1
|
Creemers J, Eens M, Ulenaers E, Lathouwers M, Evens R. Skyglow facilitates prey detection in a crepuscular insectivore: Distant light sources create bright skies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125821. [PMID: 39922414 DOI: 10.1016/j.envpol.2025.125821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Light profoundly shapes ecosystems, influencing the behaviour and niche specialisation of many species. This is especially true for visual predators, particularly crepuscular and nocturnal animals, whose foraging depends on adequate illumination. Despite this, research on how animals perceive light sources and position themselves relative to these sources is scarce. Using a modified dead-reckoning protocol based on GPS, accelerometer, and magnetic compass data, we investigated the body orientation of foraging European Nightjars (Caprimulgus europaeus, hereafter nightjar) to determine their line of sight relative to bright sections of the nocturnal sky, created by natural or artificial light. We found that nightjars are more likely to align themselves with brighter sections of the sky, although not necessarily with the brightest patch. On full moon nights, they positioned the moon within their line of sight when it was low on the horizon, but this likelihood decreased as the moon rose higher. During other moon phases, the likelihood of having the moon within line of sight increased linearly with moon altitude. During moonless parts of the night, nightjars appeared to use skyglow as a background for prey detection, but only when it was sufficiently bright. When both moonlight and skyglow were present, nightjars showed a preference for moonlight. This study shows that European Nightjars use illuminated sections of the sky, including skyglow, as bright backgrounds to detect flying prey. This suggests that, in the absence of the moon, nightjars can actively take advantage of this form of light pollution while foraging. However, the success of their hunting under skyglow-induced lighting remains unclear. We hypothesise that the effectiveness of these backgrounds depends on their brightness and colour composition. Further research is needed to better understand the complex dynamics of contrast detection under varying lighting conditions.
Collapse
Affiliation(s)
- Jitse Creemers
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium.
| | - Marcel Eens
- University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Havenlaan 88 bus 75, Herman Teirlinckgebouw, 1000, Brussels, Belgium
| | - Michiel Lathouwers
- Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Campus Diepenbeek, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium; University of Namur, Department of Geography, 61 Rue de Bruxelles, 5000, Namur, Belgium
| | - Ruben Evens
- Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384, Louvain-la-Neuve, Belgium; University of Antwerp, Department of Biology, Behavioural Ecology and Ecophysiology group, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
2
|
Burke LM, Davies TW, Wilcockson D, Jenkins S, Ellison A. Artificial light and cloud cover interact to disrupt celestial migrations at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173790. [PMID: 38851339 DOI: 10.1016/j.scitotenv.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The growth of human activity and infrastructure has led to an unprecedented rise in the use of Artificial Light at Night (ALAN) with demonstrable impacts on ecological communities and ecosystem services. However, there remains very little information on how ALAN interacts with or obscures light from celestial bodies, which provide vital orientating cues in a number of species. Furthermore, no studies to date have examined how climatic conditions such as cloud cover, known to influence the intensity of skyglow, interact with lunar irradiance and ALAN over the course of a lunar cycle to alter migratory abilities of species. Our night-time field study aimed to establish how lunar phase and climatic conditions (cloud cover) modulate the impact of ALAN on the abundance and migratory behaviour of Talitrus saltator, a key sandy beach detritivore which uses multiple light associated cues during nightly migrations. Our results showed that the number and size of individuals caught decreased significantly as ALAN intensity increased. Additionally, when exposed to ALAN more T. saltator were caught travelling parallel to the shoreline, indicating that the presence of ALAN is inhibiting their ability to navigate along their natural migration route, potentially impacting the distribution of the population. We found that lunar phase and cloud cover play a significant role in modifying the impact of ALAN, highlighting the importance of incorporating natural light cycles and climatic conditions when investigating ALAN impacts. Critically we demonstrate that light levels as low as 3 lx can have substantial effects on coastal invertebrate distributions. Our results provide the first evidence that ALAN impacted celestial migration can lead to changes to the distribution of a species.
Collapse
Affiliation(s)
- Leo M Burke
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK.
| | - Thomas W Davies
- University of Plymouth, School of Biological and Marine Sciences, Drake Circus, Plymouth PL4 8AA, UK
| | - David Wilcockson
- Aberystwyth University, Department of Life Sciences, Edward Llywd Building, Aberystwyth SY23 3DA, UK
| | - Stuart Jenkins
- Bangor University, School of Ocean Sciences, Menai Bridge LL59 5AB, UK
| | - Amy Ellison
- Bangor University, School of Natural Sciences, Bangor LL57 2UW, UK
| |
Collapse
|
3
|
Washington TM. Digest: How environmental light conditions shape the evolution of visual systems in birds. Evolution 2024; 78:1351-1352. [PMID: 38836322 DOI: 10.1093/evolut/qpae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
How do varying environmental light conditions influence the evolution of avian visual systems? Fröhlich et al. (2024) demonstrate that nocturnal birds evolved broader corneas and slightly longer axial lengths than their diurnal counterparts, increasing light capture efficiency. Nocturnal species also tended to maintain or reduce the size of brain regions responsible for vision, i.e., the optic tectum and the visual wulst. These results highlight adaptive trends in nocturnal species, where evolutionary improvement in low-light performance of eyes may be accompanied by compromised brain function.
Collapse
Affiliation(s)
- Tatjana M Washington
- Committee of Evolutionary Biology, Biological Sciences Division, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
Levy K, Wegrzyn Y, Moaraf S, Barnea A, Ayali A. When night becomes day: Artificial light at night alters insect behavior under semi-natural conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171905. [PMID: 38531451 DOI: 10.1016/j.scitotenv.2024.171905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Light is the most important Zeitgeber for temporal synchronization in nature. Artificial light at night (ALAN) disrupts the natural light-dark rhythmicity and thus negatively affects animal behavior. However, to date, ALAN research has been mostly conducted under laboratory conditions in this context. Here, we used the field cricket, Gryllus bimaculatus, to investigate the effect of ALAN on insect behavior under semi-natural conditions, i.e., under shaded natural lighting conditions, natural temperature and soundscape. Male crickets were placed individually in outdoor enclosures and exposed to ALAN conditions ranging from <0.01 to 1500 lx intensity. The crickets' stridulation behavior was recorded for 14 consecutive days and nights and their daily activity patterns were analysed. ALAN impaired the crickets' stridulation rhythm, evoking a change in the crickets' naturally synchronized daily activity period. This was manifested by a light-intensity-dependent increase in the proportion of insects demonstrating an intrinsic circadian rhythm (free-run behavior). This also resulted in a change in the population's median activity cycle period. These ALAN-induced effects occurred despite the crickets' exposure to almost natural conditions. Our findings provide further validity to our previous studies on ALAN conducted under lab conditions and establish the deleterious impacts of ALAN on animal behavioral patterns. TEASER: Artificial light at night alters cricket behavior and desynchronizes their stridulation even under near-natural conditions.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Yoav Wegrzyn
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Stan Moaraf
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel; Department of Natural Sciences, The Open University of Israel, Ra'anana 4353701, Israel
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, Ra'anana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel.
| |
Collapse
|
5
|
Levy K, Barnea A, Tauber E, Ayali A. Crickets in the spotlight: exploring the impact of light on circadian behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:267-279. [PMID: 38252321 PMCID: PMC10994875 DOI: 10.1007/s00359-023-01686-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Crickets serve as a well-established model organism in biological research spanning various fields, such as behavior, physiology, neurobiology, and ecology. Cricket circadian behavior was first reported over a century ago and prompted a wealth of studies delving into their chronobiology. Circadian rhythms have been described in relation to fundamental cricket behaviors, encompassing stridulation and locomotion, but also in hormonal secretion and gene expression. Here we review how changes in illumination patterns and light intensity differentially impact the different cricket behaviors as well as circadian gene expression. We further describe the cricket's circadian pacemaker. Ample anatomical manipulations support the location of a major circadian pacemaker in the cricket optic lobes and another in the central brain, possibly interconnected via signaling of the neuropeptide PDF. The cricket circadian machinery comprises a molecular cascade based on two major transcriptional/translational negative feedback loops, deviating somewhat from the canonical model of Drosophila and emphasizing the significance of exploring alternative models. Finally, the nocturnal nature of crickets has provided a unique avenue for investigating the repercussions of artificial light at night on cricket behavior and ecology, underscoring the critical role played by natural light cycles in synchronizing cricket behaviors and populations, further supporting the use of the cricket model in the study of the effects of light on insects. Some gaps in our knowledge and challenges for future studies are discussed.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| | - Anat Barnea
- Department of Natural Sciences, The Open University of Israel, 4353701, Ra'anana, Israel
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, 3103301, Haifa, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, 6997801, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
6
|
Fabian ST, Sondhi Y, Allen PE, Theobald JC, Lin HT. Why flying insects gather at artificial light. Nat Commun 2024; 15:689. [PMID: 38291028 PMCID: PMC10827719 DOI: 10.1038/s41467-024-44785-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of "lunar navigation" and "escape to the light". However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.
Collapse
Affiliation(s)
- Samuel T Fabian
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Yash Sondhi
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Pablo E Allen
- Council on International Educational Exchange, Monteverde Apto, 43-5655, Costa Rica
| | - Jamie C Theobald
- Institute for Environment, Department of Biology, Florida International University, Miami, FL, 33174, USA
| | - Huai-Ti Lin
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Grenis K, Nufio C, Wimp GM, Murphy SM. Does artificial light at night alter moth community composition? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220365. [PMID: 37899018 PMCID: PMC10613536 DOI: 10.1098/rstb.2022.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/28/2023] [Indexed: 10/31/2023] Open
Abstract
Ecological studies investigating the effects of artificial light at night (ALAN) have primarily focused on single or a few species, and seldom on community-level dynamics. As ALAN is a potential cause of insect and biodiversity declines, community-level perspectives are essential. We empirically tested the hypothesis that moth species differentially respond to ALAN and that these responses can cause shifts in community composition. We sampled moths from prairie fragments in Colorado, USA. We tested whether local light sources, sky glow, site area and/or vegetation affected moth community diversity. We found that increased sky glow decreased moth abundance and species richness and shifted community composition. Increased sky glow shifted moth community composition when light and bait traps were combined; notably this result appears to be driven entirely by moths sampled at bait traps, which is an unbiased sampling technique. Our results show that ALAN has significant effects on moth communities and that local light sources have contrasting effects on moth community composition compared to sky glow. It is imperative that we better understand the contrasting effects of types of ALAN to comprehend the overall impacts of light pollution on biodiversity declines. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Kylee Grenis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - César Nufio
- University of Colorado Museum of Natural History, University of Colorado Boulder, Boulder, CO, 80309, USA
- BioInteractive Department, Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Gina M. Wimp
- Department of Biology, Georgetown University, Washington, DC, 20057, USA
| | - Shannon M. Murphy
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| |
Collapse
|
8
|
Seymoure B, Dell A, Hölker F, Kalinkat G. A framework for untangling the consequences of artificial light at night on species interactions. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220356. [PMID: 37899016 PMCID: PMC10613547 DOI: 10.1098/rstb.2022.0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Although much evidence exists showing organismal consequences from artificial light at night (ALAN), large knowledge gaps remain regarding ALAN affecting species interactions. Species interactions occur via shared spatio-temporal niches among species, which may be determined by natural light levels. We review how ALAN is altering these spatio-temporal niches through expanding twilight or full Moon conditions and constricting nocturnal conditions as well as creating patches of bright and dark. We review literature from a database to determine if ALAN is affecting species interactions via spatio-temporal dynamics. The literature indicates a growing interest in ALAN and species interactions: 58% of the studies we analysed have been published since 2020. Seventy-five of 79 studies found ALAN altered species interactions. Enhancements and reductions of species interactions were equally documented. Many studies revealed ALAN affecting species interactions spatially, but few revealed temporal alterations. There are biases regarding species interactions and ALAN-most studies investigated predator-prey interactions with vertebrates as predators and invertebrates as prey. Following this literature review, we suggest avenues, such as remote sensing and animal tracking, that can guide future research on the consequences of ALAN on species interactions across spatial and temporal axes. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Brett Seymoure
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anthony Dell
- National Great Rivers Research and Education Center, Alton, IL 62024, USA
- Department of Biology, WashingtonUniversity in St Louis, St Louis, MO 63130, USA
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 12587 Berlin, Germany
| | - Gregor Kalinkat
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 14195 Berlin, Germany
| |
Collapse
|
9
|
Dyer A, Ryser R, Brose U, Amyntas A, Bodnar N, Boy T, Franziska Bucher S, Cesarz S, Eisenhauer N, Gebler A, Hines J, Kyba CCM, Menz MHM, Rackwitz K, Shatwell T, Terlau JF, Hirt MR. Insect communities under skyglow: diffuse night-time illuminance induces spatio-temporal shifts in movement and predation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220359. [PMID: 37899019 PMCID: PMC10613549 DOI: 10.1098/rstb.2022.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nora Bodnar
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Boy
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Christopher C. M. Kyba
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany
- Geographisches Institut, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Myles H. M. Menz
- College of Science and Engineering, James Cook University, 4811 Townsville, Australia
- Department of Migration, Max Planck Institute of Animal Behaviour, 78315 Radolfzell, Germany
| | - Karl Rackwitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), 39114 Magdeburg, Germany
| | - Jördis F. Terlau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
10
|
Cox DTC, Gaston KJ. Global erosion of terrestrial environmental space by artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166701. [PMID: 37652384 DOI: 10.1016/j.scitotenv.2023.166701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Artificial light at night (ALAN) disrupts natural light cycles, with biological impacts that span from behaviour of individual organisms to ecosystem functions, and across bacteria, fungi, plants and animals. Global consequences have almost invariably been inferred from the geographic distribution of ALAN. How ALAN is distributed in environmental space, and the extent to which combinations of environmental conditions with natural light cycles have been lost, is also key. Globally (between 60°N and 56°S), we ordinated four bioclimatic variables at 1.61 * 1.21 km resolution to map the position and density of terrestrial pixels within nighttime environmental space. We then used the Black Marble Nighttime Lights product to determine where direct ALAN emissions were present in environmental space in 2012 and how these had expanded in environmental space by 2022. Finally, we used the World Atlas of Artificial Sky Brightness to determine the proportion of environmental space that is unaffected by ALAN across its spatial distribution. We found that by 2012 direct ALAN emissions occurred across 71.9 % of possible nighttime terrestrial environmental conditions, with temperate nighttime environments and highly modified habitats disproportionately impacted. From 2012 to 2022 direct ALAN emissions primarily grew within 34.4 % of environmental space where it was already present, with this growth concentrated in tropical environments. Additionally considering skyglow, just 13.2 % of environmental space now only experiences natural light cycles throughout its distribution. With opportunities to maintain much of environmental space under such cycles fast disappearing, the removal, reduction and amelioration of ALAN from areas of environmental space in which it is already widespread is critical.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
11
|
Evens R, Lathouwers M, Pradervand JN, Jechow A, Kyba CCM, Shatwell T, Jacot A, Ulenaers E, Kempenaers B, Eens M. Skyglow relieves a crepuscular bird from visual constraints on being active. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165760. [PMID: 37506901 DOI: 10.1016/j.scitotenv.2023.165760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Artificial light at night significantly alters the predictability of the natural light cycles that most animals use as an essential Zeitgeber for daily activity. Direct light has well-documented local impacts on activity patterns of diurnal and nocturnal organisms. However, artificial light at night also contributes to an indirect illumination of the night sky, called skyglow, which is rapidly increasing. The consequences of this wide-spread form of artificial night light on the behaviour of animals remain poorly understood, with only a few studies performed under controlled (laboratory) conditions. Using animal-borne activity loggers, we investigated daily and seasonal flight activity of a free-living crepuscular bird species in response to nocturnal light conditions at sites differing dramatically in exposure to skyglow. We find that flight activity of European Nightjars (Caprimulgus europaeus) during moonless periods of the night is four times higher in Belgium (high skyglow exposure) than in sub-tropical Africa and two times higher than in Mongolia (near-pristine skies). Moreover, clouds darken the sky under natural conditions, but skyglow can strongly increase local sky brightness on overcast nights. As a result, we find that nightjars' response to cloud cover is reversed between Belgium and sub-tropical Africa and between Belgium and Mongolia. This supports the hypothesis that cloudy nights reduce individual flight activity in a pristine environment, but increase it when the sky is artificially lit. Our study shows that in the absence of direct light pollution, anthropogenic changes in sky brightness relieve nightjars from visual constraints on being active. Individuals adapt daily activities to artificial night-sky brightness, allowing them more time to fly than conspecifics living under natural light cycles. This modification of the nocturnal timescape likely affects behavioural processes of most crepuscular and nocturnal species, but its implications for population dynamics and interspecific interactions remain to be investigated.
Collapse
Affiliation(s)
- Ruben Evens
- Department of Biology, Behavioural Ecology and Ecophysiology group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | - Michiel Lathouwers
- Hasselt University, Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; University of Namur, Department of Geography, Institute of Life, Earth and Environment (ILEE), Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Jean-Nicolas Pradervand
- Swiss Ornithological Institute, Regional Office Valais, Rue du Rhône 11, 1950 Sion, Switzerland
| | - Andreas Jechow
- Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin
| | | | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Brückstr. 3a, 39114 Magdeburg, Germany
| | - Alain Jacot
- Swiss Ornithological Institute, Regional Office Valais, Rue du Rhône 11, 1950 Sion, Switzerland
| | - Eddy Ulenaers
- Agentschap Natuur en Bos, Regio Noord-Limburg, Herman Teirlinck Havenlaan 88 bus 75, 1000 Brussels, Belgium
| | - Bart Kempenaers
- Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
12
|
Jägerbrand AK, Spoelstra K. Effects of anthropogenic light on species and ecosystems. Science 2023; 380:1125-1130. [PMID: 37319223 DOI: 10.1126/science.adg3173] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Anthropogenic light is ubiquitous in areas where humans are present and is showing a progressive increase worldwide. This has far-reaching consequences for most species and their ecosystems. The effects of anthropogenic light on natural ecosystems are highly variable and complex. Many species suffer from adverse effects and often respond in a highly specific manner. Ostensibly surveyable effects such as attraction and deterrence become complicated because these can depend on the type of behavior and specific locations. Here, we considered how solutions and new technologies could reduce the adverse effects of anthropogenic light. A simple solution to reducing and mitigating the ecological effects of anthropogenic light seems unattainable, because frugal lighting practices and turning off lights may be necessary to eliminate them.
Collapse
Affiliation(s)
- Annika K Jägerbrand
- Department of Electrical Engineering, Mathematics and Science, Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700 AB Wageningen, Netherlands
| |
Collapse
|
13
|
Lech JC, Halma MT, Obajuluwa AO, Baker M, Hamblin MR. Fiat Lux: Light and Pedagogy for the 21st Century. Ann Neurosci 2023; 30:133-142. [PMID: 37706102 PMCID: PMC10496794 DOI: 10.1177/09727531221136646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/11/2022] [Indexed: 09/15/2023] Open
Abstract
Background The relationship between the quality of the learning environment and student outcomes is receiving more serious attention from educational psychologists, neurologists, ophthalmologists, orthopedists, surgeons, oncologists, architects, ergonomists, nutritionists, and Michelin star chefs. There is a role for ergonomic office and school design to positively impact worker and student productivity, and one design attribute drawing attention is the indoor lit environment. In this review, we expand upon the role that light plays in education, as it has enabled millions of pupils to read at late hours, which were previously too dark. However, still unappreciated is the biological effects of artificial light on circadian rhythm and its subsequent impacts on health and learning outcomes. Summary This review describes the current state of light in the educational environment, its impact, and the effect of certain inexpensive and easy-to-implement adaptations to better support student growth, learning and development. We find that the current lighting environment for pupils is sub-optima based on biological mechanism and may be improved through cost effective interventions. These interventions can achieve greater biological harmonization and improve learner outcomes. Key Message The impact of the lighting environment in educational institutions on pupil biology has received minimal attention thus far. The current lighting environment in schools is not conducive to student health and educational performance. Cost-effective approaches can have an outsized impact on student health and educational attainment. We strongly recommend educational institutions take the lit environment into account when designing educational programs.
Collapse
Affiliation(s)
- James C. Lech
- * These authors share joint first authorship
- Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam (UMC), Amsterdam, The Netherlands
- National Research Foundation, South Africa
- International EMF Project & Optical Radiation, World Health Organization, Pretoria, South Africa
| | - Matthew T.J. Halma
- * These authors share joint first authorship
- Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, The Netherlands
| | - Adejoke O. Obajuluwa
- Biotechnology Unit, Department of Biological Sciences, Afe Babalola University, Olusegun Obasanjo Way, Ado Ekiti, Nigeria
| | - Malcolm Baker
- † Passed away June 16, 2021
- Department of Neurology, 1 Military Hospital, Pretoria, Department of Defence, South Africa Military Health Service Pretoria
- Department of Neurology, University of Pretoria, South Africa
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
14
|
Levy K, Barnea A, Ayali A. Exposure to a nocturnal light pulse simultaneously and differentially affects stridulation and locomotion behaviors in crickets. Front Physiol 2023; 14:1151570. [PMID: 37008009 PMCID: PMC10061070 DOI: 10.3389/fphys.2023.1151570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
It is crucial for living organisms to be in synchrony with their environment and to anticipate circadian and annual changes. The circadian clock is responsible for entraining organisms' activity to the day-night rhythmicity. Artificial light at night (ALAN) was shown to obstruct the natural light cycle, leading to desynchronized behavioral patterns. Our knowledge of the mechanisms behind these adverse effects of ALAN, however, is far from complete. Here we monitored the stridulation and locomotion behavior of male field crickets (Gryllus bimaculatus), raised under light:dark conditions, before, during, and after exposure to a nocturnal 3-h pulse of different ALAN intensities. The experimental insects were then placed under a constant light regime (of different intensities); their behavior was continuously monitored; and the period of their daily activity rhythms was calculated. The light pulse treatment induced a simultaneous negative (suppressing stridulation) and positive (inducing locomotion) effect, manifested in significant changes in the average level of the specific activity on the night of the pulse compared to the preceding and the following nights. The transition to constant light conditions led to significant changes in the period of the circadian rhythms. Both effects were light-intensity-dependent, indicating the importance of dark nights for both individual and population synchronization.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Degen T, Kolláth Z, Degen J. X,Y, and Z: A bird's eye view on light pollution. Ecol Evol 2022; 12:e9608. [PMID: 36540078 PMCID: PMC9754910 DOI: 10.1002/ece3.9608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
The global increase in light pollution is being viewed with growing concern, as it has been reported to have negative effects ranging from the individual to the ecosystem level.Unlike movement on the ground, flying and swimming allows vertical motion. Here, we demonstrate that flight altitude change is crucial to the perception and susceptibility of artificial light at night of air-borne organisms. Because air-borne species can propagate through the airspace and easily across ecotones, effects might not be small-scale. Therefore, we propose including airspace as a vital habitat in the concept of ecological light pollution.The interplay between flight altitude and the effects of light pollution may not only be crucial for understanding flying species but may also provide valuable insights into the mechanisms of responses to artificial light at night in general.
Collapse
Affiliation(s)
- Tobias Degen
- Department of Zoology IIIUniversity of WürzburgWürzburgGermany
- Department of Zoology IIUniversity of WürzburgWürzburgGermany
| | - Zoltán Kolláth
- Department of PhysicsEszterházy Károly Catholic UniversityEgerHungary
| | | |
Collapse
|
16
|
Effect of artificial light on activity in frugivorous bats (Pteropodidae). J ETHOL 2022. [DOI: 10.1007/s10164-022-00771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Abstract
The ability to see colour at night is known only from a handful of animals. First discovered in the elephant hawk moth Deilephila elpenor, nocturnal colour vision is now known from two other species of hawk moths, a single species of carpenter bee, a nocturnal gecko and two species of anurans. The reason for this rarity—particularly in vertebrates—is the immense challenge of achieving a sufficient visual signal-to-noise ratio to support colour discrimination in dim light. Although no less challenging for nocturnal insects, unique optical and neural adaptations permit reliable colour vision and colour constancy even in starlight. Using the well-studied Deilephila elpenor, we describe the visual light environment at night, the visual challenges that this environment imposes and the adaptations that have evolved to overcome them. We also explain the advantages of colour vision for nocturnal insects and its usefulness in discriminating night-opening flowers. Colour vision is probably widespread in nocturnal insects, particularly pollinators, where it is likely crucial for nocturnal pollination. This relatively poorly understood but vital ecosystem service is threatened from increasingly abundant and spectrally abnormal sources of anthropogenic light pollution, which can disrupt colour vision and thus the discrimination and pollination of flowers. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Eric Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research, Maruthamala PO, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
18
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Levy K, Fishman B, Barnea A, Ayali A, Tauber E. Transcriptional Response of Circadian Clock Genes to an ‘Artificial Light at Night’ Pulse in the Cricket Gryllus bimaculatus. Int J Mol Sci 2022; 23:ijms231911358. [PMID: 36232659 PMCID: PMC9570371 DOI: 10.3390/ijms231911358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light–dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light–dark-regime-raised crickets were exposed for 30 min to a light pulse of 2–40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket’s circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.
Collapse
Affiliation(s)
- Keren Levy
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Raanana 4353701, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel-Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv 6997801, Israel
- Correspondence: (A.A.); (E.T.)
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Correspondence: (A.A.); (E.T.)
| |
Collapse
|
20
|
Tidau S, Whittle J, Jenkins SR, Davies TW. Artificial light at night reverses monthly foraging pattern under simulated moonlight. Biol Lett 2022; 18:20220110. [PMID: 35892207 PMCID: PMC9326264 DOI: 10.1098/rsbl.2022.0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.,School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Jack Whittle
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Stuart R Jenkins
- School of Ocean Sciences, University of Bangor, Menai Bridge LL59 5AB, UK
| | - Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
21
|
Owens ACS, Dressler CT, Lewis SM. Costs and benefits of "insect friendly" artificial lights are taxon specific. Oecologia 2022; 199:487-497. [PMID: 35650413 DOI: 10.1007/s00442-022-05189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 01/13/2023]
Abstract
The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly.
Collapse
Affiliation(s)
- Avalon C S Owens
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | - Caroline T Dressler
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.,Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman Street, Providence, RI, 02912, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| |
Collapse
|
22
|
Storms M, Jakhar A, Mitesser O, Jechow A, Hölker F, Degen T, Hovestadt T, Degen J. The rising moon promotes mate finding in moths. Commun Biol 2022; 5:393. [PMID: 35484191 PMCID: PMC9051113 DOI: 10.1038/s42003-022-03331-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths. The experimental release of male moths show that moon presence, location, and elevation affect their finding of mates.
Collapse
Affiliation(s)
- Mona Storms
- Biocenter of the University of Würzburg, Würzburg, Germany
| | - Aryan Jakhar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | | | - Andreas Jechow
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Tobias Degen
- Biocenter of the University of Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
23
|
Hölker F, Bolliger J, Davies TW, Giavi S, Jechow A, Kalinkat G, Longcore T, Spoelstra K, Tidau S, Visser ME, Knop E. 11 Pressing Research Questions on How Light Pollution Affects Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.767177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Artificial light at night (ALAN) is closely associated with modern societies and is rapidly increasing worldwide. A dynamically growing body of literature shows that ALAN poses a serious threat to all levels of biodiversity—from genes to ecosystems. Many “unknowns” remain to be addressed however, before we fully understand the impact of ALAN on biodiversity and can design effective mitigation measures. Here, we distilled the findings of a workshop on the effects of ALAN on biodiversity at the first World Biodiversity Forum in Davos attended by several major research groups in the field from across the globe. We argue that 11 pressing research questions have to be answered to find ways to reduce the impact of ALAN on biodiversity. The questions address fundamental knowledge gaps, ranging from basic challenges on how to standardize light measurements, through the multi-level impacts on biodiversity, to opportunities and challenges for more sustainable use.
Collapse
|
24
|
Lesser E. Urban dung beetles forge fresh paths. J Exp Biol 2021. [DOI: 10.1242/jeb.237362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|