indicated by changes in vascular organization but no distinct growth marks were identified. The compact bone of Askeptosaurus is best comparable to some pachypleurosaurs, whereas its combination of tissue and vascularity is similar to eosauropterygians in general, except for the coarse nature of its parallel-fibred tissue. The cancellous bone of the Oregon thalattosauroid resembles what is documented in ichthyosaurs and plesiosaurs. However, in contrast to these its tissue does not consist of fibro-lamellar bone type. Tissue types of both thalattosaurian taxa indicate rather different growth rates and growth patterns, associated with different life history strategies. The microanatomy reflects different life styles that fit to the different environments in which they had been found (intraplatform basin vs. open marine). Both thalattosaurian taxa differ from each other but in sum also from all other marine reptile taxa studied so far. Thalattosaurian bone histology documents once more that bone histology provides for certain groups (i.e., Triassic Diapsida) only a poor phylogenetic signal and is more influenced by exogenous factors. Differences in lifestyle, life history traits, and growth rate and pattern enabled all these Triassic marine reptiles to live contemporaneously in the same habitat managing to avoid substantial competition.
Collapse
Affiliation(s)
- N. Klein
- Department of Palaeontology, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
- Department of Palaeontology, Institute of Geosciences, University of Bonn, Nußallee 8, 53115 Bonn, Germany
| | - P. M. Sander
- Department of Palaeontology, Institute of Geosciences, University of Bonn, Nußallee 8, 53115 Bonn, Germany
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 China
| | - J. Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 China
| | - P. Druckenmiller
- University of Alaska Museum, 1962 Yukon Dr., Fairbanks, AK 99775 USA
- Department of Geosciences, University of Alaska Fairbanks, 1930 Yukon Dr., Fairbanks, AK 99775 USA
| | - E. T. Metz
- Museum of the Rockies, Montana State University, 600 W Kagy Blvd., Bozeman, MT 59717 USA
| | - N. P. Kelley
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240 USA
| | - T. M. Scheyer
- Department of Palaeontology, University of Zurich, Karl Schmid-Strasse 4, 8006 Zurich, Switzerland
| |
Collapse
|
10
|
Spiekman SNF, Mujal E. Decapitation in the long-necked Triassic marine reptile Tanystropheus. Curr Biol 2023:S0960-9822(23)00475-X. [PMID: 37343555 DOI: 10.1016/j.cub.2023.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/23/2023]
Abstract
Extreme neck elongation was a common evolutionary strategy among Mesozoic marine reptiles, occurring independently in several lineages1,2. Despite its evolutionary success, such an elongate neck might have been particularly susceptible to predation1, but direct evidence for this possibility has been lacking. Composed of only 13 hyperelongate vertebrae and associated strut-like ribs, the configuration of the long neck of the Triassic archosauromorph Tanystropheus is unique among tetrapods. It was probably stiffened and used to catch prey through an ambush-strategy2. Here, we show that the neck was completely severed in two Tanystropheus specimens (Figure 1), most likely due to a predatory attack, providing vivid evidence of predator-prey interactions among Mesozoic marine reptiles that are rarely preserved in the fossil record. The recurring incidence of decapitation suggests that the elongate neck was a functional weak spot in Tanystropheus, and possibly the long-necked marine reptile bauplan more generally.
Collapse
Affiliation(s)
| | - Eudald Mujal
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, D-70191, Germany; Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Cerdanyola del Vallès, Catalonia, E-08193, Spain.
| |
Collapse
|
11
|
Modeling of the respiratory system of the long-necked Triassic reptile Tanystropheus (Archosauromorpha). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:55. [DOI: 10.1007/s00114-022-01824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
12
|
de Bakker MAG, van der Vos W, de Jager K, Chung WY, Fowler DA, Dondorp E, Spiekman SNF, Chew KY, Xie B, Jiménez R, Bickelmann C, Kuratani S, Blazek R, Kondrashov P, Renfree MB, Richardson MK. Selection on phalanx development in the evolution of the bird wing. Mol Biol Evol 2021; 38:4222-4237. [PMID: 34164688 PMCID: PMC8476175 DOI: 10.1093/molbev/msab150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/03/2021] [Indexed: 11/12/2022] Open
Abstract
The frameshift hypothesis is a widely-accepted model of bird wing evolution. This hypothesis postulates a shift in positional values, or molecular-developmental identity, that caused a change in digit phenotype. The hypothesis synthesised developmental and palaeontological data on wing digit homology. The 'most anterior digit' (MAD) hypothesis presents an alternative view based on changes in transcriptional regulation in the limb. The molecular evidence for both hypotheses is that the most anterior digit expresses Hoxd13 but not Hoxd11 and Hoxd12. This digit I 'signature' is thought to characterise all amniotes. Here, we studied Hoxd expression patterns in a phylogenetic sample of 18 amniotes. Instead of a conserved molecular signature in digit I, we find wide variation of Hoxd11, Hoxd12 and Hoxd13 expression in digit I. Patterns of apoptosis, and Sox9 expression, a marker of the phalanx-forming region, suggest that phalanges were lost from wing digit IV because of early arrest of the phalanx-forming region followed by cell death. Finally, we show that multiple amniote lineages lost phalanges with no frameshift. Our findings suggest that the bird wing evolved by targeted loss of phalanges under selection. Consistent with our view, some recent phylogenies based on dinosaur fossils eliminate the need to postulate a frameshift in the first place. We suggest that the phenotype of the Archaeopteryx lithographica wing is also consistent with phalanx loss. More broadly, our results support a gradualist model of evolution based on tinkering with developmental gene expression.
Collapse
Affiliation(s)
- Merijn A G de Bakker
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Wessel van der Vos
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Kaylah de Jager
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Wing Yu Chung
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Donald A Fowler
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Esther Dondorp
- Naturalis Biodiversity Center, 2300 RA Leiden, PO Box 9517, The Netherlands
| | - Stephan N F Spiekman
- Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Keng Yih Chew
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Bing Xie
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Lab 127 Centro de Investigación Biomédica, Avenida del Conocimiento S/N, 1810018016 Armilla, Granada, Spain
| | - Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,RIKEN Cluster for Pioneering Research, Kobe, Japan
| | - Radim Blazek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna, 603 65, Czech Republic 8, Brno
| | - Peter Kondrashov
- Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, 63501, MO USA)
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Michael K Richardson
- Animal Science & Health, Institute of Biology Leiden (IBL), Leiden University, 2333BE Leiden, the Netherlands Sylviusweg 72
| |
Collapse
|
13
|
Spiekman SN, Fraser NC, Scheyer TM. A new phylogenetic hypothesis of Tanystropheidae (Diapsida, Archosauromorpha) and other "protorosaurs", and its implications for the early evolution of stem archosaurs. PeerJ 2021; 9:e11143. [PMID: 33986981 PMCID: PMC8101476 DOI: 10.7717/peerj.11143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The historical clade "Protorosauria" represents an important group of archosauromorph reptiles that had a wide geographic distribution between the Late Permian and Late Triassic. "Protorosaurs" are characterized by their long necks, which are epitomized in the genus Tanystropheus and in Dinocephalosaurus orientalis. Recent phylogenetic analyses have indicated that "Protorosauria" is a polyphyletic clade, but the exact relationships of the various "protorosaur" taxa within the archosauromorph lineage is currently uncertain. Several taxa, although represented by relatively complete material, have previously not been assessed phylogenetically. We present a new phylogenetic hypothesis that comprises a wide range of archosauromorphs, including the most exhaustive sample of "protorosaurs" to date and several "protorosaur" taxa from the eastern Tethys margin that have not been included in any previous analysis. The polyphyly of "Protorosauria" is confirmed and therefore we suggest the usage of this term should be abandoned. Tanystropheidae is recovered as a monophyletic group and the Chinese taxa Dinocephalosaurus orientalis and Pectodens zhenyuensis form a new archosauromorph clade, Dinocephalosauridae, which is closely related to Tanystropheidae. The well-known crocopod and former "protorosaur" Prolacerta broomi is considerably less closely related to Archosauriformes than was previously considered.
Collapse
Affiliation(s)
| | | | - Torsten M. Scheyer
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| |
Collapse
|
14
|
Spiekman SNF, Neenan JM, Fraser NC, Fernandez V, Rieppel O, Nosotti S, Scheyer TM. The cranial morphology of Tanystropheus hydroides (Tanystropheidae, Archosauromorpha) as revealed by synchrotron microtomography. PeerJ 2020; 8:e10299. [PMID: 33240633 PMCID: PMC7682440 DOI: 10.7717/peerj.10299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
The postcranial morphology of the extremely long-necked Tanystropheus hydroides is well-known, but observations of skull morphology were previously limited due to compression of the known specimens. Here we provide a detailed description of the skull of PIMUZ T 2790, including a partial endocast and endosseous labyrinth, based on synchrotron microtomographic data, and compare its morphology to that of other early Archosauromorpha. In many features, such as the wide and flattened snout and the configuration of the temporal and palatal regions, Tanystropheus hydroides differs strongly from other early archosauromorphs. The braincase possesses a combination of derived archosaur traits, such as the presence of a laterosphenoid and the ossification of the lateral wall of the braincase, but also differs from archosauriforms in the morphology of the ventral ramus of the opisthotic, the horizontal orientation of the parabasisphenoid, and the absence of a clearly defined crista prootica. Tanystropheus hydroides was a ram-feeder that likely caught its prey through a laterally directed snapping bite. Although the cranial morphology of other archosauromorph lineages is relatively well-represented, the skulls of most tanystropheid taxa remain poorly understood due to compressed and often fragmentary specimens. The recent descriptions of the skulls of Macrocnemus bassanii and now Tanystropheus hydroides reveal a large cranial disparity in the clade, reflecting wide ecological diversity, and highlighting the importance of non-archosauriform Archosauromorpha to both terrestrial and aquatic ecosystems during the Triassic.
Collapse
Affiliation(s)
- Stephan N F Spiekman
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| | | | | | - Vincent Fernandez
- European Synchrotron Radiation Facility, Grenoble, France.,The Natural History Museum, London, UK
| | | | | | - Torsten M Scheyer
- University of Zurich, Palaeontological Institute and Museum, Zurich, Switzerland
| |
Collapse
|