1
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. Sci Rep 2025; 15:5278. [PMID: 39939650 PMCID: PMC11821855 DOI: 10.1038/s41598-025-89088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ), the primary taste region of the fly brain. We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We analyze interconnections within and between taste pathways, characterize modality-dependent differences in taste neuron properties, identify other types of inputs onto taste pathways, and use computational simulations to relate neuronal connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R Walker
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Coomer CE, Naumova D, Talay M, Zolyomi B, Snell NJ, Sorkaç A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, McLean DL, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. Nat Neurosci 2025; 28:189-200. [PMID: 39702668 DOI: 10.1038/s41593-024-01815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/30/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development. The specificity of labeling was corroborated by functional experiments in which optogenetic activation of presynaptic spinal cord interneurons elicited responses in known motor neuronal postsynaptic targets, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator or by electrophysiology. Transsynaptic signaling through trans-Tango reveals synaptic connections in the zebrafish nervous system, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
Affiliation(s)
- Cagney E Coomer
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Daria Naumova
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Michel Chanchu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana Roman
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jennifer Li
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Drew Robson
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Fisher JD, Crown AM, Sorkaç A, Martinez-Machado S, Snell NJ, Vishwanath N, Monje S, Vo A, Wu AH, Moșneanu RA, Okoro AM, Savaş D, Nkera B, Iturralde P, Kumari A, Chou-Freed C, Hartmann GG, Talay M, Barnea G. Convergent olfactory circuits for courtship in Drosophila revealed by ds-Tango. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619891. [PMID: 39484479 PMCID: PMC11527207 DOI: 10.1101/2024.10.23.619891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Animals exhibit sex-specific behaviors that are governed by sexually dimorphic circuits. One such behavior in male Drosophila melanogaster, courtship, is regulated by various sensory modalities, including olfaction. Here, we reveal how sexually dimorphic olfactory pathways in male flies converge at the third-order, onto lateral horn output neurons, to regulate courtship. To achieve this, we developed ds-Tango, a modified version of the monosynaptic tracing and manipulation tool trans-Tango. In ds-Tango, two distinct configurations of trans-Tango are positioned in series, thus providing selective genetic access not only to the monosynaptic partners of starter neurons but also to their disynaptic connections. Using ds-Tango, we identified a node of convergence for three sexually dimorphic olfactory pathways. Silencing this node results in deficits in sex recognition of potential partners. Our results identify lateral horn output neurons required for proper courtship behavior in male flies and establish ds-Tango as a tool for disynaptic circuit tracing.
Collapse
Affiliation(s)
- John D. Fisher
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Anthony M. Crown
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Sasha Martinez-Machado
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Nathaniel J. Snell
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Neel Vishwanath
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Silas Monje
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - An Vo
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA
| | - Annie H. Wu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Rareș A. Moșneanu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Angel M. Okoro
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Doruk Savaş
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bahati Nkera
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Pablo Iturralde
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Aastha Kumari
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Cambria Chou-Freed
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Department of Cell and Tissue Biology, UCSF, San Francisco, CA, USA
| | - Griffin G. Hartmann
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
4
|
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro MA, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GSXE, Seung HS, Murthy M. Neuronal wiring diagram of an adult brain. Nature 2024; 634:124-138. [PMID: 39358518 PMCID: PMC11446842 DOI: 10.1038/s41586-024-07558-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative1-6, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses7 between 139,255 neurons reconstructed from an adult female Drosophila melanogaster8,9. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities10-12. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Will Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Akhilesh Halageri
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Kai Kuehner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Morey
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - David Deutsch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Electrical and Computer Engineering Department, Princeton University, Princeton, NJ, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Barak Nehoran
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Eric Mitchell
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Zhen Jia
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Manuel A Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford, UK
| | - Nils Eckstein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613080. [PMID: 39314399 PMCID: PMC11419157 DOI: 10.1101/2024.09.14.613080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ). We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We characterize interconnections between taste pathways, identify modality-dependent differences in taste neuron properties, and use computational simulations to relate connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R. Walker
- Department of Biology, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Anita V. Devineni
- Department of Biology, Emory University, Atlanta GA 30322
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- Lead contact
| |
Collapse
|
6
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
7
|
Sorkaç A, Moșneanu RA, Crown AM, Savaş D, Okoro AM, Memiş E, Talay M, Barnea G. retro-Tango enables versatile retrograde circuit tracing in Drosophila. eLife 2023; 12:e85041. [PMID: 37166114 PMCID: PMC10208638 DOI: 10.7554/elife.85041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/11/2023] [Indexed: 05/12/2023] Open
Abstract
Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here, we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Rareș A Moșneanu
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Anthony M Crown
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Doruk Savaş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Angel M Okoro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Ezgi Memiş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
8
|
Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, Sorkac A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535421. [PMID: 37066422 PMCID: PMC10103993 DOI: 10.1101/2023.04.03.535421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
|
9
|
Yapici N. Eating regulation: How diet impacts food cognition. Curr Biol 2023; 33:R153-R156. [PMID: 36854275 DOI: 10.1016/j.cub.2022.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
How diet alters brain physiology and impacts cognitive functions is poorly understood in any species. A new study has shown that a high-sugar diet disrupts the formation of food-odor associations in the brain of the fly Drosophila melanogaster in a manner that leads to increased food intake.
Collapse
Affiliation(s)
- Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Deere JU, Sarkissian AA, Yang M, Uttley HA, Martinez Santana N, Nguyen L, Ravi K, Devineni AV. Selective integration of diverse taste inputs within a single taste modality. eLife 2023; 12:e84856. [PMID: 36692370 PMCID: PMC9873257 DOI: 10.7554/elife.84856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles.
Collapse
Affiliation(s)
- Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | | | - Meifeng Yang
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Hannah A Uttley
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | | | - Lam Nguyen
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Kaushiki Ravi
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Neuroscience Graduate Program, Emory UniversityAtlantaUnited States
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
11
|
Deere JU, Devineni AV. Taste cues elicit prolonged modulation of feeding behavior in Drosophila. iScience 2022; 25:105159. [PMID: 36204264 PMCID: PMC9529979 DOI: 10.1016/j.isci.2022.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Taste cues regulate immediate feeding behavior, but their ability to modulate future behavior has been less well studied. Pairing one taste with another can modulate subsequent feeding responses through associative learning, but this requires simultaneous exposure to both stimuli. We investigated whether exposure to one taste modulates future responses to other tastes even when they do not overlap in time. Using Drosophila, we found that brief exposure to sugar enhanced future feeding responses, whereas bitter exposure suppressed them. This modulation relies on neural pathways distinct from those that acutely regulate feeding or mediate learning-dependent changes. Sensory neuron activity was required not only during initial taste exposure but also afterward, suggesting that ongoing sensory activity may maintain experience-dependent changes in downstream circuits. Thus, the brain stores a memory of each taste stimulus after it disappears, enabling animals to integrate information as they sequentially sample different taste cues that signal local food quality.
Collapse
Affiliation(s)
- Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Circuit analysis reveals a neural pathway for light avoidance in Drosophila larvae. Nat Commun 2022; 13:5274. [PMID: 36071059 PMCID: PMC9452580 DOI: 10.1038/s41467-022-33059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Understanding how neural circuits underlie behaviour is challenging even in the connectome era because it requires a combination of anatomical and functional analyses. This is exemplified in the circuit underlying the light avoidance behaviour displayed by Drosophila melanogaster larvae. While this behaviour is robust and the nervous system relatively simple, the circuit is only partially delineated with some contradictions among studies. Here, we devise trans-Tango MkII, an offshoot of the transsynaptic circuit tracing tool trans-Tango, and implement it in anatomical tracing together with functional analysis. We use neuronal inhibition to test necessity of particular neuronal types in light avoidance and selective neuronal activation to examine sufficiency in rescuing light avoidance deficiencies exhibited by photoreceptor mutants. Our studies reveal a four-order circuit for light avoidance connecting the light-detecting photoreceptors with a pair of neuroendocrine cells via two types of clock neurons. This approach can be readily expanded to studying other circuits. Studying neural circuits requires a multipronged approach. Here, the authors present a transsynaptic tracing tool in fruit fly larvae and combine it with neuronal inhibition and activation to study the circuit underlying light avoidance behaviour.
Collapse
|