1
|
Gao B, Hu G, Chapman JW. Effects of nocturnal celestial illumination on high-flying migrant insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230115. [PMID: 38705175 PMCID: PMC11070249 DOI: 10.1098/rstb.2023.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2024] [Indexed: 05/07/2024] Open
Abstract
Radar networks hold great promise for monitoring population trends of migrating insects. However, it is important to elucidate the nature of responses to environmental cues. We use data from a mini-network of vertical-looking entomological radars in the southern UK to investigate changes in nightly abundance, flight altitude and behaviour of insect migrants, in relation to meteorological and celestial conditions. Abundance of migrants showed positive relationships with air temperature, indicating that this is the single most important variable influencing the decision to initiate migration. In addition, there was a small but significant effect of moonlight illumination, with more insects migrating on full moon nights. While the effect of nocturnal illumination levels on abundance was relatively minor, there was a stronger effect on the insects' ability to orientate close to downwind: flight headings were more tightly clustered on nights when the moon was bright and when cloud cover was sparse. This indicates that nocturnal illumination is important for the navigational mechanisms used by nocturnal insect migrants. Further, our results clearly show that environmental conditions such as air temperature and light levels must be considered if long-term radar datasets are to be used to assess changing population trends of migrants. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Centre of Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|
2
|
Hufkens K, Meier CM, Evens R, Paredes JA, Karaardiç H, Vercauteren S, Van Gysel A, Fox JW, Pacheco CM, da Silva LP, Fernandes S, Henriques P, Elias G, Costa LT, Poot M, Kearsley L. Evaluating the effects of moonlight on the vertical flight profiles of three western palaearctic swifts. Proc Biol Sci 2023; 290:20230957. [PMID: 37909073 PMCID: PMC10618867 DOI: 10.1098/rspb.2023.0957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Recent studies have suggested the presence of moonlight mediated behaviour in avian aerial insectivores, such as swifts. Here, we use the combined analysis of state-of-the-art activity logger data across three swift species, the common, pallid and alpine swifts, to quantify flight height and activity in responses to moonlight-driven crepuscular and nocturnal light conditions. Our results show a significant response in flight heights to moonlight illuminance for common and pallid swifts, i.e. when moon illuminance increased flight height also increased, while a moonlight-driven response is absent in alpine swifts. We show a weak relationship between night-time illuminance-driven responses and twilight ascending behaviour, suggesting a decoupling of both crepuscular and night-time behaviour. We suggest that swifts optimize their flight behaviour to adapt to favourable night-time light conditions, driven by light-responsive and size-dependent vertical insect stratification and weather conditions.
Collapse
Affiliation(s)
- Koen Hufkens
- BlueGreen Labs (bv), Kloetstraat 48, 9120 Melsele, Belgium
| | | | - Ruben Evens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Josefa Arán Paredes
- Institute of Geography, University of Bern, Hallestrasse 12, 3012 Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012 Bern, Switzerland
| | - Hakan Karaardiç
- Education Faculty, Math and Science Education Department, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | | | | | | | - Carlos Miguel Pacheco
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Luis P. da Silva
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Sandra Fernandes
- Department of Biology, Faculty of Sciences, Universidade do Porto, 4099-002 Porto, Portugal
| | | | - Gonçalo Elias
- 44 Rua de São Pedro, Castelo de Vide 7320-163, Portugal
| | - Luís T. Costa
- Nature Returns, Av D Sebastião 101, 2825-408 Costa da Caparica, Portugal
| | - Martin Poot
- Martin Poot Ecology, Culemborg, The Netherlands
| | - Lyndon Kearsley
- BlueGreen Labs (bv), Kloetstraat 48, 9120 Melsele, Belgium
- Belgian Ornithological Research Association, Steenweg Hulst-Lessen 29, 9140 Temse, Belgium
| |
Collapse
|
3
|
Senzaki M, Aoki D, Kitazawa M, Hara S. Interspecific tandem flights in nocturnally migrating terrestrial birds. Ecology 2023; 104:e3937. [PMID: 36458322 DOI: 10.1002/ecy.3937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Masayuki Senzaki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Daisuke Aoki
- Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | | | - Seiichi Hara
- Japanese Migratory Bird Research Group, Sapporo, Japan
| |
Collapse
|
4
|
Śmielak MK. Biologically meaningful moonlight measures and their application in ecological research. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Abstract
Light availability is one of the key drivers of animal activity, and moonlight is the brightest source of natural light at night. Moon phase is commonly used but, while convenient, it can be a poor proxy for lunar illumination on the ground. While the moon phase remains effectively constant within a night, actual moonlight intensity is affected by multiple factors such as disc brightness, position of the moon, distance to the moon, angle of incidence, and cloud cover. A moonlight illumination model is presented for any given time and location, which is significantly better at predicting lunar illumination than moon phase. The model explains up to 92.2% of the variation in illumination levels with a residual standard error of 1.4%, compared to 60% explained by moon phase with a residual standard error of 22.6%. Importantly, the model not only predicts changes in mean illumination between nights but also within each night, providing greater temporal resolution of illumination estimates. An R package moonlit facilitating moonlight illumination modelling is also presented. Using a case study, it is shown that modelled moonlight intensity can be a better predictor of animal activity than moon phase. More importantly, complex patterns of activity are shown where animals focus their activity around certain illumination levels. This relationship could not be identified using moon phase alone. The model can be universally applied to a wide range of ecological and behavioural research, including existing datasets, allowing a better understanding of lunar illumination as an ecological resource.
Significance statement
Moon phase is often used to represent lunar illumination as an environmental niche, but it is a poor proxy for actual moonlight intensity on the ground. A model is therefore proposed to estimate lunar illumination for any given place and time. The model is shown to provide a significantly better prediction of empirically measured lunar illumination than moon phase. Importantly, it also has much higher temporal resolutions, allowing to not only detect selectiveness for light levels between nights but also within each night, which is not achievable with moon phase alone. This offers unprecedented opportunities to study complex activity patterns of nocturnal species using any time-stamped data (GPS trackers, camera traps, song meters, etc.). It can also be applied to historical datasets, as well as facilitate future research planning in a wide range of ecological and behavioural studies.
Collapse
|
5
|
Degen T, Kolláth Z, Degen J. X,Y, and Z: A bird's eye view on light pollution. Ecol Evol 2022; 12:e9608. [PMID: 36540078 PMCID: PMC9754910 DOI: 10.1002/ece3.9608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
The global increase in light pollution is being viewed with growing concern, as it has been reported to have negative effects ranging from the individual to the ecosystem level.Unlike movement on the ground, flying and swimming allows vertical motion. Here, we demonstrate that flight altitude change is crucial to the perception and susceptibility of artificial light at night of air-borne organisms. Because air-borne species can propagate through the airspace and easily across ecotones, effects might not be small-scale. Therefore, we propose including airspace as a vital habitat in the concept of ecological light pollution.The interplay between flight altitude and the effects of light pollution may not only be crucial for understanding flying species but may also provide valuable insights into the mechanisms of responses to artificial light at night in general.
Collapse
Affiliation(s)
- Tobias Degen
- Department of Zoology IIIUniversity of WürzburgWürzburgGermany
- Department of Zoology IIUniversity of WürzburgWürzburgGermany
| | - Zoltán Kolláth
- Department of PhysicsEszterházy Károly Catholic UniversityEgerHungary
| | | |
Collapse
|