1
|
Knudsen C, Moriya A, Nakato E, Gulati R, Akiyama T, Nakato H. Chondroitin sulfate regulates proliferation of Drosophila intestinal stem cells. PLoS Genet 2025; 21:e1011686. [PMID: 40343906 PMCID: PMC12063844 DOI: 10.1371/journal.pgen.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The basement membrane (BM) plays critical roles in stem cell maintenance and activity control. Here we show that chondroitin sulfate (CS), a major component of the Drosophila midgut BM, is required for proper control of intestinal stem cells (ISCs). Loss of Chsy, a critical CS biosynthetic gene, resulted in elevated levels of ISC proliferation during homeostasis, leading to midgut hyperplasia. Regeneration assays demonstrated that Chsy mutant ISCs failed to properly downregulate mitotic activity at the end of regeneration. We also found that CS is essential for the barrier integrity to prevent leakage of the midgut epithelium. CS is known to be polymerized by the action of the complex of Chsy and another critical protein, Chondroitin polymerizing factor (Chpf). We found that Chpf mutants show increased ISC division during midgut homeostasis and regeneration, similar to Chsy mutants. As Chpf is induced by a tissue damage during regeneration, our data suggest that Chpf functions with Chsy to facilitate CS remodeling and stimulate tissue repair. We propose that the completion of the repair of CS-containing BM acts as a prerequisite to properly terminate the regeneration process.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rishi Gulati
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Takuya Akiyama
- Department of Biology, The Porter Cancer Research Center, Indiana State University, Terre Haute, Indiana, United States of America
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Lee JI, Park S, Park H, Lee Y, Park J, Lee D, Kim MJ, Choe KM. The matrix glycoprotein Papilin maintains the haematopoietic progenitor pool in Drosophila lymph glands. Development 2025; 152:dev204367. [PMID: 40094323 PMCID: PMC12045604 DOI: 10.1242/dev.204367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Differentiation of prohaemocytes, the precursors of Drosophila blood cells (haemocytes), and the release of haemocytes from the lymph gland, a major larval haematopoietic organ, are vital responses to wasp infestation or tissue degeneration. Although cells and extracellular matrix (ECM) in the lymph gland are known to play a crucial role in haemocyte differentiation, the underlying mechanisms remain unclear. Here, we show that the matrix glycoprotein Papilin (Ppn) is essential for maintaining the prohaemocyte population in lymph glands. In Ppn-depleted larvae, haemocyte differentiation increased with a reduction in the prohaemocyte-containing medullary zone, and lymph gland lobes dispersed prematurely. Ppn was synthesised by plasmatocytes, forming lamellae mainly in the medullary zone. Microbial infection or wasp infestation disrupted the Ppn meshwork within lymph glands. Ppn colocalised with collagen, laminin, nidogen and perlecan. Ppn depletion disrupted the ECM structure, including perlecan organisation. Phenotypes caused by Ppn depletion were partially rescued by perlecan overexpression or inactivation of the epidermal growth factor receptor pathway. Thus, Ppn is crucial for maintaining lymph gland architecture and regulating haemocyte differentiation, highlighting an intricate interaction between the ECM and signalling pathways in haematopoiesis.
Collapse
Affiliation(s)
- Jae-In Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Sumin Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hyunji Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youngbin Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - JinYoung Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Donghoon Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, South Korea
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
3
|
Hu M, Liu T, Huang H, Ogi D, Tan Y, Ye K, Jin S. Extracellular matrix proteins refine microenvironments for pancreatic organogenesis from induced pluripotent stem cell differentiation. Theranostics 2025; 15:2229-2249. [PMID: 39990212 PMCID: PMC11840725 DOI: 10.7150/thno.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Rationale: The current understanding on manipulating signaling pathways to generate mature human islet organoids with all major hormone-secreting endocrine cell types (i.e., α, β, δ, and γ cells) from induced pluripotent stem cells (iPSCs) is insufficient. However, donor islet shortage necessitates that we produce functional islets in vitro. In this study, we aimed to find decellularized pancreatic extracellular matrix (dpECM) proteins that leverage signaling pathways and promote functional iPSC islet organogenesis. Methods: We performed proteomic analysis to identify key islet promoting factors from porcine and rat dpECM. With this, we identified collagen type II (COL2) as a potential biomaterial cue that endorses islet development from iPSCs. Using global transcriptome profiling, gene set enrichment analysis, immunofluorescence microscopy, flow cytometry, Western blot, and glucose-stimulated hormonal secretion analysis, we examined COL2's role in regulating iPSC pancreatic lineage specification and signaling pathways, critical to islet organogenesis and morphogenesis. Results: We discovered COL2 acts as a functional biomaterial that augments islet development from iPSCs, similar to collagen type V (COL5) as reported in our earlier study. COL2 substantially stimulates the formation of endocrine progenitors and subsequent islet organoids with significantly elevated expressions of pancreatic signature genes and proteins. Furthermore, it enhances islets' glucose sensitivity for hormonal secretion. A cluster of gene expressions associated with various signaling pathways, including but not limited to oxidative phosphorylation, insulin secretion, cell cycle, the canonical WNT, hypoxia, and interferon-γ response, were considerably affected by COL2 and COL5 cues. Conclusion: We demonstrated dpECM's crucial role in refining stem cell differentiation microenvironments for organoid development and maturation. Our findings on biomaterial-stimulated signaling for stem cell specification, organogenesis, and maturation open up a new way to increase the differentiation efficacy of endocrine tissues that can contribute to the production of biologically functional islets.
Collapse
Affiliation(s)
- Ming Hu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Tianzheng Liu
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Derek Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, USA
| |
Collapse
|
4
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. eLife 2025; 13:RP100455. [PMID: 39750120 PMCID: PMC11698496 DOI: 10.7554/elife.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Kari F Lenhart
- Department of Biology, Drexel UniversityPhiladelphiaUnited States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
5
|
Gonçalves M, Lopes C, Alégot H, Osswald M, Bosveld F, Ramos C, Richard G, Bellaiche Y, Mirouse V, Morais-de-Sá E. The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia. EMBO Rep 2025; 26:307-328. [PMID: 39548266 PMCID: PMC11772804 DOI: 10.1038/s44319-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
Collapse
Affiliation(s)
- Margarida Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Lopes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Hervé Alégot
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Carolina Ramos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Graziella Richard
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Vincent Mirouse
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
6
|
Nelson KA, Lenhart KF, Anllo L, DiNardo S. The Drosophila hematopoietic niche assembles through collective cell migration controlled by neighbor tissues and Slit-Robo signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600069. [PMID: 38979182 PMCID: PMC11230208 DOI: 10.1101/2024.06.21.600069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.
Collapse
Affiliation(s)
- Kara A Nelson
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| | - Kari F Lenhart
- Department of Biology, Drexel University, 3245 Chestnut St. Philadelphia, PA 19104, United States
| | - Lauren Anllo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
- Present address: Department of Biology, East Carolina University, 458 Science & Tech Bldg. Greenville, NC 27858, United States
| | - Stephen DiNardo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 421 Curie Blvd. Philadelphia, PA 19104, United States
- Institute for Regenerative Medicine at the University of Pennsylvania, 3400 Civic Center Blvd. Philadelphia, PA 19104, United States
| |
Collapse
|
7
|
Melrose J, Guilak F. Diverse and multifunctional roles for perlecan ( HSPG2) in repair of the intervertebral disc. JOR Spine 2024; 7:e1362. [PMID: 39081381 PMCID: PMC11286675 DOI: 10.1002/jsp2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Perlecan is a widely distributed, modular, and multifunctional heparan sulfate proteoglycan, which facilitates cellular communication with the extracellular environment to promote tissue development, tissue homeostasis, and optimization of biomechanical tissue functions. Perlecan-mediated osmotic mechanotransduction serves to regulate the metabolic activity of cells in tissues subjected to tension, compression, or shear. Perlecan interacts with a vast array of extracellular matrix (ECM) proteins through which it stabilizes tissues and regulates the proliferation or differentiation of resident cell populations. Here we examine the roles of the HS-proteoglycan perlecan in the normal and destabilized intervertebral disc. The intervertebral disc cell has evolved to survive in a hostile weight bearing, acidic, low oxygen tension, and low nutrition environment, and perlecan provides cytoprotection, shields disc cells from excessive compressive forces, and sequesters a range of growth factors in the disc cell environment where they aid in cellular survival, proliferation, and differentiation. The cells in mechanically destabilized connective tissues attempt to re-establish optimal tissue composition and tissue functional properties by changing the properties of their ECM, in the process of chondroid metaplasia. We explore the possibility that perlecan assists in these cell-mediated tissue remodeling responses by regulating disc cell anabolism. Perlecan's mechano-osmotic transductive property may be of potential therapeutic application.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling InstituteNorthern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington UniversitySt. LouisMissouriUSA
- Department of OrthopaedicsShriners Hospitals for ChildrenSt. LouisMissouriUSA
| |
Collapse
|
8
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Monticelli S, Sommer A, AlHajj Hassan Z, Garcia Rodriguez C, Adé K, Cattenoz P, Delaporte C, Gomez Perdiguero E, Giangrande A. Early-wave macrophages control late hematopoiesis. Dev Cell 2024; 59:1284-1301.e8. [PMID: 38569551 DOI: 10.1016/j.devcel.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Alina Sommer
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Zeinab AlHajj Hassan
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Clarisabel Garcia Rodriguez
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France; Sorbonne Université, Collège doctoral, 75005 Paris, France
| | - Kémy Adé
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France
| | - Pierre Cattenoz
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Claude Delaporte
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France
| | - Elisa Gomez Perdiguero
- Macrophages and endothelial cells unit, Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, UMR3738 CNRS, 75015 Paris, France.
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, UMR, S 1258, 67400 Illkirch, France; Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, 67400 Illkirch, France.
| |
Collapse
|
10
|
Tu R, Ping Z, Liu J, Tsoi ML, Song X, Liu W, Xie T. Niche Tet maintains germline stem cells independently of dioxygenase activity. EMBO J 2024; 43:1570-1590. [PMID: 38499787 PMCID: PMC11021519 DOI: 10.1038/s44318-024-00074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.
Collapse
Affiliation(s)
- Renjun Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhaohua Ping
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Jian Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Man Lung Tsoi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, New Territories, Hong Kong Special Administrative Region, China
| | - Xiaoqing Song
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Centre, Shenzhen, Guangdong, China
| | - Ting Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region, China.
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, USA.
| |
Collapse
|
11
|
Knudsen C, Woo Seuk Koh, Izumikawa T, Nakato E, Akiyama T, Kinoshita-Toyoda A, Haugstad G, Yu G, Toyoda H, Nakato H. Chondroitin sulfate is required for follicle epithelial integrity and organ shape maintenance in Drosophila. Development 2023; 150:dev201717. [PMID: 37694610 PMCID: PMC10508698 DOI: 10.1242/dev.201717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Woo Seuk Koh
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Greg Haugstad
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Guichuan Yu
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Ho KYL, Carr RL, Dvoskin AD, Tanentzapf G. Kinetics of blood cell differentiation during hematopoiesis revealed by quantitative long-term live imaging. eLife 2023; 12:e84085. [PMID: 37000163 PMCID: PMC10065797 DOI: 10.7554/elife.84085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Stem cells typically reside in a specialized physical and biochemical environment that facilitates regulation of their behavior. For this reason, stem cells are ideally studied in contexts that maintain this precisely constructed microenvironment while still allowing for live imaging. Here, we describe a long-term organ culture and imaging strategy for hematopoiesis in flies that takes advantage of powerful genetic and transgenic tools available in this system. We find that fly blood progenitors undergo symmetric cell divisions and that their division is both linked to cell size and is spatially oriented. Using quantitative imaging to simultaneously track markers for stemness and differentiation in progenitors, we identify two types of differentiation that exhibit distinct kinetics. Moreover, we find that infection-induced activation of hematopoiesis occurs through modulation of the kinetics of cell differentiation. Overall, our results show that even subtle shifts in proliferation and differentiation kinetics can have large and aggregate effects to transform blood progenitors from a quiescent to an activated state.
Collapse
Affiliation(s)
- Kevin Yueh Lin Ho
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
| | - Rosalyn Leigh Carr
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
- School of Biomedical Engineering, University of British ColumbiaVancouverCanada
- British Columbia Children’s HospitalVancouverCanada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
| |
Collapse
|
14
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
15
|
Jin J, Zhao T. Niche formation and function in developing tissue: studies from the Drosophila ovary. Cell Commun Signal 2023; 21:23. [PMID: 36707894 PMCID: PMC9881360 DOI: 10.1186/s12964-022-01035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Adult stem cells have a unique ability to self-renew and to generate differentiated daughter cells that are required in the body tissues. The identity of adult stem cells is maintained by extrinsic signals from other cell types, known as niche cells. Thus, the niche is required for appropriate tissue homeostasis. Niche is formed and recruits stem cells during tissue development; therefore, it is essential to establish niche cells and stem cells in proper numbers during development. A small niche may recruit too few stem cells and cause tissue degeneration, while a large niche may maintain too many stem cells and lead to tumorigenesis. Given that vertebrate tissues are not suitable for large-scale forward genetics studies, the Drosophila ovary stands out as an excellent model for studying how multiple niche cell types and germ cells (GCs) are coordinately regulated in vivo. Recent studies are beginning to reveal how various signaling molecules regulate niche formation and how niche cells non-autonomously influence GC number. In this review, we summarize the ovarian niche structure, the key signaling pathways for niche formation, and how niche cells generate extrinsic factors to control GC proliferation during ovarian development. Video abstract.
Collapse
Affiliation(s)
- Jian Jin
- grid.440646.40000 0004 1760 6105School of Educational Science, Anhui Normal University, Wuhu, 241000 People’s Republic of China
| | - Ting Zhao
- grid.411407.70000 0004 1760 2614School of Life Science, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079 People’s Republic of China
| |
Collapse
|
16
|
Gao J, Gao Y, Xiao G. The expression of Catsup in escort cells affects Drosophila ovarian stem cell niche establishment and germline stem cells self-renewal via Notch signaling. Biochem Biophys Res Commun 2023; 641:1-9. [PMID: 36516479 DOI: 10.1016/j.bbrc.2022.11.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Stem cell niche provides extrinsic signals to maintain stem cell renewal or initiate cell differentiation. Drosophila niche is composed of somatic terminal filament cells, cap cells and escort cells. However, the underlying mechanism for the development of stem cell niche remains largely unclear. Here we found that the expression of a zinc transporter Catsup is essential for ovary morphogenesis. Catsup knockdown in escort cells results in defects of niche establishment and germline stem cells self-renewal. These defects could be modified by altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that Catsup RNAi affected adult ovary morphogenesis by suppressing Notch signaling. Lastly, we demonstrated that the defects of Catsup RNAi could be restored by overexpression of heat shock cognate protein 70 (Hsc70). These findings expand our understanding of the mechanisms controlling adult oogenesis and niche establishment in Drosophila.
Collapse
Affiliation(s)
- Jiajia Gao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan Gao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, 230009, China; Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
17
|
Matsubayashi Y. Dynamic movement and turnover of extracellular matrices during tissue development and maintenance. Fly (Austin) 2022; 16:248-274. [PMID: 35856387 PMCID: PMC9302511 DOI: 10.1080/19336934.2022.2076539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrices (ECMs) are essential for the architecture and function of animal tissues. ECMs have been thought to be highly stable structures; however, too much stability of ECMs would hamper tissue remodelling required for organ development and maintenance. Regarding this conundrum, this article reviews multiple lines of evidence that ECMs are in fact rapidly moving and replacing components in diverse organisms including hydra, worms, flies, and vertebrates. Also discussed are how cells behave on/in such dynamic ECMs, how ECM dynamics contributes to embryogenesis and adult tissue homoeostasis, and what molecular mechanisms exist behind the dynamics. In addition, it is highlighted how cutting-edge technologies such as genome engineering, live imaging, and mathematical modelling have contributed to reveal the previously invisible dynamics of ECMs. The idea that ECMs are unchanging is to be changed, and ECM dynamics is emerging as a hitherto unrecognized critical factor for tissue development and maintenance.
Collapse
Affiliation(s)
- Yutaka Matsubayashi
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Dorset, Poole, Dorset, UK
| |
Collapse
|
18
|
The basement membrane controls size and integrity of the Drosophila tracheal tubes. Cell Rep 2022; 39:110734. [PMID: 35476979 DOI: 10.1016/j.celrep.2022.110734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biological tubes are fundamental units of most metazoan organs. Their defective morphogenesis can cause malformations and pathologies. An integral component of biological tubes is the extracellular matrix, present apically (aECM) and basally (BM). Studies using the Drosophila tracheal system established an essential function for the aECM in tubulogenesis. Here, we demonstrate that the BM also plays a critical role in this process. We find that BM components are deposited in a spatial-temporal manner in the trachea. We show that laminins, core BM components, control size and shape of tracheal tubes and their topology within the embryo. At a cellular level, laminins control cell shape changes and distribution of the cortical cytoskeleton component α-spectrin. Finally, we report that the BM and aECM act independently-yet cooperatively-to control tube elongation and together to guarantee tissue integrity. Our results unravel key roles for the BM in shaping, positioning, and maintaining biological tubes.
Collapse
|
19
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
20
|
Reilein A, Kogan HV, Misner R, Park KS, Kalderon D. Adult stem cells and niche cells segregate gradually from common precursors that build the adult Drosophila ovary during pupal development. eLife 2021; 10:69749. [PMID: 34590579 PMCID: PMC8536258 DOI: 10.7554/elife.69749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022] Open
Abstract
Production of proliferative follicle cells (FCs) and quiescent escort cells (ECs) by follicle stem cells (FSCs) in adult Drosophila ovaries is regulated by niche signals from anterior (cap cells, ECs) and posterior (polar FCs) sources. Here we show that ECs, FSCs, and FCs develop from common pupal precursors, with different fates acquired by progressive separation of cells along the AP axis and a graded decline in anterior cell proliferation. ECs, FSCs, and most FCs derive from intermingled cell (IC) precursors interspersed with germline cells. Precursors also accumulate posterior to ICs before engulfing a naked germline cyst projected out of the germarium to form the first egg chamber and posterior polar FC signaling center. Thus, stem and niche cells develop in appropriate numbers and spatial organization through regulated proliferative expansion together with progressive establishment of spatial signaling cues that guide adult cell behavior, rather than through rigid early specification events.
Collapse
Affiliation(s)
- Amy Reilein
- Department of Biological Sciences, Columbia University, New York, United States
| | - Helen V Kogan
- Department of Biological Sciences, Columbia University, New York, United States
| | - Rachel Misner
- Department of Biological Sciences, Columbia University, New York, United States
| | - Karen Sophia Park
- Department of Biological Sciences, Columbia University, New York, United States
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, United States
| |
Collapse
|
21
|
Hayashi Y, Shibata A, Kamimura K, Kobayashi S. Heparan sulfate proteoglycan molecules, syndecan and perlecan, have distinct roles in the maintenance of Drosophila germline stem cells. Dev Growth Differ 2021; 63:295-305. [PMID: 34324711 DOI: 10.1111/dgd.12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
The Drosophila female germline stem cell (GSC) niche provides an excellent model for understanding the stem cell niche in vivo. The GSC niche is composed of stromal cells that provide growth factors for the maintenance of GSCs and the associated extracellular matrix (ECM). Although the function of stromal cells/growth factors has been well studied, the function of the ECM in the GSC niche is largely unknown. In this study, we investigated the function of syndecan and perlecan, molecules of the heparan sulfate proteoglycan (HSPG) family, as the main constituents of the ECM. We found that both of these genes were expressed in niche stromal cells, and knockdown of them in stromal cells decreased GSC number, indicating that these genes are important niche components. Interestingly, our genetic analysis revealed that the effects of syndecan and perlecan on the maintenance of GSC were distinct. While the knockdown of perlecan in the GSC niche increased the number of cystoblasts, a phenotype suggestive of delayed differentiation of GSCs, the same was not true in the context of syndecan. Notably, the overexpression of syndecan and perlecan did not cause an expansion of the GSC niche, opposing the results reported in the context of glypican, another HSPG gene. Altogether, our data suggest that HSPG genes contribute to the maintenance of GSCs through multiple mechanisms, such as the control of signal transduction, and ligand distribution/stabilization. Therefore, our study paves the way for a deeper understanding of the ECM functions in the stem cell niche.
Collapse
Affiliation(s)
- Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keisuke Kamimura
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Villa-Fombuena G, Lobo-Pecellín M, Marín-Menguiano M, Rojas-Ríos P, González-Reyes A. Live imaging of the Drosophila ovarian niche shows spectrosome and centrosome dynamics during asymmetric germline stem cell division. Development 2021; 148:271223. [PMID: 34370012 PMCID: PMC8489027 DOI: 10.1242/dev.199716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022]
Abstract
Drosophila female germline stem cells (GSCs) are found inside the cellular niche at the tip of the ovary. They undergo asymmetric divisions to renew the stem cell lineage and to produce sibling cystoblasts that will in turn enter differentiation. GSCs and cystoblasts contain spectrosomes, membranous structures essential for orientation of the mitotic spindle and that, particularly in GSCs, change shape depending on the cell cycle phase. Using live imaging and a fusion protein of GFP and the spectrosome component Par-1, we follow the complete spectrosome cycle throughout GSC division and quantify the relative duration of the different spectrosome shapes. We also determine that the Par-1 kinase shuttles between the spectrosome and the cytoplasm during mitosis and observe the continuous addition of new material to the GSC and cystoblast spectrosomes. Next, we use the Fly-FUCCI tool to define, in live and fixed tissues, that GSCs have a shorter G1 compared with the G2 phase. The observation of centrosomes in dividing GSCs allowed us to determine that centrosomes separate very early in G1, before centriole duplication. Furthermore, we show that the anterior centrosome associates with the spectrosome only during mitosis and that, upon mitotic spindle assembly, it translocates to the cell cortex, where it remains anchored until centrosome separation. Finally, we demonstrate that the asymmetric division of GSCs is not an intrinsic property of these cells, as the spectrosome of GSC-like cells located outside of the niche can divide symmetrically. Thus, GSCs display unique properties during division, a behaviour influenced by the surrounding niche. Summary: Imaging of live Drosophila germline stem cells in the ovarian niche reveals their asymmetric division and centrosome behaviour, whereas tumorous stem cells divide symmetrically.
Collapse
Affiliation(s)
- Gema Villa-Fombuena
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - María Lobo-Pecellín
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Miriam Marín-Menguiano
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Patricia Rojas-Ríos
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | - Acaimo González-Reyes
- Centro Andaluz de Biología del Desarrollo, CSIC/Universidad Pablo de Olavide/JA, Carretera de Utrera km 1, 41013 Sevilla, Spain
| |
Collapse
|
23
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|