1
|
Garland KL, Hay EM, Field DJ, Evans AR. Common developmental origins of beak shapes and evolution in theropods. iScience 2025; 28:112246. [PMID: 40235591 PMCID: PMC11999624 DOI: 10.1016/j.isci.2025.112246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
Vertebrate beaks show a remarkable diversity of forms, epitomized by birds and non-avian theropods. Few studies have investigated how underlying developmental processes influence beak shape. The power cascade is a model of growth describing the log-log linear relationship of the beak radius with distance from the tip. We measured beak and toothed snout shapes in 127 species across 120 families of extant birds and extinct non-avian theropods and found that 95% followed the power cascade model. Ancestral state estimation suggests that the power cascade constitutes a fundamental growth pattern of the theropod rostrum, and perhaps all vertebrate rostra. The morphospace defined by the power cascade shows how bird beak shape explores the geometries associated with ecological specializations while adhering to the growth model. We show that the power cascade influences the macroevolutionary exploration of rostrum morphospace, enabling extant birds to inhabit all components of Earth's biosphere.
Collapse
Affiliation(s)
| | - Eleanor M. Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Daniel J. Field
- Department of Earth Sciences & Museum of Zoology, University of Cambridge, Cambridge, UK
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
- Museums Victoria Research Institute, Museums Victoria, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Pereyra EES, Vrdoljak J, Ezcurra MD, González-Dionis J, Paschetta C, Méndez AH. Morphology of the maxilla informs about the type of predation strategy in the evolution of Abelisauridae (Dinosauria: Theropoda). Sci Rep 2025; 15:7857. [PMID: 40050618 PMCID: PMC11885552 DOI: 10.1038/s41598-025-87289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025] Open
Abstract
Abelisauridae is a clade of theropods distinguished by short, ornamented skulls and strongly reduced forelimbs. They represented the most abundant predatory dinosaurs in Gondwana during the Cretaceous. Bolstered by biomechanical studies, the morphology of the skull and vertebral column of abelisaurids, have led researchers to hypothesize that Late Cretaceous forms were "specialized hunters." Here, we use the morphology of the abelisaurid maxilla to test the inclusion of the Lower Cretaceous Spectrovenator within the specialized hunter category. Additionally, we analyze the diversity and disparity of the abelisaurid maxilla in a macroevolutionary context. We quantified the maxillary shape in 17 taxa using 2D geometric morphometrics and analyzed different evolutionary scenarios and trends with phylogenetic comparative methods. The results of all the analyses (phylogenetic ordination methods, Z, and R2 comparison in phylogenetic generalized least squares, model selection, and estimated taxa-removal analysis) suggest that the hunter specialization appeared during the Early Cretaceous, revealing that Cretaceous abelisaurids can be considered specialist hunters. High levels of morphological disparity in the maxilla occurred shortly after the Cenomanian-Turonian faunistic turnover, which involved drastic changes in the South American terrestrial faunal assemblages. Moreover, the high evolutionary rates of the maxillary shape change in Abelisauridae support a shift in ecological pressures or socio-sexual mechanisms, which were the main drivers of the evolution of the clade rostrum. Our study invites to analyze more osteological elements of the abelisaurid skull under a quantitative macroevolutionary framework to test our results more comprehensively.
Collapse
Affiliation(s)
- Enzo E Seculi Pereyra
- CONICET. Instituto Patagónico de Geología y Paleontología (CCT CONICET CENPAT), Bv. Brown 2915, Puerto Madryn, Chubut, 9120, Argentina.
| | - Juan Vrdoljak
- CONICET. Instituto Patagónico para el Estudio de los Ecosistemas Continentales, (CCT CONICET CENPAT), Bv. Brown 2915, Puerto Madryn, Chubut, 9120, Argentina
| | - Martín D Ezcurra
- CONICET. Sección Paleontología de Vertebrados, (CONICET-Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"), Av. Ángel Gallardo 470, C1405DJR Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Javier González-Dionis
- CONICET. Instituto Patagónico de Geología y Paleontología (CCT CONICET CENPAT), Bv. Brown 2915, Puerto Madryn, Chubut, 9120, Argentina
| | - Carolina Paschetta
- CONICET. Instituto Patagónico de Ciencias Sociales y Humanas "Dra. María Florencia del Castillo Bernal" (CCT CONICET CENPAT), Bv. Brown 2915, Puerto Madryn, Chubut, 9120, Argentina
- Programa de Referencia y Biobanco Genómico de la Población Argentina, Secretaría de Planeamiento y Políticas en Ciencia, Tecnología e Investigación, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel H Méndez
- CONICET. Instituto Patagónico de Geología y Paleontología (CCT CONICET CENPAT), Bv. Brown 2915, Puerto Madryn, Chubut, 9120, Argentina
| |
Collapse
|
3
|
Greif M, Calandra I, Lautenschlager S, Kaiser TM, Mezane M, Klug C. Reconstruction of feeding behaviour and diet in Devonian ctenacanth chondrichthyans using dental microwear texture and finite element analyses. ROYAL SOCIETY OPEN SCIENCE 2025; 12:240936. [PMID: 39881788 PMCID: PMC11774596 DOI: 10.1098/rsos.240936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/23/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025]
Abstract
Devonian ctenacanth chondrichthyans reached body sizes similar to modern great white sharks and therefore might have been apex predators of the Devonian seas. However, very little is known about the diet and feeding behaviours of these large ancestral sharks. To reconstruct their ecological properties, teeth of the large Famennian (Late Devonian) chondrichthyan Ctenacanthus concinnus from the Anti-Atlas, Morocco, were analysed. The teeth show strong tooth wear with deep horizontal as well as vertical scratches. Dental microwear texture analysis, a well-established method for the reconstruction of diet and commonly used in terrestrial vertebrates, was applied for the first time, to our knowledge, to Palaeozoic vertebrates in this study. Furthermore, finite element analysis was performed to test the biomechanical properties of the teeth. By combining both analyses, as well as palaeoenvironmental data and tooth morphology, we demonstrate that the results from only one method can be insufficient and misleading. Ctenacanthus concinnus most likely was an opportunistic feeder like many modern sharks. Direct evidence and the results of our analyses suggest that Ctenacanthus fed on ectocochleate cephalopods, other chondrichthyans and further vertebrates using a combination of head movements including lateral head shaking to cut large prey items.
Collapse
Affiliation(s)
- Merle Greif
- Department of Palaeontology, University of Zurich, Karl-Schmid-Strasse 4, Zurich8006, Switzerland
| | - Ivan Calandra
- Imaging Platform at LEIZA (IMPALA), and Laboratory for Traceology and Controlled Experiments (TraCEr), MONREPOS Archaeological Research Centre, Leibniz-Zentrum für Archäologie, Neuwied56567, Germany
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, Lapworth Museum of Geology, University of Birmingham, Edgbaston, Birmingham, UK
| | - Thomas M. Kaiser
- Centre for Taxonomy and Morphology, Section Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Martin-Luther-King-Platz 3, Hamburg20146, Germany
| | | | - Christian Klug
- Department of Palaeontology, University of Zurich, Karl-Schmid-Strasse 4, Zurich8006, Switzerland
| |
Collapse
|
4
|
Ponstein J, Hermanson G, Jansen MW, Renaudie J, Fröbisch J, Evers SW. Functional and Character Disparity Are Decoupled in Turtle Mandibles. Ecol Evol 2024; 14:e70557. [PMID: 39539676 PMCID: PMC11560343 DOI: 10.1002/ece3.70557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Turtles have high shape variation of their mandibles, likely reflecting adaptations to a broad variety of food items and ingestion strategies. Here, we compare functional disparity measured by biomechanical proxies and character disparity measured by discrete morphological characters. Functional and character disparities vary between clades and ecological groups and are thus decoupled. Comparisons with cranial disparity also indicate decoupled patterns within the turtle skull. Exploration of mandibular patterns reveals that several biomechanical configurations or character state combinations can lead to the same feeding type (i.e., convergence) or that high functional disparity can be achieved at a low exhaustion of character state combinations (e.g., cryptodires). Dietary specialists show larger functional disparity than generalists, but the phylogenetically widespread generalist ecology leads to high character disparity signals in the ecotype. Whereas character disparity generally shows high phylogenetic signal, functional disparity patterns correspond to dietary specializations, which may occur convergently across different groups. Despite this, individual functional measurements have overlapping ranges across ecogroups and do not always conform to biomechanical expectations. Jaw opening and closing biomechanical advantages model trade-offs between force transmission and opening/closing speeds, and turtles show a variety of combinations of values that we try to synthesize into several "jaw types". Closing mechanical advantage shows that turtles retain high levels of force transmission at the anterior jaw end compared with other groups (e.g., pseudosuchians). This can possibly be explained as an evolutionary adaptation to retain high bite forces at small head sizes.
Collapse
Affiliation(s)
- Jasper Ponstein
- Humboldt‐Universität zu BerlinBerlinGermany
- Museum für Naturkunde BerlinBerlinGermany
- OertijdmuseumWB BoxtelNetherlands
| | | | - Merlin W. Jansen
- Humboldt‐Universität zu BerlinBerlinGermany
- Museum für Naturkunde BerlinBerlinGermany
| | | | - Jörg Fröbisch
- Humboldt‐Universität zu BerlinBerlinGermany
- Museum für Naturkunde BerlinBerlinGermany
| | | |
Collapse
|
5
|
Rowe AJ, Rayfield EJ. Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs. iScience 2024; 27:110679. [PMID: 39262785 PMCID: PMC11387897 DOI: 10.1016/j.isci.2024.110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024] Open
Abstract
Tyrannosauroids are a clade of theropod dinosaur taxa that varied greatly in their body size distribution. We investigated the feeding performance of six tyrannosaur genera of variable body size and skull morphology. We used 3D finite element analysis to test whether skull shape becomes more or less resistant to feeding-induced forces. Cranial and mandibular models were scaled by adult Tyrannosaurus's surface area to analyze the influence of shape on skull function. It was found that Tyrannosaurus experienced higher absolute stresses compared to small-bodied relatives. When surface area values were equalized across genera to account for the effect of size and test efficiency of skull shape, smaller individuals experience notably greater stresses than larger relatives due to the robust cranial osteology characterized in the allometry of tyrannosaurids. These results may indicate that the wide crania of tyrannosaurids convey a functional advantage that basal tyrannosauroids, juvenile tyrannosauroids, and alioramins lacked.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
6
|
Bowman CE. Transitional chelal digit patterns in saprophagous astigmatan mites. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:687-737. [PMID: 38622432 PMCID: PMC11065788 DOI: 10.1007/s10493-024-00907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
Changes in the functional shape of astigmatan mite moveable digit profiles are examined to test if Tyrophagus putrescentiae (Acaridae) is a trophic intermediate between a typical micro-saprophagous carpoglyphid (Carpoglyphus lactis) and a common macro-saprophagous glycyphagid (Glycyphagus domesticus). Digit tip elongation in these mites is decoupled from the basic physics of optimising moveable digit inertia. Investment in the basal ramus/coronoid process compared to that for the moveable digit mastication length varies with feeding style. A differentiated ascending ramus is indicated in C. lactis and in T. putrescentiae for different trophic reasons. Culturing affects relative investments in C. lactis. A markedly different style of feeding is inferred for the carpoglyphid. The micro-saprophagous acarid does not have an intermediate pattern of trophic functional form between the other two species. Mastication surface shape complexity confirms the acarid to be heterodontous. T. putrescentiae is a particularly variably formed species trophically. A plausible evolutionary path for the gradation of forms is illustrated. Digit form and strengthening to resist bending under occlusive loads is explored in detail. Extensions to the analytical approach are suggested to confirm the decoupling of moveable digit pattern from cheliceral and chelal adaptations. Caution is expressed when interpreting ordinations of multidimensional data in mites.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
7
|
Tse YT, Miller CV, Pittman M. Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history. BMC Ecol Evol 2024; 24:39. [PMID: 38622512 PMCID: PMC11020771 DOI: 10.1186/s12862-024-02222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Non-avialan theropod dinosaurs had diverse ecologies and varied skull morphologies. Previous studies of theropod cranial morphology mostly focused on higher-level taxa or characteristics associated with herbivory. To better understand morphological disparity and function within carnivorous theropod families, here we focus on the Dromaeosauridae, 'raptors' traditionally seen as agile carnivorous hunters.We applied 2D geometric morphometrics to quantify skull shape, performed mechanical advantage analysis to assess the efficiency of bite force transfer, and performed finite element analysis to examine strain distribution in the skull during biting. We find that dromaeosaurid skull morphology was less disparate than most non-avialan theropod groups. Their skulls show a continuum of form between those that are tall and short and those that are flat and long. We hypothesise that this narrower morphological disparity indicates developmental constraint on skull shape, as observed in some mammalian families. Mechanical advantage indicates that Dromaeosaurus albertensis and Deinonychus antirrhopus were adapted for relatively high bite forces, while Halszkaraptor escuilliei was adapted for high bite speed, and other dromaeosaurids for intermediate bite forces and speeds. Finite element analysis indicates regions of high strain are consistent within dromaeosaurid families but differ between them. Average strain levels do not follow any phylogenetic pattern, possibly due to ecological convergence between distantly-related taxa.Combining our new morphofunctional data with a re-evaluation of previous evidence, we find piscivorous reconstructions of Halszkaraptor escuilliei to be unlikely, and instead suggest an invertivorous diet and possible adaptations for feeding in murky water or other low-visibility conditions. We support Deinonychus antirrhopus as being adapted for taking large vertebrate prey, but we find that its skull is relatively less resistant to bite forces than other dromaeosaurids. Given the recovery of high bite force resistance for Velociraptor mongoliensis, which is believed to have regularly engaged in scavenging behaviour, we suggest that higher bite force resistance in a dromaeosaurid taxon may reflect a greater reliance on scavenging rather than fresh kills.Comparisons to the troodontid Gobivenator mongoliensis suggest that a gracile rostrum like that of Velociraptor mongoliensis is ancestral to their closest common ancestor (Deinonychosauria) and the robust rostra of Dromaeosaurus albertensis and Deinonychus antirrhopus are a derived condition. Gobivenator mongoliensis also displays a higher jaw mechanical advantage and lower resistance to bite force than the examined dromaeosaurids, but given the hypothesised ecological divergence of troodontids from dromaeosaurids it is unclear which group, if either, represents the ancestral condition. Future work extending sampling to troodontids would therefore be invaluable and provide much needed context to the origin of skull form and function in early birds. This study illustrates how skull shape and functional metrics can discern non-avialan theropod ecology at lower taxonomic levels and identify variants of carnivorous feeding.
Collapse
Affiliation(s)
- Yuen Ting Tse
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Case Vincent Miller
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
8
|
Meade LE, Pittman M, Balanoff A, Lautenschlager S. Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria. Commun Biol 2024; 7:436. [PMID: 38600295 PMCID: PMC11006937 DOI: 10.1038/s42003-024-06137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Oviraptorosaurians were a theropod dinosaur group that reached high diversity in the Late Cretaceous. Within oviraptorosaurians, the later diverging oviraptorids evolved distinctive crania which were extensively pneumatised, short and tall, and had a robust toothless beak, interpreted as providing a powerful bite for their herbivorous to omnivorous diet. The present study explores the ability of oviraptorid crania to resist large mechanical stresses compared with other theropods and where this adaptation originated within oviraptorosaurians. Digital 3D cranial models were constructed for the earliest diverging oviraptorosaurian, Incisivosaurus gauthieri, and three oviraptorids, Citipati osmolskae, Conchoraptor gracilis, and Khaan mckennai. Finite element analyses indicate oviraptorosaurian crania were stronger than those of other herbivorous theropods (Erlikosaurus and Ornithomimus) and were more comparable to the large, carnivorous Allosaurus. The cranial biomechanics of Incisivosaurus align with oviraptorids, indicating an early establishment of distinctive strengthened cranial biomechanics in Oviraptorosauria, even before the highly modified oviraptorid cranial morphology. Bite modelling, using estimated muscle forces, suggests oviraptorid crania may have functioned closer to structural safety limits. Low mechanical stresses around the beaks of oviraptorids suggest a convergently evolved, functionally distinct rhamphotheca, serving as a cropping/feeding tool rather than for stress reduction, when compared with other herbivorous theropods.
Collapse
Affiliation(s)
- Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amy Balanoff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Fawcett MJ, Lautenschlager S, Bestwick J, Butler RJ. Functional morphology of the Triassic apex predator Saurosuchus galilei (Pseudosuchia: Loricata) and convergence with a post-Triassic theropod dinosaur. Anat Rec (Hoboken) 2024; 307:549-565. [PMID: 37584310 DOI: 10.1002/ar.25299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
Pseudosuchian archosaurs, reptiles more closely related to crocodylians than to birds, exhibited high morphological diversity during the Triassic and are thus associated with hypotheses of high ecological diversity during this time. One example involves basal loricatans which are non-crocodylomorph pseudosuchians traditionally known as "rauisuchians." Their large size (5-8+ m long) and morphological similarities to post-Triassic theropod dinosaurs, including dorsoventrally deep skulls and serrated dentitions, suggest basal loricatans were apex predators. However, this hypothesis does not consider functional behaviors that can influence more refined roles of predators in their environment, for example, degree of carcass utilization. Here, we apply finite element analysis to a juvenile but three-dimensionally well-preserved cranium of the basal loricatan Saurosuchus galilei to investigate its functional morphology and to compare with stress distributions from the theropod Allosaurus fragilis to assess degrees of functional convergence between Triassic and post-Triassic carnivores. We find similar stress distributions and magnitudes between the two study taxa under the same functional simulations, indicating that Saurosuchus had a somewhat strong skull and thus exhibited some degree of functional convergence with theropods. However, Saurosuchus also had a weak bite for an animal of its size (1015-1885 N) that is broadly equivalent to the bite force of modern gharials (Gavialis gangeticus). We infer that Saurosuchus potentially avoided tooth-bone interactions and consumed the softer parts of carcasses, unlike theropods and other basal loricatans. This deduced feeding mode for Saurosuchus increases the known functional diversity of basal loricatans and highlights functional differences between Triassic and post-Triassic apex predators.
Collapse
Affiliation(s)
- Molly J Fawcett
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jordan Bestwick
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Richard J Butler
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Aguilar-Pedrayes I, Gardner JD, Organ CL. The coevolution of rostral keratin and tooth distribution in dinosaurs. Proc Biol Sci 2024; 291:20231713. [PMID: 38229513 DOI: 10.1098/rspb.2023.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Teeth evolved early in vertebrate evolution, and their morphology reflects important specializations in diet and ecology among species. The toothless jaws (edentulism) in extant birds likely coevolved with beak keratin, which functionally replaced teeth. However, extinct dinosaurs lost teeth multiple times independently and exhibited great variation in toothrow distribution and rhamphotheca-like keratin structures. Here, we use rostral jawbone surface texture as a proxy for rostral keratin covering and phylogenetic comparative models to test for the influence of rostral keratin on toothrow distribution in Mesozoic dinosaurs. We find that the evolution of rostral keratin covering explains partial toothrow reduction but not jaw toothlessness. Toothrow reduction preceded the evolution of rostral keratin cover in theropods. Non-theropod dinosaurs evolved continuous toothrows despite evolving rostral keratin covers (e.g. some ornithischians and sauropodomorphs). We also show that rostral keratin covers did not significantly increase the evolutionary rate of tooth loss, which further delineates the antagonistic relationship between these structures. Our results suggest that the evolution of rostral keratin had a limited effect on suppressing tooth development. Independent changes in jaw development may have facilitated further tooth loss. Furthermore, the evolution of strong chemical digestion, a gizzard, and a dietary shift to omnivory or herbivory likely alleviated selective pressures for tooth development.
Collapse
Affiliation(s)
- Isaura Aguilar-Pedrayes
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Earth Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Jacob D Gardner
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Chris L Organ
- Department of Earth Sciences, Montana State University, Bozeman, MT 59715, USA
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| |
Collapse
|
11
|
Bennion RF, Maxwell EE, Lambert O, Fischer V. Craniodental ecomorphology of the large Jurassic ichthyosaurian Temnodontosaurus. J Anat 2024; 244:22-41. [PMID: 37591692 PMCID: PMC10734653 DOI: 10.1111/joa.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Marine amniotes have played many crucial roles in ocean ecosystems since the Triassic, including predation at the highest trophic levels. One genus often placed into this guild is the large Early Jurassic neoichthyosaurian Temnodontosaurus, the only post-Triassic ichthyosaurian known with teeth which bear a distinct cutting edge or carina. This taxonomically problematic genus is currently composed of seven species which show a wide variety of skull and tooth morphologies. Here we assess the craniodental disparity in Temnodontosaurus using a series of functionally informative traits. We describe the range of tooth morphologies in the genus in detail, including the first examples of serrated carinae in ichthyosaurians. These consist of false denticles created by the interaction of enamel ridgelets with the carinal keel, as well as possible cryptic true denticles only visible using scanning electron microscopy. We also find evidence for heterodonty in the species T. platyodon, with unicarinate mesial teeth likely playing a role in prey capture and labiolingually compressed, bicarinate distal teeth likely involved in prey processing. This type of heterodonty appears to be convergent with a series of other marine amniotes including early cetaceans. Overall, the species currently referred to as the genus Temnodontosaurus show a range of craniodental configurations allowing prey to be captured and processed in different ways - for example, T. eurycephalus has a deep snout and relatively small bicarinate teeth likely specialised for increased wound infliction and grip-and-tear feeding, whereas T. platyodon has a more elongate yet robust snout and larger teeth and may be more adapted for grip-and-shear feeding. These results suggest the existence of niche partitioning at higher trophic levels in Early Jurassic ichthyosaurians and have implications for future work on the taxonomy of this wastebasket genus, as well as for research into the ecology of other extinct megapredatory marine tetrapods.
Collapse
Affiliation(s)
- R F Bennion
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - E E Maxwell
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - O Lambert
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - V Fischer
- Evolution & Diversity Dynamics Lab, Université de Liège, Liège, Belgium
| |
Collapse
|
12
|
Farlow JO, Coroian D, Currie PJ, Foster JR, Mallon JC, Therrien F. "Dragons" on the landscape: Modeling the abundance of large carnivorous dinosaurs of the Upper Jurassic Morrison Formation (USA) and the Upper Cretaceous Dinosaur Park Formation (Canada). Anat Rec (Hoboken) 2023; 306:1669-1696. [PMID: 35815600 DOI: 10.1002/ar.25024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Counts of the number of skeletal specimens of "adult" megaherbivores and large theropods from the Morrison and Dinosaur Park formations-if not biased by taphonomic artifacts-suggest that the big meat-eaters were more abundant, relative to the number of big plant-eaters, than one would expect on the basis of the relative abundance of large carnivores and herbivores in modern mammalian faunas. Models of megaherbivore population density (number of individuals per square kilometer) that attempt to take into account ecosystem productivity, the size structure of megaherbivore populations, and individual megaherbivore energy requirements, when combined with values of the large theropod/megaherbivore abundance ratio, suggest that large theropods may have been more abundant on the landscape than estimates extrapolated from the population density versus body mass relationship of mammalian carnivores. Models of the meat production of megaherbivore populations and the meat requirements of "adult" large theropods suggest that herbivore productivity would have been insufficient to support the associated number of individuals of "adult" large theropods, unless the herbivore production/biomass ratio was substantially higher, and/or the large theropod meat requirement markedly lower, than expectations based on modern mammals. Alternatively, or in addition to one or both of these other factors, large theropods likely included dinosaurs other than megaherbivores as significant components of their diet.
Collapse
Affiliation(s)
- James O Farlow
- Department of Biological Sciences, Purdue University, Fort Wayne, Indiana, USA
| | - Dan Coroian
- Department of Mathematical Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John R Foster
- Utah Field House of Natural History State Park, Vernal, Utah, USA
| | - Jordan C Mallon
- Beaty Centre for Species Discovery and Palaeobiology Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
13
|
Hedrick BP. Dots on a screen: The past, present, and future of morphometrics in the study of nonavian dinosaurs. Anat Rec (Hoboken) 2023. [PMID: 36922704 DOI: 10.1002/ar.25183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/28/2022] [Accepted: 02/12/2023] [Indexed: 03/18/2023]
Abstract
Using morphometrics to study nonavian dinosaur fossils is a practice that predates the origin of the word "dinosaur." By the 1970s, linear morphometrics had become established as a valuable tool for analyzing intra- and interspecific variation in nonavian dinosaurs. With the advent of more recent techniques such as geometric morphometrics and more advanced statistical approaches, morphometric analyses of nonavian dinosaurs have proliferated, granting unprecedented insight into many aspects of their biology and evolution. I outline the past, present, and future of morphometrics as applied to the study of nonavian dinosaurs zeroing in on five aspects of nonavian dinosaur paleobiology where morphometrics has been widely utilized to advance our knowledge: systematics, sexual dimorphism, locomotion, macroevolution, and trackways. Morphometric methods are especially susceptible to taphonomic distortion. As such, the impact of taphonomic distortion on original fossil shape is discussed as are current and future methods for quantifying and accounting for distortion with the goal of reducing the taphonomic noise to biological signal ratio. Finally, the future of morphometrics in nonavian dinosaur paleobiology is discussed as paleobiologists move into a "virtual paleobiology" framework, whereby digital renditions of fossils are captured via methods such as photogrammetry and computed tomography. These primary data form the basis for three-dimensional (3D) geometric morphometric analyses along with a slew of other forms of analyses. These 3D specimen data form part of the extended specimen and help to democratize paleobiology, unlocking the specimen from the physical museum and making the specimen available to researchers across the world.
Collapse
Affiliation(s)
- Brandon P Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Qin Z, Liao CC, Benton MJ, Rayfield EJ. Functional space analyses reveal the function and evolution of the most bizarre theropod manual unguals. Commun Biol 2023; 6:181. [PMID: 36797463 PMCID: PMC9935540 DOI: 10.1038/s42003-023-04552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Maniraptoran dinosaurs include the ancestors of birds, and most used their hands for grasping and in flight, but early-branching maniraptorans had extraordinary claws of mysterious function. Alvarezsauroids had short, strong arms and hands with a stout, rock-pick-like, single functional finger. Therizinosaurians had elongate fingers with slender and sickle-like unguals, sometimes over one metre long. Here we develop a comprehensive methodological framework to investigate what the functions of these most bizarre bony claws are and how they formed. Our analysis includes finite element analysis and a newly established functional-space analysis and also involves shape and size effects in an assessment of function and evolution. We find a distinct functional divergence among manual unguals of early-branching maniraptorans, and we identify a complex relationship between their structural strength, morphological specialisations, and size changes. Our analysis reveals that efficient digging capabilities only emerged in late-branching alvarezsauroid forelimbs, rejecting the hypothesis of functional vestigial structures like T. rex. Our results also support the statement that most therizinosaurians were herbivores. However, the bizarre, huge Therizinosaurus had sickle-like unguals of such length that no mechanical function has been identified; we suggest they were decorative and lengthened by peramorphic growth linked to increased body size.
Collapse
Affiliation(s)
- Zichuan Qin
- School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Chun-Chi Liao
- grid.9227.e0000000119573309Key Laboratory for the Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044 China
| | - Michael J. Benton
- grid.5337.20000 0004 1936 7603School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Emily J. Rayfield
- grid.5337.20000 0004 1936 7603School of Earth Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ UK
| |
Collapse
|
15
|
Button DJ, Porro LB, Lautenschlager S, Jones MEH, Barrett PM. Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution. Curr Biol 2023; 33:557-565.e7. [PMID: 36603586 DOI: 10.1016/j.cub.2022.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The extent to which evolution is deterministic is a key question in biology,1,2,3,4,5,6,7,8,9 with intensive debate on how adaptation6,10,11,12,13 and constraints14,15,16 might canalize solutions to ecological challenges.4,5,6 Alternatively, unique adaptations1,9,17 and phylogenetic contingency1,3,18 may render evolution fundamentally unpredictable.3 Information from the fossil record is critical to this debate,1,2,11 but performance data for extinct taxa are limited.7 This knowledge gap is significant, as general morphology may be a poor predictor of biomechanical performance.17,19,20 High-fiber herbivory originated multiple times within ornithischian dinosaurs,21 making them an ideal clade for investigating evolutionary responses to similar ecological pressures.22 However, previous biomechanical modeling studies on ornithischian crania17,23,24,25 have not compared early-diverging taxa spanning independent acquisitions of herbivory. Here, we perform finite-element analysis on the skull of five early-diverging members of the major ornithischian clades to characterize morphofunctional pathways to herbivory. Results reveal limited functional convergence among ornithischian clades, with each instead achieving comparable performance, in terms of reconstructed patterns and magnitudes of functionally induced stress, through different adaptations of the feeding apparatus. Thyreophorans compensated for plesiomorphic low performance through increased absolute size, heterodontosaurids expanded jaw adductor muscle volume, ornithopods increased jaw system efficiency, and ceratopsians combined these approaches. These distinct solutions to the challenges of herbivory within Ornithischia underpinned the success of this diverse clade. Furthermore, the resolution of multiple solutions to equivalent problems within a single clade through macroevolutionary time demonstrates that phenotypic evolution is not necessarily predictable, instead arising from the interplay of adaptation, innovation, contingency, and constraints.1,2,3,7,8,9,18.
Collapse
Affiliation(s)
- David J Button
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Laura B Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6DE, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marc E H Jones
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Paul M Barrett
- Science Group, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
16
|
Pittman M, Kaye TG, Wang X, Zheng X, Dececchi TA, Hartman SA. Preserved soft anatomy confirms shoulder-powered upstroke of early theropod flyers, reveals enhanced early pygostylian upstroke, and explains early sternum loss. Proc Natl Acad Sci U S A 2022; 119:e2205476119. [PMID: 36375073 PMCID: PMC9704744 DOI: 10.1073/pnas.2205476119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/29/2022] [Indexed: 10/08/2023] Open
Abstract
Anatomy of the first flying feathered dinosaurs, modern birds and crocodylians, proposes an ancestral flight system divided between shoulder and chest muscles, before the upstroke muscles migrated beneath the body. This ancestral flight system featured the dorsally positioned deltoids and supracoracoideus controlling the upstroke and the chest-bound pectoralis controlling the downstroke. Preserved soft anatomy is needed to contextualize the origin of the modern flight system, but this has remained elusive. Here we reveal the soft anatomy of the earliest theropod flyers preserved as residual skin chemistry covering the body and delimiting its margins. These data provide preserved soft anatomy that independently validate the ancestral theropod flight system. The heavily constructed shoulder and more weakly constructed chest in the early pygostylian Confuciusornis indicated by a preserved body profile, proposes the first upstroke-enhanced flight stroke. Slender ventral body profiles in the early-diverging birds Archaeopteryx and Anchiornis suggest habitual use of the pectoralis could not maintain the sternum through bone functional adaptations. Increased wing-assisted terrestrial locomotion potentially accelerated sternum loss through higher breathing requirements. Lower expected downstroke requirements in the early thermal soarer Sapeornis could have driven sternum loss through bone functional adaption, possibly encouraged by the higher breathing demands of a Confuciusornis-like upstroke. Both factors are supported by a slender ventral body profile. These data validate the ancestral shoulder/chest flight system and provide insights into novel upstroke-enhanced flight strokes and early sternum loss, filling important gaps in our understanding of the appearance of modern flight.
Collapse
Affiliation(s)
- Michael Pittman
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Thomas G. Kaye
- Foundation for Scientific Advancement, Sierra Vista, AZ 85650
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Shandong 276005, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Shandong 273300, China
| | | | - Scott A. Hartman
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI 53706-1692
| |
Collapse
|
17
|
Rowe AJ, Rayfield EJ. The efficacy of computed tomography scanning versus surface scanning in 3D finite element analysis. PeerJ 2022; 10:e13760. [PMID: 36042861 PMCID: PMC9420411 DOI: 10.7717/peerj.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Finite element analysis (FEA) is a commonly used application in biomechanical studies of both extant and fossil taxa to assess stress and strain in solid structures such as bone. FEA can be performed on 3D structures that are generated using various methods, including computed tomography (CT) scans and surface scans. While previous palaeobiological studies have used both CT scanned models and surface scanned models, little research has evaluated to what degree FE results may vary when CT scans and surface scans of the same object are compared. Surface scans do not preserve the internal geometries of 3D structures, which are typically preserved in CT scans. Here, we created 3D models from CT scans and surface scans of the same specimens (crania and mandibles of a Nile crocodile, a green sea turtle, and a monitor lizard) and performed FEA under identical loading parameters. It was found that once surface scanned models are solidified, they output stress and strain distributions and model deformations comparable to their CT scanned counterparts, though differing by notable stress and strain magnitudes in some cases, depending on morphology of the specimen and the degree of reconstruction applied. Despite similarities in overall mechanical behaviour, surface scanned models can differ in exterior shape compared to CT scanned models due to inaccuracies that can occur during scanning and reconstruction, resulting in local differences in stress distribution. Solid-fill surface scanned models generally output lower stresses compared to CT scanned models due to their compact interiors, which must be accounted for in studies that use both types of scans.
Collapse
Affiliation(s)
- Andre J. Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Marcé-Nogué J. One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review. PeerJ 2022; 10:e13890. [PMID: 35966920 PMCID: PMC9373974 DOI: 10.7717/peerj.13890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Finite element analysis (FEA) is no longer a new technique in the fields of palaeontology, anthropology, and evolutionary biology. It is nowadays a well-established technique within the virtual functional-morphology toolkit. However, almost all the works published in these fields have only applied the most basic FEA tools i.e., linear materials in static structural problems. Linear and static approximations are commonly used because they are computationally less expensive, and the error associated with these assumptions can be accepted. Nonetheless, nonlinearities are natural to be used in biomechanical models especially when modelling soft tissues, establish contacts between separated bones or the inclusion of buckling results. The aim of this review is to, firstly, highlight the usefulness of non-linearities and secondly, showcase these FEA tool to researchers that work in functional morphology and biomechanics, as non-linearities can improve their FEA models by widening the possible applications and topics that currently are not used in palaeontology and anthropology.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Mechanical Engineering, Universitat Rovira i Virgili Tarragona, Tarragona, Catalonia, Spain
- Institut Català de Paleontologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|