1
|
Balios VA, Fischer K, Bawin T, Krause K. One organ to infect them all: the Cuscuta haustorium. ANNALS OF BOTANY 2025; 135:823-840. [PMID: 39673400 PMCID: PMC12064427 DOI: 10.1093/aob/mcae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Research on the parasitic plant genus Cuscuta has flourished since the genomes of several of its species were published. Most of the research revolves around the iconic infection organ that secures the parasite's sustenance: the haustorium. Interest in understanding the structure-function-regulation relationship of the haustorium is based as much on the wish to find ways to keep the parasite under control as on the opportunities it offers to shed light on various open questions in plant biology. SCOPE This review will briefly introduce parasitism among plants, using the genus Cuscuta as the main example, before presenting its haustorium alongside the terminology that is used to describe its architecture. Possible evolutionary origins of this parasitic organ are presented. The haustorium is then followed from its initiation to maturity with regard to the molecular landscape that accompanies the morphological changes and in light of the challenges it must overcome before gaining access to the vascular cells of its hosts. The fact that Cuscuta has an unusually broad host range stresses how efficient its infection strategy is. Therefore, particular consideration will be given in the final section to a comparison with the process of grafting, being the only other type of tissue connection that involves interspecific vascular continuity. CONCLUSIONS Studies on Cuscuta haustoriogenesis have revealed many molecular details that explain its success. They have also unearthed some mysteries that wait to be solved. With a better understanding of the complexity of the infection with its combination of universal as well as host-specific elements that allow Cuscuta to parasitize on a wide range of host plant species, we may be many steps closer to not only containing the parasite better but also exploiting its tricks where they can serve us in the quest of producing more and better food and fodder.
Collapse
Affiliation(s)
- Vasili A Balios
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Zhao X, Liu Y, Yuan B, Cao Z, Yang Y, He C, Chan KC, Xiao S, Lin H, Fang Q, Ye G, Ye X. Genomic signatures associated with the evolutionary loss of egg yolk in parasitoid wasps. Proc Natl Acad Sci U S A 2025; 122:e2422292122. [PMID: 40232796 PMCID: PMC12036997 DOI: 10.1073/pnas.2422292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Trait regression and loss have occurred repeatedly in numerous lineages in response to environmental changes. In parasitoid wasps, a megadiverse group of hymenopteran insects, yolk protein reduction or loss has been observed in many species, likely linked to the transition from ectoparasitism to endoparasitism. However, the genetic basis of this trait and the impact of its loss on genome evolution remain poorly understood. Here, we performed a comparative genomic analysis of 64 hymenopteran insects. The conserved insect yolk protein gene vitellogenin (Vg) underwent five independent loss events in four families, involving 23 of the analyzed endoparasitoid species. Whole-genome alignment suggested that Vg loss occurred during genome rearrangement events. Analysis of Vg receptor gene (VgR) loss, selection, and structural variation in lineages lacking Vg demonstrated functional biases in the patterns of gene loss. The ectoparasitism to endoparasitism transition did not appear to be the primary driver of Vg loss or the subsequent VgR evolution. Together, these findings reveal the genomic changes underlying a unique trait loss in parasitoid wasps. More broadly, this study enhances our understanding of yolk protein loss evolution outside the class Mammalia, highlighting a potential evolutionary trend arising from the availability of an alternative nutrient source for embryonic development.
Collapse
Affiliation(s)
- Xianxin Zhao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yuanyuan Liu
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Bo Yuan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zhichao Cao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Chun He
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Kevin C. Chan
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou215123, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai201203, China
| | - Shan Xiao
- Ningbo Academy of Agricultural Science, Ningbo315100, China
| | - Haiwei Lin
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang Agriculture and Forestry University, Hangzhou311300, China
- Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang Agriculture and Forestry University, Hangzhou311300, China
| |
Collapse
|
3
|
Fischer K, Jordbræk SV, Olsen S, Bockwoldt M, Schwacke R, Usadel B, Krause K. Taken to extremes: Loss of plastid rpl32 in Streptophyta and Cuscuta's unconventional solution for its replacement. Mol Phylogenet Evol 2025; 204:108243. [PMID: 39581358 DOI: 10.1016/j.ympev.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
The evolution of plant genomes is riddled with exchanges of genetic material within one plant (endosymbiotic gene transfer/EGT) and between unrelated plants (horizontal gene transfer/HGT). These exchanges have left their marks on plant genomes. Parasitic plants with their special evolutionary niche provide ample examples for these processes because they are under a reduced evolutionary pressure to maintain autotrophy and thus to conserve their plastid genomes. On the other hand, the close physical connections with different hosts enabled them to acquire genetic material from other plants. Based on an analysis of an extensive dataset including the parasite Cuscuta campestris and other parasitic plant species, we identified a unique evolutionary history of rpl32 genes coding for an essential plastid ribosomal subunit in Cuscuta. Our analysis suggests that the gene was most likely sequestered by HGT from a member of the Oxalidales order serving as host to an ancestor of the Cuscuta subgenus Grammica. Oxalidales had suffered an ancestral EGT of rpl32 predating the evolution of the genus Cuscuta. The HGT subsequently relieved the plastid rpl32 from its evolutionary constraint and led to its loss from the plastid genome. The HGT-based acquisition in Cuscuta is supported by a high sequence similarity of the mature L32 protein between species of the subgenus Grammica and representatives of the Oxalidales, and by a surprisingly conserved transit peptide, whose functionality in Cuscuta was experimentally verified. The findings are discussed in view of an overall pattern of EGT events for plastid ribosomal subunits in Streptophyta.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mathias Bockwoldt
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rainer Schwacke
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Björn Usadel
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), CEPLAS, Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany; Faculty of Mathematics and Natural Sciences, Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Ceriotti LF, Gatica Soria LM, Guzman S, Sato HA, Tovar Luque E, Gonzalez MA, Sanchez-Puerta MV. The evolution of the plastid genomes in the holoparasitic Balanophoraceae. Proc Biol Sci 2025; 292:20242011. [PMID: 40132625 PMCID: PMC11936683 DOI: 10.1098/rspb.2024.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
The independent transition to a heterotrophic lifestyle in plants drove remarkably convergent evolutionary trajectories, characterized by morphological modifications and reductions in their plastomes. The characteristics of the minimum plastome required for survival, if they exist, remain a topic of debate. The holoparasitic family Balanophoraceae was initially presumed to have entirely lost their plastids, however, recent reports revealed the presence of reduced and aberrant plastids with odd genomes. Among the outstanding features of these genomes are the highest nucleotide composition bias across the tree of life and the only two genetic code changes ever recorded among plants. In this study, we assembled the plastomes from five genera, four of which had never been studied. Major common features include extremely high AT content, the lack of a typical quadripartite structure and extensive size reduction due to gene elimination and genome compaction. The family exhibits multiple gene and intron losses, and a broad range of scenarios regarding the evolution of the plastid trnE, a gene considered essential because of its dual function in tetrapyrrole biosynthesis and translation within the plastid. In addition, phylogenetic analyses suggest that the genus Scybalium is not monophyletic. An evolutionary model for the plastomes of the Balanophoraceae is proposed.
Collapse
Affiliation(s)
- Luis Federico Ceriotti
- IBAM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Leonardo Martin Gatica Soria
- IBAM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Santiago Guzman
- Semillero de Investigación en Plantas y Afines-PHYTOS, Grupo de Investigación en Biodiversidad y Recursos Naturales-BIONAT, Manizales, Colombia
- Herbario de la Universidad de Caldas-FAUC, Manizales, Colombia
| | - Hector Arnaldo Sato
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, San Salvador de Jujuy, Jujuy, Argentina
| | - Eduardo Tovar Luque
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Mailyn A. Gonzalez
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - M. Virginia Sanchez-Puerta
- IBAM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Claude SJ, Kamra K, Jung J, Kim HO, Kim JH. Elucidating the evolutionary dynamics of parasitism in Cuscuta: in-depth phylogenetic reconstruction and extensive plastomes reduction. BMC Genomics 2025; 26:137. [PMID: 39939920 PMCID: PMC11823189 DOI: 10.1186/s12864-025-11324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The genus Cuscuta L. (Convolvulaceae), commonly known as dodder, is a holoparasite plant that relies on host plants for nutrition, leading to significant genomic changes, particularly in plastomes. This dependency has led to significant reductions and modifications in their plastomes compared to autotrophic plants. In contrast to the well-conserved plastomes of photosynthetic plants, Cuscuta exhibits substantial genomic reductions reflecting the loss of photosynthetic functions and associated genes. RESULT This study examines eight plastomes within Cuscuta and reconstructs the phylogenetic relationships among 40 Cuscuta taxa using five other genera as an outgroup. The size of plastid genome varies significantly, with the smallest being 60 kb and the largest 121 kb, highlighting extensive genomic reduction. In special cases, the subgenera Cuscuta exhibit the loss of inverted repeats, distinguishing from them other subge within the Cuscuta genus. This reduction is most pronounced in genes related to photosynthesis, such as atp, pet, psa, psb, and ycf genes, particularly in the subg. Grammica (Lour.) Peter. The study also notes the frequent and independent loss of the plastid genes infA, rpl23, rpl32, rps15, and rps16 across various angiosperm lineages, often involving transfer to the nuclear genome. In parasitic plants like Cuscuta, the ndh genes, crucial for photosynthesis, are often lost. The study also highlights that in the subg. Grammica, the matK and rpo genes, along with trnR-ACG genes, are lost in parallel, indicating that these parasitic plants do not need matK and rpo genes after the loss of ndh genes for survival. Analysis of selective relaxation pressure on plastid genes shows a reductive trend, with genes such as atp, pet, psa, psb, rpo, and ycf progressively becoming pseudogenes over time, with housekeeping genes like rpl and rps expected to follow. However, the pseudogenization process is specific to the subg. Grammica, Pachystigma (Engelm.) Baker & C.H.Wright, and Cuscuta, rather than in the subg. Monogynella (Des Moul.) Peter, Engl. & Prantl (ancient clade species). CONCLUSION The study of Cuscuta plastomes reveals the profound impact of parasitism on genome evolution, highlighting the complex interplay of gene retention and loss through phylogenomic approaches. This research enriches our understanding of plant genome evolution and the intricate host-parasite relationships. It also sheds light on the evolutionary history and genomic adaptations of Cuscuta, illustrating the diverse strategies enabling subg. Grammica, Pachystigma, Cuscuta, and Monogynella thrive as parasitic species. These findings provide valuable insights into the molecular mechanisms underlying parasitism and its impact on plastid genome organization.
Collapse
Affiliation(s)
- Sivagami-Jean Claude
- Department of Life Sciences, Gachon University, 1342, Seongnamdaero, Seongnam-Si, Republic of Korea
| | - Kashish Kamra
- Department of Life Sciences, Gachon University, 1342, Seongnamdaero, Seongnam-Si, Republic of Korea
| | - Joonhyung Jung
- Department of Life Sciences, Gachon University, 1342, Seongnamdaero, Seongnam-Si, Republic of Korea
- Division of Forest Biodiversity, Korea National Arboretum, 509, Gwangneungsumogwon-Ro, Pocheon-Si, Republic of Korea
| | - Hye One Kim
- Department of Life Sciences, Gachon University, 1342, Seongnamdaero, Seongnam-Si, Republic of Korea
| | - Joo-Hwan Kim
- Department of Life Sciences, Gachon University, 1342, Seongnamdaero, Seongnam-Si, Republic of Korea.
| |
Collapse
|
6
|
Long EM, Stitzer MC, Monier B, Schulz AJ, Romay MC, Robbins KR, Buckler ES. Evolutionary signatures of the erosion of sexual reproduction genes in domesticated cassava (Manihot esculenta). G3 (BETHESDA, MD.) 2025; 15:jkae282. [PMID: 39673428 PMCID: PMC11797036 DOI: 10.1093/g3journal/jkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima). Expanding upon preliminary draft genomes, we annotated 7 long-read genome assemblies and aligned a total of 52 genomes, to analyze selection across the genome and the phylogeny. Through this comparative genomic approach, we identified 48 genes under relaxed selection in cassava. Notably, we discovered an overrepresentation of floral expressed genes, especially focused at 6 pollen-related genes. Our results indicate that domestication and a transition to clonal propagation have reduced selection pressures on sexually reproductive functions in cassava leading to an accumulation of mutations in pollen-related genes. This relaxed selection and the genome-wide deleterious mutations responsible for inbreeding depression are potential targets for improving cassava breeding, where the generation of new varieties relies on recombining favorable alleles through sexual reproduction.
Collapse
Affiliation(s)
- Evan M Long
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Aimee J Schulz
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maria Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Kelly R Robbins
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley, Center for Agriculture and Health, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Wicaksono A, Meitha K, Wan KL, Mat Isa MN, Parikesit AA, Molina J. Hairpin in a haystack: In silico identification and characterization of plant-conserved microRNA in Rafflesiaceae. Open Life Sci 2025; 20:20221033. [PMID: 39881826 PMCID: PMC11773456 DOI: 10.1515/biol-2022-1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/31/2025] Open
Abstract
Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine Tetrastigma (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based in silico approaches to characterize micro-RNAs (miRNAs) expressed by Sapria himalayana and Rafflesia cantleyi from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Genomik Solidaritas Indonesia (GSI) Lab, Jl. Sultan Agung no. 29, Guntur, Jakarta, 12980, Indonesia
- Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
| | - Karlia Meitha
- Research group of Genetics and Molecular Biology, School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
| | - Kiew-Lian Wan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Noor Mat Isa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jl. Bangi, Selangor, 43000, Malaysia
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav. 88, Jakarta, 13210, Indonesia
| | - Jeanmaire Molina
- Department of Biology, Pace University, One Pace Plaza, 3rd Floor, New York, 10038, NY, United States of America
| |
Collapse
|
8
|
Zainali N, Alizadeh H, Delavault P. Gene silencing in broomrapes and other parasitic plants of the Orobanchaceae family: mechanisms, considerations, and future directions. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:243-261. [PMID: 39289888 DOI: 10.1093/jxb/erae388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Holoparasites of the Orobanchaceae family are devastating pests causing severe damage to many crop species, and are nearly impossible to control with conventional methods. During the past few decades, RNAi has been seen as a promising approach to control various crop pests. The exchange of small RNAs (sRNAs) between crops and parasitic plants has been documented, indicating potential for the development of methods to protect them via the delivery of the sRNAs to parasites, a method called host-induced gene silencing (HIGS). Here we describe various approaches used for gene silencing in plants and suggest solutions to improve the long-distance movement of the silencing triggers to increase the efficiency of HIGS in parasitic plants. We also investigate the important biological processes during the life cycle of the parasites, with a focus on broomrape species, providing several appropriate target genes that can be used, in particular, in multiplex gene silencing experiments. We also touch on how the application of nanoparticles can improve the stability and delivery of the silencing triggers, highlighting its potential for control of parasitic plants. Finally, suggestions for further research and possible directions for RNAi in parasitic plants are provided.
Collapse
Affiliation(s)
- Nariman Zainali
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Philippe Delavault
- Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, CNRS, F-44000 Nantes, France
| |
Collapse
|
9
|
DeTar RA, Chustecki JM, Martinez-Hottovy A, Ceriotti LF, Broz AK, Lou X, Sanchez-Puerta MV, Elowsky C, Christensen AC, Sloan DB. Photosynthetic demands on translational machinery drive retention of redundant tRNA metabolism in plant organelles. Proc Natl Acad Sci U S A 2024; 121:e2421485121. [PMID: 39693336 DOI: 10.1073/pnas.2421485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate. These questions are particularly interesting in plants because translation machinery, including aminoacyl-transfer RNA (tRNA) synthetases (aaRS), is often dual-targeted to the plastids and mitochondria. These organelles have different functions, with much higher rates of translation in plastids to supply the abundant, rapid-turnover proteins required for photosynthesis. Previous studies have indicated that plant organellar aaRS evolve more slowly compared to mitochondrial aaRS in eukaryotes that lack plastids. Thus, we investigated the evolution of nuclear-encoded organellar and cytosolic aaRS and tRNA maturation enzymes across a broad sampling of angiosperms, including nonphotosynthetic (heterotrophic) plant species with reduced plastid gene expression, to test the hypothesis that translational demands associated with photosynthesis constrain the evolution of enzymes involved in organellar tRNA metabolism. Remarkably, heterotrophic plants exhibited wholesale loss of many organelle-targeted aaRS and other enzymes, even though translation still occurs in their mitochondria and plastids. These losses were often accompanied by apparent retargeting of cytosolic enzymes and tRNAs to the organelles, sometimes preserving aaRS-tRNA charging relationships but other times creating surprising mismatches between cytosolic aaRS and mitochondrial tRNA substrates. Our findings indicate that the presence of a photosynthetic plastid drives the retention of specialized systems for organellar tRNA metabolism.
Collapse
Affiliation(s)
- Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ana Martinez-Hottovy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Luis Federico Ceriotti
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Xiaorui Lou
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - M Virginia Sanchez-Puerta
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Chacras de Coria, Mendoza M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Ciudad de Mendoza, Mendoza M5502JMA, Argentina
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Alan C Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
10
|
Garcia LE, Sanchez-Puerta MV. Mitochondrial Splicing Efficiency Is Lower in Holoparasites Than in Free-Living Plants. PLANT & CELL PHYSIOLOGY 2024; 65:2018-2029. [PMID: 39540883 DOI: 10.1093/pcp/pcae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Mitochondria play a crucial role in eukaryotic organisms, housing their own genome with genes vital for oxidative phosphorylation. Coordination between nuclear and mitochondrial genomes is pivotal for organelle gene expression. Splicing, editing and processing of mitochondrial transcripts are regulated by nuclear-encoded factors. Splicing efficiency (SEf) of the many group II introns present in plant mitochondrial genes is critical for mitochondrial function since a splicing defect or splicing deficiency can severely impact plant growth and development. This study investigates SEf in free-living and holoparasitic plants, focusing on 25 group II introns from 15 angiosperm species. Our comparative analyses reveal distinctive splicing patterns with holoparasites exhibiting significantly lower SEf, potentially linked to their unique evolutionary trajectory. Given the preponderance of horizontal gene transfer (HGT) in parasitic plants, we investigated the effect of HGT on SEf, such as the presence of foreign introns or foreign nuclear-encoded splicing factors. Contrary to expectations, the SEf reductions do not correlate with HGT events, suggesting that other factors are at play, such as the loss of photosynthesis or the transition to a holoparasitic lifestyle. The findings of this study broaden our understanding of the molecular evolution in parasitic plants and shed light on the multifaceted factors influencing organelle gene expression.
Collapse
Affiliation(s)
- Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Facultad de Ciencias Agrarias, Chacras de Coria M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Facultad de Ciencias Agrarias, Chacras de Coria M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza M5502JMA, Argentina
| |
Collapse
|
11
|
Guo X, Wang H, Lin D, Wang Y, Jin X. Cytonuclear evolution in fully heterotrophic plants: lifestyles and gene function determine scenarios. BMC PLANT BIOLOGY 2024; 24:989. [PMID: 39428472 PMCID: PMC11492565 DOI: 10.1186/s12870-024-05702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Evidence shows that full mycoheterotrophs and holoparasites often have reduced plastid genomes with rampant gene loss, elevated substitution rates, and deeply altered to conventional evolution in mitochondrial genomes, but mechanisms of cytonuclear evolution is unknown. Endoparasitic Sapria himalayana and mycoheterotrophic Gastrodia and Platanthera guangdongensis represent different heterotrophic types, providing a basis to illustrate cytonuclear evolution. Here, we focused on nuclear-encoded plastid / mitochondrial (N-pt / mt) -targeting protein complexes, including caseinolytic protease (ClpP), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), oxidative phosphorylation system (OXPHOS), DNA recombination, replication, and repair (DNA-RRR) system, and pentatricopeptide repeat (PPR) proteins, to identify evolutionary drivers for cytonuclear interaction. RESULTS The severity of gene loss of N-pt PPR and pt-RRR genes was positively associated with increased degree of heterotrophy in full mycoheterotrophs and S. himalayana, while N-mt PPR and mt-RRR genes were retained. Substitution rates of organellar and nuclear genes encoding N-pt/mt subunits in protein complexes were evaluated, cytonuclear coevolution was identified in S. himalayana, whereas disproportionate rates of evolution were observed in the OXPHOS complex in full mycoheterotrophs, only slight accelerations in substitution rates were identified in N-mt genes of full mycoheterotrophs. CONCLUSIONS Nuclear compensatory evolution was identified in protein complexes encoded by plastid and N-pt genes. Selection shaping codon preferences, functional constraint, mt-RRR gene regulation, and post-transcriptional regulation of PPR genes all facilitate mito-nuclear evolution. Our study enriches our understanding of genomic coevolution scenarios in fully heterotrophic plants.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
12
|
Ishida JK, Costa EC. What we know so far and what we can expect next: A molecular investigation of plant parasitism. Genet Mol Biol 2024; 47Suppl 1:e20240051. [PMID: 39348487 PMCID: PMC11441458 DOI: 10.1590/1678-4685-gmb-2024-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
The review explores parasitic plants' evolutionary success and adaptability, highlighting their widespread occurrence and emphasizing the role of an invasive organ called haustorium in nutrient acquisition from hosts. It discusses the genetic and physiological adaptations that facilitate parasitism, including horizontal gene transfer, and the impact of environmental factors like climate change on these relationships. It addresses the need for further research into parasitic plants' genomes and interactions with their hosts to better predict environmental changes' impacts.
Collapse
Affiliation(s)
- Juliane Karine Ishida
- Universidade Federal de Minas Gerias (UFMG), Instituto de Ciências Biológicas, Departamento de Botânica, Belo Horizonte, MG, Brazil
| | - Elaine Cotrim Costa
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
13
|
Liu T, Liu Z, Fan J, Yuan Y, Liu H, Xian W, Xiang S, Yang X, Liu Y, Liu S, Zhang M, Jiao Y, Cheng S, Doyle JJ, Xie F, Li J, Tian Z. Loss of Lateral suppressor gene is associated with evolution of root nodule symbiosis in Leguminosae. Genome Biol 2024; 25:250. [PMID: 39350172 PMCID: PMC11441212 DOI: 10.1186/s13059-024-03393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.
Collapse
Affiliation(s)
- Tengfei Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shi-Jiazhuang, China
| | - Jingwei Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Yuan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shuaiying Xiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shulin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Min Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jeff J Doyle
- School of Integrative Plant Science, Sections of Plant Biology and Plant Breeding & Genetics, Cornell University, Ithaca, NY, USA.
| | - Fang Xie
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| | - Zhixi Tian
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Yazhouwan National Laboratory, Sanya, Hainan, China.
| |
Collapse
|
14
|
Fang L, Li M, Zhang J, Jia C, Qiang Y, He X, Liu T, Zhou Q, Luo D, Han Y, Li Z, Liu W, Yang Y, Liu J, Liu Z. Chromosome-level genome assembly of Pedicularis kansuensis illuminates genome evolution of facultative parasitic plant. Mol Ecol Resour 2024; 24:e13966. [PMID: 38695851 DOI: 10.1111/1755-0998.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.
Collapse
Affiliation(s)
- Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jia Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuqing Qiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuling Han
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Tang L, Wang T, Hou L, Zhang G, Deng M, Guo X, Ji Y. Comparative and phylogenetic analyses of Loranthaceae plastomes provide insights into the evolutionary trajectories of plastome degradation in hemiparasitic plants. BMC PLANT BIOLOGY 2024; 24:406. [PMID: 38750463 PMCID: PMC11097404 DOI: 10.1186/s12870-024-05094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.
Collapse
Affiliation(s)
- Lilei Tang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tinglu Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangfei Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
17
|
Chen LQ, Li X, Yao X, Li DZ, Barrett C, dePamphilis CW, Yu WB. Variations and reduction of plastome are associated with the evolution of parasitism in Convolvulaceae. PLANT MOLECULAR BIOLOGY 2024; 114:40. [PMID: 38622367 DOI: 10.1007/s11103-024-01440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Parasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae. Our findings revealed nine types of structural variations and six types of inverted repeat (IR) boundary variations in the plastome of Convolvulaceae spp. These structural variations were associated with the shift of parasitic lifestyle, and IR boundary shift, as well as the abundance of long repeats. Overall, the degradation of Cuscuta plastome proceeded gradually, with one clade exhibiting an accelerated degradation rate. We observed five stages of gene loss in Cuscuta, including NAD(P)H complex → PEP complex → Photosynthesis-related → Ribosomal protein subunits → ATP synthase complex. Based on our results, we speculated that the shift of parasitic lifestyle in early divergent time promoted relaxed selection on plastomes, leading to the accumulation of microvariations, which ultimately resulted in the plastome reduction. This study provides new evidence towards a better understanding of plastomic evolution, variation, and reduction in the genus Cuscuta.
Collapse
Affiliation(s)
- Li-Qiong Chen
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Xin Li
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Division of BiologicalScience, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Xin Yao
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Craig Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, State College, Pennsylvania, 16802, USA
| | - Wen-Bin Yu
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
18
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Xie L, Gong X, Yang K, Huang Y, Zhang S, Shen L, Sun Y, Wu D, Ye C, Zhu QH, Fan L. Technology-enabled great leap in deciphering plant genomes. NATURE PLANTS 2024; 10:551-566. [PMID: 38509222 DOI: 10.1038/s41477-024-01655-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Plant genomes provide essential and vital basic resources for studying many aspects of plant biology and applications (for example, breeding). From 2000 to 2020, 1,144 genomes of 782 plant species were sequenced. In the past three years (2021-2023), 2,373 genomes of 1,031 plant species, including 793 newly sequenced species, have been assembled, representing a great leap. The 2,373 newly assembled genomes, of which 63 are telomere-to-telomere assemblies and 921 have been generated in pan-genome projects, cover the major phylogenetic clades. Substantial advances in read length, throughput, accuracy and cost-effectiveness have notably simplified the achievement of high-quality assemblies. Moreover, the development of multiple software tools using different algorithms offers the opportunity to generate more complete and complex assemblies. A database named N3: plants, genomes, technologies has been developed to accommodate the metadata associated with the 3,517 genomes that have been sequenced from 1,575 plant species since 2000. We also provide an outlook for emerging opportunities in plant genome sequencing.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Xiaojiao Gong
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Kun Yang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Yujie Huang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Shiyu Zhang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Leti Shen
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China
| | - Yanqing Sun
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, Australia
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou Bay, Shanya, China.
| |
Collapse
|
20
|
Shah S, Dougan KE, Chen Y, Lo R, Laird G, Fortuin MDA, Rai SK, Murigneux V, Bellantuono AJ, Rodriguez-Lanetty M, Bhattacharya D, Chan CX. Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates. THE ISME JOURNAL 2024; 18:wrae059. [PMID: 38655774 PMCID: PMC11114475 DOI: 10.1093/ismejo/wrae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gemma Laird
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Subash K Rai
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony J Bellantuono
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Mauricio Rodriguez-Lanetty
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
21
|
Raimondeau P, Bianconi ME, Pereira L, Parisod C, Christin PA, Dunning LT. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage. THE NEW PHYTOLOGIST 2023; 240:2072-2084. [PMID: 37793435 DOI: 10.1111/nph.19272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023]
Abstract
Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS/IRD/Université Toulouse 3, Toulouse, 31062, France
| | - Matheus E Bianconi
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, 1700, Switzerland
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Sanchez-Puerta MV, Ceriotti LF, Gatica-Soria LM, Roulet ME, Garcia LE, Sato HA. Invited Review Beyond parasitic convergence: unravelling the evolution of the organellar genomes in holoparasites. ANNALS OF BOTANY 2023; 132:909-928. [PMID: 37503831 PMCID: PMC10808021 DOI: 10.1093/aob/mcad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The molecular evolution of organellar genomes in angiosperms has been studied extensively, with some lineages, such as parasitic ones, displaying unique characteristics. Parasitism has emerged 12 times independently in angiosperm evolution. Holoparasitism is the most severe form of parasitism, and is found in ~10 % of parasitic angiosperms. Although a few holoparasitic species have been examined at the molecular level, most reports involve plastomes instead of mitogenomes. Parasitic plants establish vascular connections with their hosts through haustoria to obtain water and nutrients, which facilitates the exchange of genetic information, making them more susceptible to horizontal gene transfer (HGT). HGT is more prevalent in the mitochondria than in the chloroplast or nuclear compartments. SCOPE This review summarizes current knowledge on the plastid and mitochondrial genomes of holoparasitic angiosperms, compares the genomic features across the different lineages, and discusses their convergent evolutionary trajectories and distinctive features. We focused on Balanophoraceae (Santalales), which exhibits extraordinary traits in both their organelles. CONCLUSIONS Apart from morphological similarities, plastid genomes of holoparasitic plants also display other convergent features, such as rampant gene loss, biased nucleotide composition and accelerated evolutionary rates. In addition, the plastomes of Balanophoraceae have extremely low GC and gene content, and two unexpected changes in the genetic code. Limited data on the mitochondrial genomes of holoparasitic plants preclude thorough comparisons. Nonetheless, no obvious genomic features distinguish them from the mitochondria of free-living angiosperms, except for a higher incidence of HGT. HGT appears to be predominant in holoparasitic angiosperms with a long-lasting endophytic stage. Among the Balanophoraceae, mitochondrial genomes exhibit disparate evolutionary paths with notable levels of heteroplasmy in Rhopalocnemis and unprecedented levels of HGT in Lophophytum. Despite their differences, these Balanophoraceae share a multichromosomal mitogenome, a feature also found in a few free-living angiosperms.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - M Emilia Roulet
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA, Mendoza, Argentina
| | - Hector A Sato
- Facultad de Ciencias Agrarias, Cátedra de Botánica General–Herbario JUA, Alberdi 47, Universidad Nacional de Jujuy, 4600 Jujuy, Argentina
| |
Collapse
|
23
|
Chen X, Fang D, Xu Y, Duan K, Yoshida S, Yang S, Sahu SK, Fu H, Guang X, Liu M, Wu C, Liu Y, Mu W, Chen Y, Fan Y, Wang F, Peng S, Shi D, Wang Y, Yu R, Zhang W, Bai Y, Liu ZJ, Yan Q, Liu X, Xu X, Yang H, Wu J, Graham SW, Liu H. Balanophora genomes display massively convergent evolution with other extreme holoparasites and provide novel insights into parasite-host interactions. NATURE PLANTS 2023; 9:1627-1642. [PMID: 37735254 DOI: 10.1038/s41477-023-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 08/18/2023] [Indexed: 09/23/2023]
Abstract
Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Kunyu Duan
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shuai Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Hui Fu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanmin Guang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Chenyu Wu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yang Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shufeng Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Dishen Shi
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Runxian Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yuqing Bai
- Administrative Office of Wutong Mountain National Park, Shenzhen, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaoshun Yan
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Strikingly convergent genome alterations in two independently evolved holoparasites. NATURE PLANTS 2023; 9:1589-1590. [PMID: 37735256 DOI: 10.1038/s41477-023-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
|
25
|
Zhou S, Wei N, Jost M, Wanke S, Rees M, Liu Y, Zhou R. The Mitochondrial Genome of the Holoparasitic Plant Thonningia sanguinea Provides Insights into the Evolution of the Multichromosomal Structure. Genome Biol Evol 2023; 15:evad155. [PMID: 37603455 PMCID: PMC10476698 DOI: 10.1093/gbe/evad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Multichromosomal mitochondrial genome (mitogenome) structures have repeatedly evolved in many lineages of angiosperms. However, the underlying mechanism remains unclear. The mitogenomes of three genera of Balanophoraceae, namely Lophophytum, Ombrophytum, and Rhopalocnemis, have already been sequenced and assembled, all showing a highly multichromosomal structure, albeit with different genome and chromosome sizes. It is expected that characterization of additional lineages of this family may expand the knowledge of mitogenome diversity and provide insights into the evolution of the plant mitogenome structure and size. Here, we assembled and characterized the mitogenome of Thonningia sanguinea, which, together with Balanophora, forms a clade sister to the clade comprising Lophophytum, Ombrophytum, and Rhopalocnemis. The mitogenome of T. sanguinea possesses a multichromosomal structure of 18 circular chromosomes of 8.7-19.2 kb, with a total size of 246,247 bp. There are very limited shared regions and poor chromosomal correspondence between T. sanguinea and other Balanophoraceae species, suggesting frequent rearrangements and rapid sequence turnover. Numerous medium- and small-sized repeats were identified in the T. sanguinea mitogenome; however, no repeat-mediated recombination was detected, which was verified by Illumina reads mapping and PCR experiments. Intraspecific mitogenome variations in T. sanguinea are mostly insertions and deletions, some of which can lead to degradation of perfect repeats in one or two accessions. Based on the mitogenome features of T. sanguinea, we propose a mechanism to explain the evolution of a multichromosomal mitogenome from a master circle, which involves mutation in organellar DNA replication, recombination and repair genes, decrease of recombination, and repeat degradation.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Neng Wei
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Mathew Rees
- School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
- Royal Botanic Garden, Edinburgh, United Kingdom
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Cunha TJ, de Medeiros BAS, Lord A, Sørensen MV, Giribet G. Rampant loss of universal metazoan genes revealed by a chromosome-level genome assembly of the parasitic Nematomorpha. Curr Biol 2023; 33:3514-3521.e4. [PMID: 37467752 DOI: 10.1016/j.cub.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/21/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Parasites may manipulate host behavior to increase the odds of transmission or to reach the proper environment to complete their life cycle.1,2 Members of the phylum Nematomorpha (known as horsehair worms, hairworms, or Gordian worms) are large endoparasites that affect the behavior of their arthropod hosts. In terrestrial hosts, they cause erratic movements toward bodies of water,3,4,5,6 where the adult worm emerges from the host to find mates for reproduction. We present a chromosome-level genome assembly for the freshwater Acutogordius australiensis and a draft assembly for one of the few known marine species, Nectonema munidae. The assemblies span 201 Mbp and 213 Mbp in length (N50: 38 Mbp and 716 Kbp), respectively, and reveal four chromosomes in Acutogordius, which are largely rearranged compared to the inferred ancestral condition in animals. Both nematomorph genomes have a relatively low number of genes (11,114 and 8,717, respectively) and lack a high proportion (∼30%) of universal single-copy metazoan orthologs (BUSCO genes7). We demonstrate that missing genes are not an artifact of the assembly process, with the majority of missing orthologs being shared by the two independent assemblies. Missing BUSCOs are enriched for Gene Ontology (GO) terms associated with the organization of cilia and cell projections in other animals. We show that most cilium-related genes conserved across eukaryotes have been lost in Nematomorpha, providing a molecular basis for the suspected absence of ciliary structures in these animals.
Collapse
Affiliation(s)
- Tauana J Cunha
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA.
| | - Bruno A S de Medeiros
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Field Museum of Natural History, 1400 S DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Martin V Sørensen
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Fu G, Chen B, Pei X, Wang X, Wang X, Nazir MF, Wang J, Zhang X, Xing A, Pan Z, Lin Z, Peng Z, He S, Du X. Genome-wide analysis of the serine carboxypeptidase-like protein family reveals Ga09G1039 is involved in fiber elongation in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107759. [PMID: 37321040 DOI: 10.1016/j.plaphy.2023.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
The Gossypium is a model genus for understanding polyploidy and the evolutionary pattern of inheritance. This study aimed to investigate the characteristics of SCPLs in different cotton species and their role in fiber development. A total of 891 genes from one typical monocot and ten dicot species were naturally divided into three classes based on phylogenetic analysis. The SCPL gene family in cotton has undergone intense purifying selection with some functional variation. Segmental duplication and whole genome duplication were shown to be the two main reasons for the increase in the number of genes during cotton evolution. The identification of Gh_SCPL genes exhibiting differential expression in particular tissues or response to environmental stimuli provides a new measure for the in-depth characterization of selected genes of importance. Ga09G1039 was involved in the developmental process of fibers and ovules, and it is significantly different from proteins from other cotton species in terms of phylogenetic, gene structure, conserved protein motifs and tertiary structure. Overexpression of Ga09G1039 significantly increased the length of stem trichomes. Ga09G1039 may be a serine carboxypeptidase protein with hydrolase activity, according to functional region, prokaryotic expression, and western blotting analysis. The results provide a comprehensive overview of the genetic basis of SCPLs in Gossypium and further our knowledge in understanding the key aspects of SCPLs in cotton with their potential role in fiber development and stress resistance.
Collapse
Affiliation(s)
- Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jingjing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Aishuang Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430000, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
28
|
Mkala EM, Jost M, Dong X, Mwachala G, Musili PM, Wanke S, Hu GW, Wang QF. Phylogenetic and comparative analyses of Hydnora abyssinica plastomes provide evidence for hidden diversity within Hydnoraceae. BMC Ecol Evol 2023; 23:34. [PMID: 37464315 PMCID: PMC10353213 DOI: 10.1186/s12862-023-02142-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND To date, plastid genomes have been published for all but two holoparasitic angiosperm families. However, only a single or a few plastomes represent most of these families. Of the approximately 40 genera of holoparasitic angiosperms, a complete plastid genome sequence is available for only about half. In addition, less than 15 species are currently represented with more than one published plastid genome, most of which belong to the Orobanchaceae. Therefore, a significant portion of the holoparasitic plant plastome diversity remains unexplored. This limited information could hinder potential evolutionary pattern recognition as well as the exploration of inter- and intra-species plastid genome diversity in the most extreme holoparasitic angiosperms. RESULTS Here, we report the first plastomes of Kenyan Hydnora abyssinica accessions. The plastomes have a typical quadripartite structure and encode 24 unique genes. Phylogenetic tree reconstruction recovers the Kenyan accessions as monophyletic and together in a clade with the Namibian H. abyssinica accession and the recently published H. arabica from Oman. Hydnora abyssinica as a whole however is recovered as non-monophyletic, with H. arabica nested within. This result is supported by distinct structural plastome synapomorphies as well as pairwise distance estimates that reveal hidden diversity within the Hydnora species in Africa. CONCLUSION We propose to increase efforts to sample widespread holoparasitic species for their plastid genomes, as is the case with H. abyssinica, which is widely distributed in Africa. Morphological reinvestigation and further molecular data are needed to fully investigate the diversity of H. abyssinica along the entire range of distribution, as well as the diversity of currently synonymized taxa.
Collapse
Affiliation(s)
- Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN-430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Matthias Jost
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN-430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
- University of Chinese Academy of Sciences, Beijing, CN-100049, China
| | - Geoffrey Mwachala
- East African Herbarium, National Museums of Kenya, P. O. Box 451660-0100, Nairobi, Kenya
| | - Paul Mutuku Musili
- East African Herbarium, National Museums of Kenya, P. O. Box 451660-0100, Nairobi, Kenya
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN-430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China.
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, CN-430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, CN-430074, China
| |
Collapse
|
29
|
Guo X, Hu X, Li J, Shao B, Wang Y, Wang L, Li K, Lin D, Wang H, Gao Z, Jiao Y, Wen Y, Ji H, Ma C, Ge S, Jiang W, Jin X. The Sapria himalayana genome provides new insights into the lifestyle of endoparasitic plants. BMC Biol 2023; 21:134. [PMID: 37280593 DOI: 10.1186/s12915-023-01620-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Sapria himalayana (Rafflesiaceae) is an endoparasitic plant characterized by a greatly reduced vegetative body and giant flowers; however, the mechanisms underlying its special lifestyle and greatly altered plant form remain unknown. To illustrate the evolution and adaptation of S. himalayasna, we report its de novo assembled genome and key insights into the molecular basis of its floral development, flowering time, fatty acid biosynthesis, and defense responses. RESULTS The genome of S. himalayana is ~ 1.92 Gb with 13,670 protein-coding genes, indicating remarkable gene loss (~ 54%), especially genes involved in photosynthesis, plant body, nutrients, and defense response. Genes specifying floral organ identity and controlling organ size were identified in S. himalayana and Rafflesia cantleyi, and showed analogous spatiotemporal expression patterns in both plant species. Although the plastid genome had been lost, plastids likely biosynthesize essential fatty acids and amino acids (aromatic amino acids and lysine). A set of credible and functional horizontal gene transfer (HGT) events (involving genes and mRNAs) were identified in the nuclear and mitochondrial genomes of S. himalayana, most of which were under purifying selection. Convergent HGTs in Cuscuta, Orobanchaceae, and S. himalayana were mainly expressed at the parasite-host interface. Together, these results suggest that HGTs act as a bridge between the parasite and host, assisting the parasite in acquiring nutrients from the host. CONCLUSIONS Our results provide new insights into the flower development process and endoparasitic lifestyle of Rafflesiaceae plants. The amount of gene loss in S. himalayana is consistent with the degree of reduction in its body plan. HGT events are common among endoparasites and play an important role in their lifestyle adaptation.
Collapse
Affiliation(s)
- Xuelian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Xiaodi Hu
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Township, Mengla County, Yunnan, 666303, China
| | - Bingyi Shao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yajun Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Long Wang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Kui Li
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Dongliang Lin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hanchen Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Zhiyuan Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Yingying Wen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Hongyu Ji
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Chongbo Ma
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Beijing, 100083, China.
| | - Xiaohua Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (IBCAS), Beijing, 100093, China.
| |
Collapse
|
30
|
Cai L. Rethinking convergence in plant parasitism through the lens of molecular and population genetic processes. AMERICAN JOURNAL OF BOTANY 2023; 110:e16174. [PMID: 37154532 DOI: 10.1002/ajb2.16174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
The autotrophic lifestyle of photosynthetic plants has profoundly shaped their body plan, physiology, and gene repertoire. Shifts to parasitism and heterotrophy have evolved at least 12 times in more than 4000 species, and this transition has consequently left major evolutionary footprints among these parasitic lineages. Features that are otherwise rare at the molecular level and beyond have evolved repetitively, including reduced vegetative bodies, carrion-mimicking during reproduction, and the incorporation of alien genetic material. Here, I propose an integrated conceptual model, referred to as the funnel model, to define the general evolutionary trajectory of parasitic plants and provide a mechanistic explanation for their convergent evolution. This model connects our empirical understanding of gene regulatory networks in flowering plants with classical theories of molecular and population genetics. It emphasizes that the cascading effects brought about by the loss of photosynthesis may be a major force constraining the physiological capacity of parasitic plants and shaping their genomic landscapes. Here I review recent studies on the anatomy, physiology, and genetics of parasitic plants that lend support to this photosynthesis-centered funnel model. Focusing on nonphotosynthetic holoparasites, I elucidate how they may inevitably reach an evolutionary terminal status (i.e., extinction) and highlight the utility of a general, explicitly described and falsifiable model for future studies of parasitic plants.
Collapse
Affiliation(s)
- Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
31
|
Kang M, Chanderbali A, Lee S, Soltis DE, Soltis PS, Kim S. High-molecular-weight DNA extraction for long-read sequencing of plant genomes: An optimization of standard methods. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11528. [PMID: 37342161 PMCID: PMC10278927 DOI: 10.1002/aps3.11528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Premise Developing an effective and easy-to-use high-molecular-weight (HMW) DNA extraction method is essential for genomic research, especially in the era of third-generation sequencing. To efficiently use technologies capable of generating long-read sequences, it is important to maximize both the length and purity of the extracted DNA; however, this is frequently difficult to achieve with plant samples. Methods and Results We present a HMW DNA extraction method that combines (1) a nuclei extraction method followed by (2) a traditional cetyltrimethylammonium bromide (CTAB) DNA extraction method for plants with optimized extraction conditions that influence HMW DNA recovery. Our protocol produced DNA fragments (percentage of fragments >20 kbp) that were, on average, ca. five times longer than those obtained using a commercial kit, and contaminants were removed more effectively. Conclusions This effective HMW DNA extraction protocol can be used as a standard protocol for a diverse array of taxa, which will enhance plant genomic research.
Collapse
Affiliation(s)
- Myoungbo Kang
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| | - Andre Chanderbali
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Seungyeon Lee
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
- Department of BiologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida32611USA
| | - Sangtae Kim
- Department of BiotechnologySungshin Women's UniversitySeoul01133Republic of Korea
| |
Collapse
|
32
|
Zhu S, Zhang X, Ren C, Xu X, Comes HP, Jiang W, Fu C, Feng H, Cai L, Hong D, Li K, Kai G, Qiu Y. Chromosome-level reference genome of Tetrastigma hemsleyanum (Vitaceae) provides insights into genomic evolution and the biosynthesis of phenylpropanoids and flavonoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:805-823. [PMID: 36864731 DOI: 10.1111/tpj.16169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Here, we present a high-quality chromosome-scale genome assembly (2.19 Gb) and annotation of Tetrastigma hemsleyanum, a perennial herbaceous liana native to subtropical China with diverse medicinal applications. Approximately 73% of the genome was comprised of transposable elements (TEs), of which long terminal repeat retrotransposons (LTR-RTs) were a predominant group (69% of the genome). The genome size increase of T. hemsleyanum (relative to Vitis species) was mostly due to the proliferation of LTR-RTs. Of the different modes of gene duplication identified, transposed duplication (TRD) and dispersed duplication (DSD) were the predominant ones. Genes, particularly those involved in the phenylpropanoid-flavonoid (PF) pathway and those associated with therapeutic properties and environmental stress resistance, were significantly amplified through recent tandem duplications. We dated the divergence of two intraspecific lineages in Southwest (SW) versus Central-South-East (CSE) China to the late Miocene (approximately 5.2 million years ago). Of those, the former showed more upregulated genes and metabolites. Based on resequencing data of 38 individuals representing both lineages, we identified various candidate genes related to 'response to stimulus' and 'biosynthetic process', including ThFLS11, which is putatively involved in flavonoid accumulation. Overall, this study provides abundant genomic resources for future evolutionary, ecological, and functional genomics studies in T. hemsleyanum and related species.
Collapse
Affiliation(s)
- Shanshan Zhu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyi Zhang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chaoqian Ren
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinhan Xu
- Hangzhou Sanyeqing Agricultural Science and Technology Co. LTD, Hangzhou, Zhejiang, 310058, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Weimei Jiang
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chengxin Fu
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huixia Feng
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Liming Cai
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Deyuan Hong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kunlun Li
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| |
Collapse
|
33
|
Darshetkar AM, Pable AA, Nadaf AB, Barvkar VT. Understanding parasitism in Loranthaceae: Insights from plastome and mitogenome of Helicanthes elastica. Gene 2023; 861:147238. [PMID: 36736502 DOI: 10.1016/j.gene.2023.147238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Loranthaceae is the largest family of the order Santalales and includes root and stem hemiparasites. The parasites are known to exhibit reductions in the genomic features as well as relaxed or intensified selection shifts. In this study, we report plastome and mitogenome sequence of Helicanthes elastica (subtribe Amyeminae, tribe Lorantheae), an endemic, monotypic genus of Western Ghats, India growing on remarkably diverse host range. The length of plastome sequence was 1,28,805 bp while that of mitogenome was 1,65,273 bp. This is the smallest mitogenome from Loranthaceae reported till date. The plastome of Helicanthes exhibited loss of ndh genes (ψndhB), ψinfA, rps15, rps16, rpl32, trnK-UUU, trnG-UCC, trnV-UAC and trnA-UGC while mitogenome exhibited pseudogenized cox2, nad1 and nad4 genes. The comparative study of Loranthaceae plastomes revealed that the pseudogenization or loss of genes was not specific to any genus or tribe and variation was noted in the number of introns of clpP gene in the family. Several photosynthetic genes have undergone relaxed selection supporting lower photosynthetic rates in parasitic plants while some respiratory genes exhibited intensified selection supporting the idea of host-parasite arm race in Loranthaceae. The plastome gene content was found conserved in root hemiparasites compared to stem hemiparasites. The atp1 gene of mitogenome was chimeric and part of it exhibited similarities with Lamiales members. The phylogenetic analysis based on plastid genes placed Helicanthes sister to the members of subtribe Dendrophthoinae.
Collapse
Affiliation(s)
| | - Anupama A Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | | | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
34
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
35
|
Gilbert C, Maumus F. Sidestepping Darwin: horizontal gene transfer from plants to insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101035. [PMID: 37061183 DOI: 10.1016/j.cois.2023.101035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants, and insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant genetic material through HT. One of them, the whitefly Bemisia tabaci (Middle East Asia Minor 1), concentrates most of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-parasite interactions. We highlight methodological approaches that may further help characterize these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated and that in-depth studies of these transfers will shed new light on plant-insect interactions.
Collapse
Affiliation(s)
- Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-Yvette, France.
| | - Florian Maumus
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| |
Collapse
|
36
|
Hu Y, Wang X, Xu Y, Yang H, Tong Z, Tian R, Xu S, Yu L, Guo Y, Shi P, Huang S, Yang G, Shi S, Wei F. Molecular mechanisms of adaptive evolution in wild animals and plants. SCIENCE CHINA. LIFE SCIENCES 2023; 66:453-495. [PMID: 36648611 PMCID: PMC9843154 DOI: 10.1007/s11427-022-2233-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
Wild animals and plants have developed a variety of adaptive traits driven by adaptive evolution, an important strategy for species survival and persistence. Uncovering the molecular mechanisms of adaptive evolution is the key to understanding species diversification, phenotypic convergence, and inter-species interaction. As the genome sequences of more and more non-model organisms are becoming available, the focus of studies on molecular mechanisms of adaptive evolution has shifted from the candidate gene method to genetic mapping based on genome-wide scanning. In this study, we reviewed the latest research advances in wild animals and plants, focusing on adaptive traits, convergent evolution, and coevolution. Firstly, we focused on the adaptive evolution of morphological, behavioral, and physiological traits. Secondly, we reviewed the phenotypic convergences of life history traits and responding to environmental pressures, and the underlying molecular convergence mechanisms. Thirdly, we summarized the advances of coevolution, including the four main types: mutualism, parasitism, predation and competition. Overall, these latest advances greatly increase our understanding of the underlying molecular mechanisms for diverse adaptive traits and species interaction, demonstrating that the development of evolutionary biology has been greatly accelerated by multi-omics technologies. Finally, we highlighted the emerging trends and future prospects around the above three aspects of adaptive evolution.
Collapse
Affiliation(s)
- Yibo Hu
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yongchao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hui Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zeyu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ran Tian
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yalong Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shuangquan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Guang Yang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Lab of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Fuwen Wei
- CAS Key Lab of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
37
|
Banerjee A, Stefanović S. A comparative study across the parasitic plants of Cuscuta subgenus Grammica (Convolvulaceae) reveals a possible loss of the plastid genome in its section Subulatae. PLANTA 2023; 257:66. [PMID: 36826697 DOI: 10.1007/s00425-023-04099-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Most species in Cuscuta subgenus Grammica retain many photosynthesis-related plastid genes, generally under purifying selection. A group of holoparasitic species in section Subulatae may have lost their plastid genomes entirely. The c. 153 species of plants belonging to Cuscuta subgenus Grammica are all obligate stem parasites. However, some have completely lost the ability to conduct photosynthesis while others retain photosynthetic machinery and genes. The plastid genome that primarily encodes key photosynthesis genes functions as a bellwether for how reliant plants are on primary production. This research assembles and analyses 17 plastomes across Cuscuta subgenus Grammica with the aim of characterizing the state of the plastome in each of its sections. By comparing the structure and content of plastid genomes across the subgenus, as well as by quantifying the selection acting upon each gene, we reconstructed the patterns of plastome change within the phylogenetic context for this group. We found that species in 13 of the 15 sections that comprise Grammica retain the bulk of plastid photosynthesis genes and are thus hemiparasitic. The complete loss of photosynthesis can be traced to two clades: the entire section Subulatae and a complex of three species within section Ceratophorae. We were unable to recover any significant plastome sequences from section Subulatae, suggesting that plastomes in these species are either drastically reduced or lost entirely.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 2Z9, Canada.
| | - Saša Stefanović
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
38
|
Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int J Mol Sci 2023; 24:ijms24032647. [PMID: 36768970 PMCID: PMC9917227 DOI: 10.3390/ijms24032647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic plants extract nutrients from the other plants to finish their life cycle and reproduce. The control of parasitic weeds is notoriously difficult due to their tight physical association and their close biological relationship to their hosts. Parasitic plants differ in their susceptible host ranges, and the host species differ in their susceptibility to parasitic plants. Current data show that adaptations of parasitic plants to various hosts are largely genetically determined. However, multiple cases of rapid adaptation in genetically homogenous parasitic weed populations to new hosts strongly suggest the involvement of epigenetic mechanisms. Recent progress in genome-wide analyses of gene expression and epigenetic features revealed many new molecular details of the parasitic plants' interactions with their host plants. The experimental data obtained in the last several years show that multiple common features have independently evolved in different lines of the parasitic plants. In this review we discuss the most interesting new details in the interaction between parasitic and host plants.
Collapse
|
39
|
Timilsena PR, Barrett CF, Piñeyro-Nelson A, Wafula EK, Ayyampalayam S, McNeal JR, Yukawa T, Givnish TJ, Graham SW, Pires JC, Davis JI, Ané C, Stevenson DW, Leebens-Mack J, Martínez-Salas E, Álvarez-Buylla ER, dePamphilis CW. Phylotranscriptomic Analyses of Mycoheterotrophic Monocots Show a Continuum of Convergent Evolutionary Changes in Expressed Nuclear Genes From Three Independent Nonphotosynthetic Lineages. Genome Biol Evol 2023; 15:evac183. [PMID: 36582124 PMCID: PMC9887272 DOI: 10.1093/gbe/evac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. Phylogenetic trees based on 602 genes were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression and relaxation of purifying selection on retained genes were progressive, with greater loss in older nonphotosynthetic lineages. One hundred seventy-four of 1375 plant benchmark universally conserved orthologous genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode not only mainly photosynthetic or plastid membrane proteins but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Collapse
Affiliation(s)
- Prakash Raj Timilsena
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, West Virginia
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | | | - Joel R McNeal
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Georgia
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, 305-0005, Japan
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4Canada
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri–Columbia, Columbia, Missouri
| | - Jerrold I Davis
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, New York, 1485
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Statistics, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, Georgia, 3060
| | - Esteban Martínez-Salas
- Departmento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Elena R Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
40
|
Wang Y, Zhang L, Zhou Y, Ma W, Li M, Guo P, Feng L, Fu C. Using landscape genomics to assess local adaptation and genomic vulnerability of a perennial herb Tetrastigma hemsleyanum (Vitaceae) in subtropical China. Front Genet 2023; 14:1150704. [PMID: 37144128 PMCID: PMC10151583 DOI: 10.3389/fgene.2023.1150704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Understanding adaptive genetic variation of plant populations and their vulnerabilities to climate change are critical to preserve biodiversity and subsequent management interventions. To this end, landscape genomics may represent a cost-efficient approach for investigating molecular signatures underlying local adaptation. Tetrastigma hemsleyanum is, in its native habitat, a widespread perennial herb of warm-temperate evergreen forest in subtropical China. Its ecological and medicinal values constitute a significant revenue for local human populations and ecosystem. Using 30,252 single nucleotide polymorphisms (SNPs) derived from reduced-representation genome sequencing in 156 samples from 24 sites, we conducted a landscape genomics study of the T. hemsleyanum to elucidate its genomic variation across multiple climate gradients and genomic vulnerability to future climate change. Multivariate methods identified that climatic variation explained more genomic variation than that of geographical distance, which implied that local adaptation to heterogeneous environment might represent an important source of genomic variation. Among these climate variables, winter precipitation was the strongest predictor of the contemporary genetic structure. F ST outlier tests and environment association analysis totally identified 275 candidate adaptive SNPs along the genetic and environmental gradients. SNP annotations of these putatively adaptive loci uncovered gene functions associated with modulating flowering time and regulating plant response to abiotic stresses, which have implications for breeding and other special agricultural aims on the basis of these selection signatures. Critically, modelling revealed that the high genomic vulnerability of our focal species via a mismatch between current and future genotype-environment relationships located in central-northern region of the T. hemsleyanum's range, where populations require proactive management efforts such as assistant adaptation to cope with ongoing climate change. Taken together, our results provide robust evidence of local climate adaption for T. hemsleyanum and further deepen our understanding of adaptation basis of herbs in subtropical China.
Collapse
Affiliation(s)
- Yihan Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Lin Zhang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yuchao Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Wenxin Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Manyu Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
| | - Peng Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Li Feng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Peng Guo, ; Li Feng,
| | - Chengxin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Laldinfeli Ralte, Sailo H, Singh SP, Khiangte L, Singh YT. New distribution record and DNA barcoding of Sapria himalayana Griff. (Rafflesiaceae), a rare and endangered holoparasitic plant from Mizoram, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7960.14.12.22215-22220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sapria himalayana Griff. is a rare and endangered holoparasitic plant that prefers a specific host (Tetrastigma sp.). It is one of the lesser-known and poorly understood plants facing threats of extinction owing to human interference in the evergreen forests of Mizoram. The flower is the only visible part of this endophyte and blooms from November to December. The plant was encountered for the first time in the evergreen forest near Rullam village in the Serchhip District of Mizoram, India. In the present study, DNA barcoding was used to identify the plants, and the internal transcribed spacer 2 (ITS2) region of S. himalayana was amplified and sequenced. The ITS2 sequence could accurately identify up to the species level for this endangered species. The absence of the ribulose-biphosphate carboxylase gene (rbcL) region in the genome supports its holoparasitic nature. Hence, DNA barcoding can help in taxonomic and biodiversity research and aid in selecting taxa for various molecular ecology and population genetics studies. The phylogenetic tree was analyzed using the maximum-likelihood method, and our findings showed that species from different families were clearly discriminated in a phylogenetic tree. To the best of our knowledge, this is the first report of DNA barcoding using ITS2 region of S. himalayana from Mizoram, India.
Collapse
|
42
|
Klimpert NJ, Mayer JLS, Sarzi DS, Prosdocimi F, Pinheiro F, Graham SW. Phylogenomics and plastome evolution of a Brazilian mycoheterotrophic orchid, Pogoniopsis schenckii. AMERICAN JOURNAL OF BOTANY 2022; 109:2030-2050. [PMID: 36254561 DOI: 10.1002/ajb2.16084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
PREMISE Pogoniopsis likely represents an independent photosynthesis loss in orchids. We use phylogenomic data to better identify the phylogenetic placement of this fully mycoheterotrophic taxon, and investigate its molecular evolution. METHODS We performed likelihood analysis of plastid and mitochondrial phylogenomic data to localize the position of Pogoniopsis schenckii in orchid phylogeny, and investigated the evolution of its plastid genome. RESULTS All analyses place Pogoniopsis in subfamily Epidendroideae, with strongest support from mitochondrial data, which also place it near tribe Sobralieae with moderately strong support. Extreme rate elevation in Pogoniopsis plastid genes broadly depresses branch support; in contrast, mitochondrial genes are only mildly rate elevated and display very modest and localized reductions in bootstrap support. Despite considerable genome reduction, including loss of photosynthesis genes and multiple translation apparatus genes, gene order in Pogoniopsis plastomes is identical to related autotrophs, apart from moderately shifted inverted repeat (IR) boundaries. All cis-spliced introns have been lost in retained genes. Two plastid genes (accD, rpl2) show significant strengthening of purifying selection. A retained plastid tRNA gene (trnE-UUC) of Pogoniopsis lacks an anticodon; we predict that it no longer functions in translation but retains a secondary role in heme biosynthesis. CONCLUSIONS Slowly evolving mitochondrial genes clarify the placement of Pogoniopsis in orchid phylogeny, a strong contrast with analysis of rate-elevated plastome data. We documented the effects of the novel loss of photosynthesis: for example, despite massive gene loss, its plastome is fully colinear with other orchids, and it displays only moderate shifts in selective pressure in retained genes.
Collapse
Affiliation(s)
- Nathaniel J Klimpert
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Juliana Lischka Sampaio Mayer
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Deise Schroder Sarzi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, UFRJ/CCS/Bloco B33, Rio de Janeiro, RJ, 21.941-902, Brazil
| | - Fábio Pinheiro
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 255 Rua Monteiro Lobato, Campinas, São Paulo, 13.083-862, Brazil
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
43
|
Westwood JH. Cracking open the witch's spell book: the witchweed genome provides clues to plant parasitism. THE NEW PHYTOLOGIST 2022; 236:316-318. [PMID: 36001688 DOI: 10.1111/nph.18398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
44
|
Honkanen S, Small I. The GENOMES UNCOUPLED1 protein has an ancient, highly conserved role but not in retrograde signalling. THE NEW PHYTOLOGIST 2022; 236:99-113. [PMID: 35708656 PMCID: PMC9545484 DOI: 10.1111/nph.18318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/07/2022] [Indexed: 06/01/2023]
Abstract
The pentatricopeptide repeat protein GENOMES UNCOUPLED1 (GUN1) is required for chloroplast-to-nucleus signalling when plastid translation becomes inhibited during chloroplast development in Arabidopsis thaliana, but its exact molecular function remains unknown. We analysed GUN1 sequences in land plants and streptophyte algae. We tested functional conservation by complementation of the Arabidopsis gun1 mutant with GUN1 genes from the streptophyte alga Coleochate orbicularis or the liverwort Marchantia polymorpha. We also analysed the transcriptomes of M. polymorpha gun1 knockout mutant lines during chloroplast development. GUN1 evolved within the streptophyte algal ancestors of land plants and is highly conserved among land plants but missing from the Rafflesiaceae that lack chloroplast genomes. GUN1 genes from C. orbicularis and M. polymorpha suppress the cold-sensitive phenotype of the Arabidopsis gun1 mutant and restore typical retrograde responses to treatments with inhibitors of plastid translation, even though M. polymorpha responds very differently to such treatments. Our findings suggest that GUN1 is an ancient protein that evolved within the streptophyte algal ancestors of land plants before the first plants colonized land more than 470 million years ago. Its primary role is likely to be in chloroplast gene expression and its role in chloroplast retrograde signalling probably evolved more recently.
Collapse
Affiliation(s)
- Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesThe University of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
45
|
Qiu S, Bradley JM, Zhang P, Chaudhuri R, Blaxter M, Butlin RK, Scholes JD. Genome-enabled discovery of candidate virulence loci in Striga hermonthica, a devastating parasite of African cereal crops. THE NEW PHYTOLOGIST 2022; 236:622-638. [PMID: 35699626 PMCID: PMC9795911 DOI: 10.1111/nph.18305] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Parasites have evolved proteins, virulence factors (VFs), that facilitate plant colonisation, however VFs mediating parasitic plant-host interactions are poorly understood. Striga hermonthica is an obligate, root-parasitic plant of cereal hosts in sub-Saharan Africa, causing devastating yield losses. Understanding the molecular nature and allelic variation of VFs in S. hermonthica is essential for breeding resistance and delaying the evolution of parasite virulence. We assembled the S. hermonthica genome and identified secreted proteins using in silico prediction. Pooled sequencing of parasites growing on a susceptible and a strongly resistant rice host allowed us to scan for loci where selection imposed by the resistant host had elevated the frequency of alleles contributing to successful colonisation. Thirty-eight putatively secreted VFs had very different allele frequencies with functions including host cell wall modification, protease or protease inhibitor and kinase activities. These candidate loci had significantly higher Tajima's D than the genomic background, consistent with balancing selection. Our results reveal diverse strategies used by S. hermonthica to overcome different layers of host resistance. Understanding the maintenance of variation at virulence loci by balancing selection will be critical to managing the evolution of virulence as part of a sustainable control strategy.
Collapse
Affiliation(s)
- Suo Qiu
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - James M. Bradley
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Peijun Zhang
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Roy Chaudhuri
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| | - Mark Blaxter
- Institute of Evolutionary Biology, School of Biological SciencesThe University of Edinburgh, Ashworth LaboratoriesCharlotte Auerbach RoadEdinburghEH9 3FLUK
- Wellcome Sanger InstituteWellcome Genome Campus, HinxtonCambridgeCB10 1SAUK
| | - Roger K. Butlin
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
- Department of Marine SciencesUniversity of GothenburgS‐405 30GothenburgSweden
| | - Julie D. Scholes
- School of BiosciencesUniversity of SheffieldWestern BankSheffieldS10 2TNUK
| |
Collapse
|
46
|
Zhong Y, Yu R, Chen J, Liu Y, Zhou R. Highly active repeat-mediated recombination in the mitogenome of the holoparasitic plant Aeginetia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:988368. [PMID: 36212306 PMCID: PMC9532969 DOI: 10.3389/fpls.2022.988368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Mitogenomes of most flowering plants evolve slowly in sequence, but rapidly in structure. The rearrangements in structure are mainly caused by repeat-mediated recombination. However, patterns of repeat-mediated recombination vary substantially among plants, and to provide a comprehensive picture, characterization of repeat-mediated recombination should extend to more plant species, including parasitic plants with a distinct heterotrophic lifestyle. Here we assembled the mitogenome of the holoparasitic plant Aeginetia indica (Orobanchaceae) using Illumina sequencing reads. The mitogenome was assembled into a circular chromosome of 420,362 bp, 18,734 bp longer than that of another individual of A. indica which was assembled before as a linear molecule. Synteny analysis between the two mitogenomes revealed numerous rearrangements, unique regions of each individual and 0.2% sequence divergence in their syntenic regions. The A. indica mitogenome contains a gene content typical of flowering plants (33 protein-coding, 3 rRNA, and 17 tRNA genes). Repetitive sequences >30 bp in size totals 57,060 bp, representing 13.6% of the mitogenome. We examined recombination mediated by repeats >100 bp in size and found highly active recombination for all the repeats, including a very large repeat of ~16 kb. Recombination between these repeats can form much smaller subgenomic circular chromosomes, which may lead to rapid replication of mitochondrial DNA and thus be advantageous for A. indica with a parasitic lifestyle. In addition, unlike some other parasitic plants, A. indica shows no evidence for horizontal gene transfer of protein-coding genes in its mitogenome.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runxian Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingfang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Xu Y, Zhang J, Ma C, Lei Y, Shen G, Jin J, Eaton DAR, Wu J. Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. MOLECULAR PLANT 2022; 15:1384-1399. [PMID: 35854658 DOI: 10.1016/j.molp.2022.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.
Collapse
Affiliation(s)
- Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianjun Jin
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
48
|
Duan K, Fu H, Fang D, Wang K, Zhang W, Liu H, Sahu SK, Chen X. Genome-Wide Analysis of the MADS-Box Gene Family in Holoparasitic Plants ( Balanophora subcupularis and Balanophora fungosa var. globosa). FRONTIERS IN PLANT SCIENCE 2022; 13:846697. [PMID: 35712591 PMCID: PMC9197559 DOI: 10.3389/fpls.2022.846697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
MADS-box is an important transcription factor family that is involved in the regulation of various stages of plant growth and development, especially flowering regulation and flower development. Being a holoparasitic plant, the body structure of Balanophoraceae has changed dramatically over time, and its vegetative and reproductive organs have been extensively modified, with rudimentary flower organs. Meanwhile, extraordinary gene losses have been identified in holoparasitic plants compared with autotrophs. Our study reveals that the MADS-box gene family contracted sharply in Balanophora subcupularis and Balanophora fungosa var. globosa, and some subfamilies were lost, exhibiting reduced redundancy in both. The genes that functioned in the transition from the vegetative to floral production stages suffered a significant loss, but the ABCE model genes remained intact. We further investigated genes related to flowering regulation in B. subcupularis and B. fungosa var. globosa, vernalization and autonomous ways of regulating flowering time remained comparatively integrated, while genes in photoperiod and circadian clock pathways were almost lost. Convergent gene loss in flowering regulation occurred in Balanophora and another holoparasitic plant Sapria himalayana (Rafflesiaceae). The genome-wide analysis of the MADS-box gene family in Balanophora species provides valuable information for understanding the classification, gene loss pattern, and flowering regulation mechanism of MADS-box gene family in parasitic plants.
Collapse
Affiliation(s)
- Kunyu Duan
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hui Fu
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Kaimeng Wang
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen Zhang
- China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| | - Xiaoli Chen
- Beijing Genomics Institute College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Agricultural Genomics, Beijing Genomics Institute, Shenzhen, China
| |
Collapse
|
49
|
Jost M, Naumann J, Bolin JF, Martel C, Rocamundi N, Cocucci AA, Lupton D, Neinhuis C, Wanke S. Structural plastome evolution in holoparasitic Hydnoraceae with special focus on inverted and direct repeats. Genome Biol Evol 2022; 14:6602284. [PMID: 35660863 PMCID: PMC9168662 DOI: 10.1093/gbe/evac077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Plastome condensation during adaptation to a heterotrophic lifestyle is generally well understood and lineage-independent models have been derived. However, understanding the evolutionary trajectories of comparatively old heterotrophic lineages, that are on the cusp of a minimal plastomes, is essential to complement and expand current knowledge. We study Hydnoraceae, one of the oldest and least investigated parasitic angiosperm lineages. Plastome comparative genomics, using seven out of eight known species of the genus Hydnora and three species of Prosopanche, reveal a high degree of structural similarity and shared gene content; contrasted by striking dissimilarities with respect to repeat content (inverted and direct repeats). We identified varying IR content and positions, likely resulting from multiple, independent evolutionary events and a direct repeat gain in Prosopanche. Considering different evolutionary trajectories and based on a fully resolved and supported species-level phylogenetic hypothesis, we describe three possible, distinct models to explain the Hydnoraceae plastome states. For comparative purposes we also report the first plastid genomes for the closely related autotrophic genera Lactoris (Lactoridaceae) and Thottea (Aristolochiaceae).
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Germany
| | - Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Germany
| | | | - Carlos Martel
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.,Instituto de Ciencias Ómicas y Biotecnología Aplicada, Pontificia Universidad Católica del Perú, Peru
| | - Nicolás Rocamundi
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Andrea A Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Darach Lupton
- Oman Botanic Garden, Sultanate of Oman.,National Botanic Gardens, Glasnevin, Ireland
| | | | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Germany.,Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
50
|
Lin Y, Li P, Zhang Y, Akhter D, Pan R, Fu Z, Huang M, Li X, Feng Y. Unprecedented organelle genomic variations in morning glories reveal independent evolutionary scenarios of parasitic plants and the diversification of plant mitochondrial complexes. BMC Biol 2022; 20:49. [PMID: 35172831 PMCID: PMC8851834 DOI: 10.1186/s12915-022-01250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. Results We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of ‘Merremieae’ and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. Conclusions Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01250-1.
Collapse
Affiliation(s)
- Yanxiang Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Pan Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yuchan Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Delara Akhter
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet Division 3100, Sylhet, Bangladesh
| | - Ronghui Pan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixi Fu
- College of Life Science, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|