1
|
Nässel DR. What Drosophila can tell us about state-dependent peptidergic signaling in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104275. [PMID: 39956367 DOI: 10.1016/j.ibmb.2025.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Plasticity in animal behavior and physiology is largely due to modulatory and regulatory signaling with neuropeptides and peptide hormones (collectively abbreviated NPHs). The NPHs constitute a very large and versatile group of signaling substances that partake at different regulatory levels in most daily activities of an organism. This review summarizes key principles in NPH actions in the brain and in interorgan signaling, with focus on Drosophila. NPHs are produced by neurons, neurosecretory cells (NSCs) and other endocrine cells in NPH-specific and stereotypic patterns. Most of the NPHs have multiple (pleiotropic) functions and target several different neuronal circuits and/or peripheral tissues. Such divergent NPH signaling ensures orchestration of behavior and physiology in state-dependent manners. Conversely, many neurons, circuits, NSCs, or other cells, are targeted by multiple NPHs. This convergent signaling commonly conveys various signals reporting changes in the external and internal environment to central neurons/circuits. As an example of wider functional convergence, 26 different Drosophila NPHs act at many different levels to regulate food search and feeding. Convergence is also seen in hormonal regulation of peripheral functions. For instance, multiple NPHs target renal tubules to ensure osmotic homeostasis. Interestingly, several of the same osmoregulatory NPHs also regulate feeding, metabolism and stress. However, for some NPHs the cellular distribution and functions suggests multiple unrelated functions that are restricted to specific circuits. Thus, NPH signaling follows distinct patterns for each specific NPH, but taken together they form overlapping networks that modulate behavior and physiology.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Deluca A, Bascom B, Key Planas DA, Kocher MA, Torres M, Arbeitman MN. Contribution of neurons that express fruitless and Clock transcription factors to behavioral rhythms and courtship. iScience 2025; 28:112037. [PMID: 40104074 PMCID: PMC11914808 DOI: 10.1016/j.isci.2025.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Animals need to integrate information across neuronal networks that direct reproductive behaviors and circadian rhythms. The Drosophila master regulatory transcription factors that direct courtship and circadian rhythms are co-expressed. We find sex differences in the number of these fruitless (fru) and Clock (Clk)-expressing neurons (fru ∩ Clk neurons) regulated by male-specific Fru. We assign the fru ∩ Clk neurons to the electron microscopy connectome and to subtypes of clock neurons. We discover sex differences in fru-expressing neurons that are post-synaptic targets of Clk-expressing neurons. When fru ∩ Clk neurons are activated or silenced, we observe a male-specific shortening of period length. Activation of fru ∩ Clk neurons also changes the rate a courtship behavior is performed. We examine male courtship behavior over 24 h and find courtship activities peak at lights-on. These results reveal how neurons that subserve the two processes can impact behavioral outcomes in a sex-specific manner.
Collapse
Affiliation(s)
- Anthony Deluca
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Brooke Bascom
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Daniela A. Key Planas
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Matthew A. Kocher
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Marielise Torres
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Easwaran S, Montell DJ. A genome-wide association study implicates the olfactory system in Drosophila melanogaster diapause-associated lifespan extension and fecundity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584341. [PMID: 39005458 PMCID: PMC11244867 DOI: 10.1101/2024.03.10.584341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The effects of environmental stress on animal life are gaining importance with climate change. Diapause is a dormancy program that occurs in response to an adverse environment, followed by resumption of development and reproduction upon the return of favorable conditions. Diapause is a complex trait, so we leveraged the Drosophila genetic reference panel (DGRP) lines and conducted a Genome-Wide Association Study (GWAS) to characterize the genetic basis of diapause. We assessed post-diapause and non-diapause fecundity across 193 DGRP lines. GWAS revealed 546 genetic variants, encompassing single nucleotide polymorphisms, insertions and deletions associated with post-diapause fecundity. We identified 291 candidate diapause-associated genes, 40 of which had previously been associated with diapause, and 89 of which were associated with more than one SNP. Gene network analysis indicated that the diapause-associated genes were primarily linked to neuronal and reproductive system development. Similarly, comparison with results from other fly GWAS revealed the greatest overlap with olfactory-behavior-associated and fecundity-and-lifespan-associated genes. An RNAi screen of selected candidates identified two neuronal genes, Dip-γ and Scribbler, to be required during recovery for post-diapause fecundity. We complemented the genetic analysis with a test of which neurons are required for successful diapause. We found that although amputation of the antenna had little to no effect on non-diapause lifespan, it reduced diapause lifespan and postdiapause fecundity. We further show that olfactory receptor neurons and temperature-sensing neurons are required for successful recovery from diapause. Our results provide insights into the molecular, cellular, and genetic basis of adult reproductive diapause in Drosophila.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106
| |
Collapse
|
4
|
Chen L, Wang J, Zhuo H, Wang Z, Zhang J. Association between periodic variation of air temperature, humidity, atmospheric pressure and hospital admissions for acute occlusive mesenteric ischaemia. Sci Rep 2024; 14:21426. [PMID: 39271708 PMCID: PMC11399351 DOI: 10.1038/s41598-024-72065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Referring to the intestinal ischemic injury caused by sudden interruption of the blood supply, acute mesenteric ischemia (AMI) is a highly fatal emergency with mortality rates varying from 58 to 80%. The aim of this study was to explore the effect of temperature on AMI admission. This was a retrospective, multicentric study. The medical records of 1477 patients with verified AMI who were consecutively admitted to 3 hospitals anytime between January 2010 and December 2020 were included in the study. Distributed lag non-linear model was applied, the model was adjusted for temperature, atmospheric pressure, relative humidity, year, holiday, day of the week, time and seasonality. AMI exhibited obvious sex preference, AMI patients tended to be male (M/F ratio = 2.3:1) and in their late 50 s. Hospital admissions of acute mesenteric arterial thromboembolism (AMAT) increased significantly with high temperatures on day of exposure and lag 0-14 day. The effect curve of daily average temperature on acute mesenteric venous thromboembolism (AMVT) admission was J-shaped, and the duration of cold effect was longer, while the duration of heat effect was shorter. An increase in hospital admissions of AMVT was found above 20 °C at lag 0-30. For the first time, our study indicated that temperature is significantly associated with the risk of AMI. Although it is not possible to always avoid exposure to extreme temperatures, one should be aware of dramatic temperature fluctuations and take appropriate precautions.
Collapse
Affiliation(s)
- Lin Chen
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Breast Surgery, The Second Hospital Of Shandong University, Jinan, China
| | - Jun Wang
- Department of General Surgery, Zhangdian District People's Hospital, Zibo, China
| | - Hongqing Zhuo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jing 5 Rd, Jinan, 250021, Shandong Province, China
| | - Zexin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jing 5 Rd, Jinan, 250021, Shandong Province, China
| | - Jizhun Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital affiliated to Shandong First Medical University, 324 Jing 5 Rd, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
5
|
Horikawa M, Fukuyama M, Antebi A, Mizunuma M. Regulatory mechanism of cold-inducible diapause in Caenorhabditis elegans. Nat Commun 2024; 15:5793. [PMID: 38987256 PMCID: PMC11237089 DOI: 10.1038/s41467-024-50111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Temperature is a critical environmental cue that controls the development and lifespan of many animal species; however, mechanisms underlying low-temperature adaptation are poorly understood. Here, we describe cold-inducible diapause (CID), another type of diapause induced by low temperatures in Caenorhabditis elegans. A premature stop codon in heat shock factor 1 (hsf-1) triggers entry into CID at 9 °C, whereas wild-type animals enter CID at 4 °C. Furthermore, both wild-type and hsf-1(sy441) mutant animals undergoing CID can survive for weeks, and resume growth at 20 °C. Using epistasis analysis, we demonstrate that neural signalling pathways, namely tyraminergic and neuromedin U signalling, regulate entry into CID of the hsf-1 mutant. Overexpression of anti-ageing genes, such as hsf-1, XBP1/xbp-1, FOXO/daf-16, Nrf2/skn-1, and TFEB/hlh-30, also inhibits CID entry of the hsf-1 mutant. Based on these findings, we hypothesise that regulators of the hsf-1 mutant CID may impact longevity, and successfully isolate 16 long-lived mutants among 49 non-CID mutants via genetic screening. Furthermore, we demonstrate that the nonsense mutation of MED23/sur-2 prevents CID entry of the hsf-1(sy441) mutant and extends lifespan. Thus, CID is a powerful model to investigate neural networks involving cold acclimation and to explore new ageing mechanisms.
Collapse
Affiliation(s)
- Makoto Horikawa
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Masaki Mizunuma
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
6
|
Meyerhof GT, Easwaran S, Bontempo AE, Montell C, Montell DJ. Altered circadian rhythm, sleep, and rhodopsin 7-dependent shade preference during diapause in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2400964121. [PMID: 38917005 PMCID: PMC11228485 DOI: 10.1073/pnas.2400964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
To survive adverse environments, many animals enter a dormant state such as hibernation, dauer, or diapause. Various Drosophila species undergo adult reproductive diapause in response to cool temperatures and/or short day-length. While flies are less active during diapause, it is unclear how adverse environmental conditions affect circadian rhythms and sleep. Here we show that in diapause-inducing cool temperatures, Drosophila melanogaster exhibit altered circadian activity profiles, including severely reduced morning activity and an advanced evening activity peak. Consequently, the flies have a single activity peak at a time similar to when nondiapausing flies take a siesta. Temperatures ≤15 °C, rather than photoperiod, primarily drive this behavior. At cool temperatures, flies rapidly enter a deep-sleep state that lacks the sleep cycles of flies at higher temperatures and require high levels of stimulation for arousal. Furthermore, we show that at 25 °C, flies prefer to siesta in the shade, a preference that is virtually eliminated at 10 °C. Resting in the shade is driven by an aversion to blue light that is sensed by Rhodopsin 7 outside of the eyes. Flies at 10 °C show neuronal markers of elevated sleep pressure, including increased expression of Bruchpilot and elevated Ca2+ in the R5 ellipsoid body neurons. Therefore, sleep pressure might overcome blue light aversion. Thus, at the same temperatures that cause reproductive arrest, preserve germline stem cells, and extend lifespan, D. melanogaster are prone to deep sleep and exhibit dramatically altered, yet rhythmic, daily activity patterns.
Collapse
Affiliation(s)
- Geoff T. Meyerhof
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Sreesankar Easwaran
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Angela E. Bontempo
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Denise J. Montell
- Department of Molecular, Cellular, and Developmental Biology, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| |
Collapse
|
7
|
Hidalgo S, Chiu JC. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:585-599. [PMID: 37584703 PMCID: PMC11057393 DOI: 10.1007/s00359-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Helfrich-Förster C. Neuropeptidergic regulation of insect diapause by the circadian clock. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101198. [PMID: 38588944 DOI: 10.1016/j.cois.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Diapause is an endocrine-mediated strategy used by insects to survive seasons of adverse environmental conditions. Insects living in temperate zones are regularly exposed to such conditions in the form of winter. To survive winter, they must prepare for it long before it arrives. A reliable indicator of impending winter is the shortening of day length. To measure day length, insects need their circadian clock as internal time reference. In this article, I provide an overview of the current state of knowledge on the neuropeptides that link the clock to the diapause inducing hormonal brain centers.
Collapse
|
9
|
Li H, Li Z, Yuan X, Tian Y, Ye W, Zeng P, Li XM, Guo F. Dynamic encoding of temperature in the central circadian circuit coordinates physiological activities. Nat Commun 2024; 15:2834. [PMID: 38565846 PMCID: PMC10987497 DOI: 10.1038/s41467-024-47278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.
Collapse
Affiliation(s)
- Hailiang Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyi Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yuan
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Tian
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Ye
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Pengyu Zeng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Piñon Gonzalez VM, Feng Y, Egertová M, Elphick MR. Neuropeptide expression and action in the reproductive system of the starfish Asterias rubens. J Comp Neurol 2024; 532:e25585. [PMID: 38289190 DOI: 10.1002/cne.25585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.
Collapse
Affiliation(s)
| | - Yuling Feng
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Easwaran S, Montell DJ. The molecular mechanisms of diapause and diapause-like reversible arrest. Biochem Soc Trans 2023; 51:1847-1856. [PMID: 37800560 PMCID: PMC10657177 DOI: 10.1042/bst20221431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| |
Collapse
|
12
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
13
|
Kurogi Y, Imura E, Mizuno Y, Hoshino R, Nouzova M, Matsuyama S, Mizoguchi A, Kondo S, Tanimoto H, Noriega FG, Niwa R. Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum. Development 2023; 150:dev201186. [PMID: 37218457 PMCID: PMC10233717 DOI: 10.1242/dev.201186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023]
Abstract
Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.
Collapse
Affiliation(s)
- Yoshitomo Kurogi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Yosuke Mizuno
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Marcela Nouzova
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Institute of Parasitology, Biology Center of the Academy of Sciences of the Czech Republic,37005, České Budějovice, Czech Republic
| | - Shigeru Matsuyama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Akira Mizoguchi
- Division of Liberal Arts and Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Yata 111, Mishima, Shizuoka 411-8540, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Sendai, Miyagi 980-8577, Japan
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, 11200 SW 8th street, Miami, FL 33199, USA
- Department of Parasitology, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
14
|
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 2023; 33:675-687.e5. [PMID: 36708710 PMCID: PMC9992282 DOI: 10.1016/j.cub.2023.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maribel Anguiano
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Alpert MH, Gil H, Para A, Gallio M. A thermometer circuit for hot temperature adjusts Drosophila behavior to persistent heat. Curr Biol 2022; 32:4079-4087.e4. [PMID: 35981537 PMCID: PMC9529852 DOI: 10.1016/j.cub.2022.07.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
Abstract
Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.
Collapse
Affiliation(s)
- Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Hamin Gil
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Reinhard N, Schubert FK, Bertolini E, Hagedorn N, Manoli G, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. Front Physiol 2022; 13:886432. [PMID: 35574472 PMCID: PMC9100938 DOI: 10.3389/fphys.2022.886432] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Drosophila’s dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly’s circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Enrico Bertolini
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Würzburg, Germany
| | | | - Giulia Manoli
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|