1
|
Muirhead CS, Guerra S, Fox BW, Schroeder FC, Srinivasan J. Serotonergic signaling governs C. elegans sensory response to conflicting olfactory stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644218. [PMID: 40166147 PMCID: PMC11957155 DOI: 10.1101/2025.03.19.644218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neural circuits that consolidate sensory cues are essential for neurological functioning. Neural circuits that perform sensory integration can vary greatly because the sensory processing regions of the brain employ various neural motifs. Here, we investigate a neural circuit that mediates the response to conflicting olfactory stimuli in C. elegans . We concurrently expose animals to an aversive dispersal pheromone, osas#9, and an attractive bacterial extract. While worms usually avoid osas#9 alone, they suppress this avoidance behavior in the presence of a bacterial extract. Loss-of-function mutants and cell-specific rescues reveal that serotonergic signaling from the ADF neuron is essential for bacterial extract-induced osas#9 avoidance attenuation. The inhibitory serotonin receptor, MOD-1, which is widely expressed on interneurons and motor neurons, is required for this sensory integration, suggesting that serotonin acts in an inhibitory manner. By performing calcium imaging on the ADF neurons in synaptic signaling ( unc-13 ) and peptidergic ( unc-31 ) signaling mutant backgrounds, we show that the ADF neurons require input from other neurons, likely the ASK neurons, to respond to food extracts. We reveal a cue integration neural circuit in which serotonergic signaling at the sensory neuron level silences an aversive neural signal. Significance Animals use sensory cues to make behavioral choices and sometimes, these cues convey opposite information. The nervous system consolidates competing sensory cues to create a coherent response to external stimuli. The neural circuits that govern this process are important, and still largely unknown. We use C. elegans, a soil-dwelling nematode, to uncover a neural circuit governing the consolidation of competing cues by concurrently exposing worms to positive and negative stimuli . We find that the neurotransmitter serotonin can suppress aversive neural signals created by negative stimuli. These results show the important neurological role that serotonin plays in modulating neural signals.
Collapse
|
2
|
Wang Y, Sun X, Feng L, Zhang K, Yang W. Nervous system guides behavioral immunity in Caenorhabditis elegans. PeerJ 2024; 12:e18289. [PMID: 39430568 PMCID: PMC11488496 DOI: 10.7717/peerj.18289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Caenorhabditis elegans is a versatile model organism for exploring complex biological systems. Microbes and the external environment can affect the nervous system and drive behavioral changes in C. elegans. For better survival, C. elegans may develop behavioral immunity to avoid potential environmental pathogens. However, the molecular and cellular mechanisms underlying this avoidance behavior are not fully understood. The dissection of sensorimotor circuits in behavioral immunity may promote advancements in research on the neuronal connectome in uncovering neuronal regulators of behavioral immunity. In this review, we discuss how the nervous system coordinates behavioral immunity by translating various pathogen-derived cues and physiological damage to motor output in response to pathogenic threats in C. elegans. This understanding may provide insights into the fundamental principles of immune strategies that can be applied across species and potentially contribute to the development of novel therapies for immune-related diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuehong Sun
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lixiang Feng
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kui Zhang
- Department of Forensic Pathology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wenxing Yang
- Department of Physiology/West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
4
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Hernando G, Turani O, Rodriguez Araujo N, Bouzat C. The diverse family of Cys-loop receptors in Caenorhabditis elegans: insights from electrophysiological studies. Biophys Rev 2023; 15:733-750. [PMID: 37681094 PMCID: PMC10480131 DOI: 10.1007/s12551-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.
Collapse
Affiliation(s)
- Guillermina Hernando
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Ornella Turani
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Noelia Rodriguez Araujo
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Bioquímicas de Bahía Blanca, Camino La Carrindanga Km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
6
|
Dag U, Nwabudike I, Kang D, Gomes MA, Kim J, Atanas AA, Bueno E, Estrem C, Pugliese S, Wang Z, Towlson E, Flavell SW. Dissecting the functional organization of the C. elegans serotonergic system at whole-brain scale. Cell 2023; 186:2574-2592.e20. [PMID: 37192620 PMCID: PMC10484565 DOI: 10.1016/j.cell.2023.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Serotonin influences many aspects of animal behavior. But how serotonin acts on its diverse receptors across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release in C. elegans alters brain-wide activity to induce foraging behaviors, like slow locomotion and increased feeding. Comprehensive genetic analyses identify three core serotonin receptors (MOD-1, SER-4, and LGC-50) that induce slow locomotion upon serotonin release and others (SER-1, SER-5, and SER-7) that interact with them to modulate this behavior. SER-4 induces behavioral responses to sudden increases in serotonin release, whereas MOD-1 induces responses to persistent release. Whole-brain imaging reveals widespread serotonin-associated brain dynamics, spanning many behavioral networks. We map all sites of serotonin receptor expression in the connectome, which, together with synaptic connectivity, helps predict which neurons show serotonin-associated activity. These results reveal how serotonin acts at defined sites across a connectome to modulate brain-wide activity and behavior.
Collapse
Affiliation(s)
- Ugur Dag
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ijeoma Nwabudike
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungsoo Kim
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassi Estrem
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziyu Wang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emma Towlson
- Department of Computer Science, Department of Physics and Astronomy, Hotchkiss Brain Institute, Alberta Children's Research Hospital, University of Calgary, Calgary, AB, Canada
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hardege I, Morud J, Courtney A, Schafer WR. A Novel and Functionally Diverse Class of Acetylcholine-Gated Ion Channels. J Neurosci 2023; 43:1111-1124. [PMID: 36604172 PMCID: PMC9962794 DOI: 10.1523/jneurosci.1516-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fast cholinergic neurotransmission is mediated by acetylcholine-gated ion channels; in particular, excitatory nicotinic acetylcholine receptors play well established roles in virtually all nervous systems. Acetylcholine-gated inhibitory channels have also been identified in some invertebrate phyla, yet their roles in the nervous system are less well understood. We report the existence of multiple new inhibitory ion channels with diverse ligand activation properties in Caenorhabditis elegans We identify three channels, LGC-40, LGC-57, and LGC-58, whose primary ligand is choline rather than acetylcholine, as well as the first evidence of a truly polymodal channel, LGC-39, which is activated by both cholinergic and aminergic ligands. Using our new ligand-receptor pairs we uncover the surprising extent to which single neurons in the hermaphrodite nervous system express both excitatory and inhibitory channels, not only for acetylcholine but also for the other major neurotransmitters. The results presented in this study offer new insight into the potential evolutionary benefit of a vast and diverse repertoire of ligand-gated ion channels to generate complexity in an anatomically compact nervous system.SIGNIFICANCE STATEMENT Here we describe the diversity of cholinergic signaling in the nematode Caenorhabditis elegans We identify and characterize a novel family of ligand-gated ion channels and show that they are preferentially gated by choline rather than acetylcholine and expressed broadly in the nervous system. Interestingly, we also identify one channel gated by chemically diverse ligands including acetylcholine and aminergic ligands. By using our new knowledge of these ligand-gated ion channels, we built a model to predict the synaptic polarity in the C. elegans connectome. This model can be used for generating hypotheses on neural circuit function.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - William R Schafer
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Dag U, Nwabudike I, Kang D, Gomes MA, Kim J, Atanas AA, Bueno E, Estrem C, Pugliese S, Wang Z, Towlson E, Flavell SW. Dissecting the Functional Organization of the C. elegans Serotonergic System at Whole-Brain Scale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524132. [PMID: 36711891 PMCID: PMC9882198 DOI: 10.1101/2023.01.15.524132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Serotonin controls many aspects of animal behavior and cognition. But how serotonin acts on its diverse receptor types in neurons across the brain to modulate global activity and behavior is unknown. Here, we examine how serotonin release from a feeding-responsive neuron in C. elegans alters brain-wide activity to induce foraging behaviors, like slow locomotion and increased feeding. A comprehensive genetic analysis identifies three core serotonin receptors that collectively induce slow locomotion upon serotonin release and three others that interact with them to further modulate this behavior. The core receptors have different functional roles: some induce behavioral responses to sudden increases in serotonin release, whereas others induce responses to persistent release. Whole-brain calcium imaging reveals widespread serotonin-associated brain dynamics, impacting different behavioral networks in different ways. We map out all sites of serotonin receptor expression in the connectome, which, together with synaptic connectivity, helps predict serotonin-associated brain-wide activity changes. These results provide a global view of how serotonin acts at defined sites across a connectome to modulate brain-wide activity and behavior.
Collapse
Affiliation(s)
- Ugur Dag
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally to this work
| | - Ijeoma Nwabudike
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally to this work
| | - Di Kang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- These authors contributed equally to this work
| | - Matthew A. Gomes
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungsoo Kim
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A. Atanas
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cassi Estrem
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Pugliese
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziyu Wang
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emma Towlson
- Department of Computer Science, Department of Physics and Astronomy, Hotchkiss Brain Institute, Alberta Children’s Research Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Steven W. Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Hardege I, Morud J, Yu J, Wilson TS, Schroeder FC, Schafer WR. Neuronally produced betaine acts via a ligand-gated ion channel to control behavioral states. Proc Natl Acad Sci U S A 2022; 119:e2201783119. [PMID: 36413500 PMCID: PMC9860315 DOI: 10.1073/pnas.2201783119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Trimethylglycine, or betaine, is an amino acid derivative found in diverse organisms, from bacteria to plants and animals, with well-established functions as a methyl donor and osmolyte in all cells. In addition, betaine is found in the nervous system, though its function there is not well understood. Here, we show that betaine is synthesized in the nervous system of the nematode worm, Caenorhabditis elegans, where it functions in the control of different behavioral states. Specifically, we find that betaine can be produced in a pair of interneurons, the RIMs, and packed into synaptic vesicles by the vesicular monoamine transporter, CAT-1, expressed in these cells. Mutant animals defective in betaine synthesis are unable to control the switch from local to global foraging, a phenotype that can be rescued by restoring betaine specifically to the RIM neurons. These effects on behavior are mediated by a newly identified betaine-gated chloride channel, LGC-41, which is expressed broadly in the navigation circuit. These results implicate neuronally produced betaine as a neuromodulator in vivo and suggest a potentially similar role for betaine in nervous systems of other animals.
Collapse
Affiliation(s)
- Iris Hardege
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Julia Morud
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Tatiana S. Wilson
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Frank C. Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - William R. Schafer
- MRC Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Department of Biology, KU Leuven, Leuven3000, Belgium
| |
Collapse
|
10
|
Rodriguez Araujo N, Hernando G, Corradi J, Bouzat C. The nematode serotonin-gated chloride channel MOD-1: A novel target for anthelmintic therapy. J Biol Chem 2022; 298:102356. [PMID: 35952761 PMCID: PMC9471462 DOI: 10.1016/j.jbc.2022.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 10/29/2022] Open
Abstract
Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.
Collapse
Affiliation(s)
- Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
11
|
Calahorro F, Chapman M, Dudkiewicz K, Holden-Dye L, O'Connor V. PharmacoGenetic targeting of a C. elegans essential neuron provides an in vivo screening for novel modulators of nematode ion channel function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105152. [PMID: 35973757 DOI: 10.1016/j.pestbp.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chemical or drug treatments are successfully used to treat parasitic nematode infections that impact human, animal and plant health. Many of these exert their effects through modifying neural function underpinning behaviours essential for parasite viability. Selectivity against the parasite may be achieved through distinct pharmacological properties of the parasite nervous system, as exemplified by the success of the ivermectin which target a glutamate-gated chloride channel found only in invertebrates. Despite the success of the ivermectins, emerging resistance and concerns around eco-toxicity are driving the search for new nematocidal chemicals or drugs. Here, we describe the potential of a 5-HT-gated chloride channel MOD-1, which is involved in vital parasite behaviours with constrained distribution in the invertebrate phyla. This ion channel has potential pharmacophores that could be targeted by new nematocidal chemicals and drugs. We have developed a microtiter based bioassay for MOD-1 pharmacology based on its ectopic expression in the Caenorhabditis elegans essential neuron M4. We have termed this technology 'PhaGeM4' for 'Pharmacogenetic targeting of M4 neuron'. Exposure of transgenic worms harbouring ectopically expressed MOD-1 to 5-HT results in developmental arrest. By additional expression of a fluorescence marker in body wall muscle to monitor growth we demonstrate that this assay is suitable for the identification of receptor agonists and antagonists. Indeed, the developmental progression is a robustly quantifiable bioassay that resolves MOD-1 activation by quipazine, 5-carboxyamidotryptamine and fluoxetine and highlight methiothepin as a potent antagonist. This assay has the intrinsic ability to highlight compounds with optimal bioavailability and furthermore to filter out off-target effects. It can be extended to the investigation of other classes of membrane receptors and modulators of neuronal excitation. This approach based on heterologous modulation of the essential M4 neuron function offers a route to discover new effective and selective anthelmintics potentially less confounded by disruptive environmental impact.
Collapse
Affiliation(s)
- Fernando Calahorro
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK.
| | - Mark Chapman
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Katarzyna Dudkiewicz
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| | - Vincent O'Connor
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK
| |
Collapse
|
12
|
Liu H, Wu T, Canales XG, Wu M, Choi MK, Duan F, Calarco JA, Zhang Y. Forgetting generates a novel state that is reactivatable. SCIENCE ADVANCES 2022; 8:eabi9071. [PMID: 35148188 PMCID: PMC8836790 DOI: 10.1126/sciadv.abi9071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
Forgetting is defined as a time-dependent decline of a memory. However, it is not clear whether forgetting reverses the learning process to return the brain to the naive state. Here, using the aversive olfactory learning of pathogenic bacteria in C. elegans, we show that forgetting generates a novel state of the nervous system that is distinct from the naive state or the learned state. A transient exposure to the training condition or training odorants reactivates this novel state to elicit the previously learned behavior. An AMPA receptor and a type II serotonin receptor act in the central neuron of the learning circuit to decrease and increase the speed to reach this novel state, respectively. Together, our study systematically characterizes forgetting and uncovers conserved mechanisms underlying the rate of forgetting.
Collapse
Affiliation(s)
- He Liu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xicotencatl Gracida Canales
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Min Wu
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - John A. Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Aprison EZ, Ruvinsky I. The roles of several sensory neurons and the feedback from egg laying in regulating the germline response to a sex pheromone in C. elegans hermaphrodites. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000523. [PMID: 35128345 PMCID: PMC8811620 DOI: 10.17912/micropub.biology.000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Animals broadcast small molecule pheromones that can alter behavior and physiology in conspecifics. Neuronal circuits that regulate these processes remain largely unknown. In C. elegans, male-enriched ascaroside sex pheromone ascr#10, in addition to behavioral effects, expands the population of germline precursor cells in hermaphrodites. Previously, we identified several sensory neurons required for this effect. We also found that feedback from egg laying acts via serotonergic signaling to license the pheromone response in reproducing adults. Here, using newly available reagents, we confirm and extend several of our previous conclusions: a) the ADL neurons are essential for the ascr#10 response, b) phasmid neurons (PHA and PHB) are unlikely to be involved in the ascr#10 response, c) the mod-1 receptor is the main conduit of the serotonergic feedback from egg laying, and d) serotonin remains the only currently known signal of this feedback. Our findings better define the neuronal circuits that mediate the germline response to the major male pheromone.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University
| |
Collapse
|
14
|
Pujol N, Ewbank JJ. C. elegans: out on an evolutionary limb. Immunogenetics 2021; 74:63-73. [PMID: 34761293 DOI: 10.1007/s00251-021-01231-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.
Collapse
Affiliation(s)
- Nathalie Pujol
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France.
| | - Jonathan J Ewbank
- Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
15
|
Yu AJ, Rankin CH. Neurobiology: From genome and connectome to understanding behavior. Curr Biol 2021; 31:R1135-R1138. [PMID: 34637717 DOI: 10.1016/j.cub.2021.08.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many forms of synaptic plasticity are mediated by changes in the abundance, density, and expression levels of postsynaptic ionotropic receptors. A new study identifies the endogenous ligands of five 'orphan' aminergic ligand-gated ion channels in Caenorhabditis elegans, functionally characterizes these channels, and explores the role of one of them in a simple form of learning.
Collapse
Affiliation(s)
- Alex J Yu
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H Rankin
- Djavad Mowfaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|