1
|
Cecil KM, Saleh MG. Proton Magnetic Resonance Spectroscopy for Pediatric Neuroimaging: Key Concepts for Practice. Semin Ultrasound CT MR 2025:S0887-2171(25)00019-8. [PMID: 40383281 DOI: 10.1053/j.sult.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Magnetic resonance spectroscopy (MRS) of the brain provides the clinician an in vivo neurochemical assessment within the clinical magnetic resonance imaging setting. This information can yield specificity when addressing questions pertaining to brain health and metabolism while characterizing disease and injury, evaluating treatment response, and prognosticating outcome. Proton MRS techniques can be useful in narrowing the diagnostic differential and capturing time-sensitive information for the continually developing pediatric brain. This paper provides a review of key proton MRS topics relevant for usage in pediatric populations. We discuss magnetic field strength, pediatric-sized head coils, water suppression techniques, localization pulse sequences, post-processing methods, analysis, and interpretation. These elements all require special consideration, particularly for the immature brain. We introduce the fundamentals of spectral editing. Finally, we present illustrative examples employing proton MRS in clinical practice to begin to synthesize these concepts into practical application.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Radiology, University of Cincinnati College of Medicine, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| | - Muhammad G Saleh
- Program in Advanced Imaging Research & Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Gonzalez N, Samad I, Thomas O, Rice J, Valdez R, Burt K. Food as medicine through the lenses of Food Access, Justice, and Sovereignty. Curr Opin Pediatr 2025; 37:13-18. [PMID: 39699096 DOI: 10.1097/mop.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW Food as Medicine (FAM) and supplemental nutrition programs like supplemental nutrition assistance program (SNAP), women, infants, and children (WIC), and school meals aim to combat rising diet-related chronic diseases and healthcare costs by addressing poor diet and food insecurity. However, their effectiveness is limited by a lack of community integration in planning, implementation, and evaluation. We introduce the Food Access, Justice, and Sovereignty (FAJS) framework, which expands FAM efforts to address acute food disparity through community-based strategies grounded in justice and sovereignty. RECENT FINDINGS FAM interventions on adult populations have demonstrated a positive impact on food insecurity and its related chronic illness and shows promise for pediatric populations. However, community-driven solutions are essential for shifting power toward greater integration of the lived experiences of community, which can enhance positive behavioral changes needed for greater prevention and management of chronic illness. SUMMARY Using community driven approaches through the lens of access, justice, and sovereignty address the effects of food insecurity and diet-related chronic diseases for adults and pediatric populations. Through the FAJS Framework, interventionalists can develop sustainable nutrition programs that engender community health, control, and lasting impact.
Collapse
Affiliation(s)
| | | | - Olivia Thomas
- Boston Medical Center, Nourishing Our Community Program, Boston
| | | | | | - Katherine Burt
- Department of Health Promotion and Nutrition Sciences, Lehman College, City University of New York, New York, USA
| |
Collapse
|
3
|
Konrad C, Neuhoff L, Adolph D, Goerigk S, Herbert JS, Jagusch-Poirier J, Weigelt S, Seehagen S, Schneider S. Associative learning via eyeblink conditioning differs by age from infancy to adulthood. COMMUNICATIONS PSYCHOLOGY 2024; 2:118. [PMID: 39681622 DOI: 10.1038/s44271-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Associative learning is a key feature of adaptive behaviour and mental health, enabling individuals to adjust their actions in anticipation of future events. Comprehensive documentation of this essential component of human cognitive development throughout different developmental periods is needed. Here, we investigated age-related changes in associative learning in key developmental stages, including infancy, childhood, adolescence, and adulthood. We employed a classical delay eyeblink conditioning paradigm that consisted of two sessions with a total of 48 paired trials. Our initial hypothesis was that performance in associative learning would increase linearly with age. However, our findings suggest that performance peaks during the primary school years: Children in this age-group exhibited superior performance compared to all other age-groups and displayed the most consistent and least variable learning. Adults and adolescents exhibited faster association learning than infants. An additional learning session supported learning in infants and adolescents indicating that during these developmental stages, consolidation processes are vital for learning. A comprehensive account of the development of associative learning may inform theories on aetiology and treatment options in clinical psychology and neurosciences.
Collapse
Affiliation(s)
- Carolin Konrad
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, Marburg, Germany.
| | - Lina Neuhoff
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, Marburg, Germany
| | - Dirk Adolph
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, Marburg, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Charlotte Fresenius Hochschule, Munich, Germany
| | - Jane S Herbert
- Wollongong Infant Learning Lab, School of Psychology and Early Start, University of Wollongong, Wollongong, NSW, Australia
| | - Julie Jagusch-Poirier
- Research Unit Vision, Visual Impairments & Blindness, Department of Rehabilitation Sciences, TU Dortmund University, Dortmund, Germany
| | - Sarah Weigelt
- Research Unit Vision, Visual Impairments & Blindness, Department of Rehabilitation Sciences, TU Dortmund University, Dortmund, Germany
| | - Sabine Seehagen
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, Marburg, Germany
- Developmental Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Silvia Schneider
- Clinical Child and Adolescent Psychology, Mental Health Research and Treatment Center, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Guamán LP, Carrera-Pacheco SE, Zúñiga-Miranda J, Teran E, Erazo C, Barba-Ostria C. The Impact of Bioactive Molecules from Probiotics on Child Health: A Comprehensive Review. Nutrients 2024; 16:3706. [PMID: 39519539 PMCID: PMC11547800 DOI: 10.3390/nu16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background: This review investigates the impact of bioactive molecules produced by probiotics on child health, focusing on their roles in modulating gut microbiota, enhancing immune function, and supporting overall development. Key metabolites, including short-chain fatty acids (SCFAs), bacteriocins, exopolysaccharides (EPSs), vitamins, and gamma-aminobutyric acid (GABA), are highlighted for their ability to maintain gut health, regulate inflammation, and support neurodevelopment. Objectives: The aim of this review is to examine the mechanisms of action and clinical evidence supporting the use of probiotics and postbiotics in pediatric healthcare, with a focus on promoting optimal growth, development, and overall health in children. Methods: The review synthesizes findings from clinical studies that investigate the effects of probiotics and their metabolites on pediatric health. The focus is on specific probiotics and their ability to influence gut health, immune responses, and developmental outcomes. Results: Clinical studies demonstrate that specific probiotics and their metabolites can reduce gastrointestinal disorders, enhance immune responses, and decrease the incidence of allergies and respiratory infections in pediatric populations. Additionally, postbiotics-bioactive compounds from probiotic fermentation-offer promising benefits, such as improved gut barrier function, reduced inflammation, and enhanced nutrient absorption, while presenting fewer safety concerns compared to live probiotics. Conclusions: By examining the mechanisms of action and clinical evidence, this review underscores the potential of integrating probiotics and postbiotics into pediatric healthcare strategies to promote optimal growth, development, and overall health in children.
Collapse
Affiliation(s)
- Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Cesar Erazo
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Carlos Barba-Ostria
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
5
|
Elyeli K, Esmaeilzadeh S, Bebiş H. Is Web-Based Diabetes Training Effective or Ineffective on the Quality of Life of Individuals with Type 2 Diabetes Mellitus?: A Systematic Review. J Med Syst 2024; 48:92. [PMID: 39322812 DOI: 10.1007/s10916-024-02112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Diabetes mellitus is called as the "pandemic of the era" due to its rising prevalence. Since it is a disease that affects all spheres of life, it has an impact on the quality of life of individuals. This systematic review aims to examine the effect of web-based diabetes training programmes prepared for individuals with type 2 diabetes mellitus on their quality of life. The PRISMA-P (Preferred Reporting Items for Systematic Review and Meta Analysis Protocols) flowchart was used in the literature search stage. A comprehensive search was performed through the [MeSH] keywords (Web-based Intervention, Randomised Controlled Trial, HRQOL, Type 2 Diabetes) until May 8, 2024 in databases of PubMed, Web of Science, Science Direct, Medline, CINAHL, EBSCO host, Cochrane Library, and Google Scholar. Zotero software program was used to identify duplications of the obtained studies. Seven randomised controlled studies were included in the review. It was found that, most of the studies that were included in review showed that quality of life did not cause any significant difference in the level of quality of life; whereas, improvement was observed in quality-of-life levels in all of the experimental groups. Also, studies conducted for 1.5 to 3 months showed that web-based training was effective in improving the quality of life. Consequently, it is recommended that web-based trainings be long enough to prevent patients from dropping out of training, with possibility of an online individual interview, and follow-up periods of 1.5 to 3 months in order to achieve effective results. PROSPERO Number: CRD42024530777.
Collapse
Affiliation(s)
- Kemal Elyeli
- Faculty of Nursing / Department of Public Health Nursing, Near East University, Near East Boulevard, ZIP: 99138, Nicosia / TRNC Mersin 10, Turkey.
| | - Samineh Esmaeilzadeh
- Faculty of Nursing / Department of Mental Health and Illness Nursing, Near East University, Near East Boulevard, ZIP: 99138, Nicosia / TRNC Mersin 10, Turkey
| | - Hatice Bebiş
- Faculty of Health Sciences / Department of Public Health Nursing, Eastern Mediterranean University, 99628, Famagusta, / TRNC Mersin 10, Turkey
| |
Collapse
|
6
|
Li H, Rodríguez-Nieto G, Chalavi S, Seer C, Mikkelsen M, Edden RAE, Swinnen SP. MRS-assessed brain GABA modulation in response to task performance and learning. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:22. [PMID: 39217354 PMCID: PMC11366171 DOI: 10.1186/s12993-024-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Kim H, Kornman PT, Kweon J, Wassermann EM, Wright DL, Li J, Brown JC. Combined effects of pharmacological interventions and intermittent theta-burst stimulation on motor sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604878. [PMID: 39211172 PMCID: PMC11361068 DOI: 10.1101/2024.07.24.604878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Drugs that modulate N-methyl-D-aspartate (NMDA) or γ-Aminobutyric acid type A (GABA A ) receptors can shed light on their role in synaptic plasticity mechanisms underlying the effects of non-invasive brain stimulation. However, research on the combined effects of these drugs and exogenous stimulation on motor learning is limited. This study aimed to investigate the effects of pharmacological interventions combined with intermittent theta-burst stimulation (iTBS) on human motor learning. Nine right-handed healthy subjects (mean age ± SD: 31.56 ± 12.96 years; 6 females) participated in this double-blind crossover study. All participants were assigned to four drug conditions in a randomized order: (1) D-cycloserine (partial NMDA receptor agonist), (2) D-cycloserine + dextromethorphan (NMDA receptor agonist + antagonist), (3) lorazepam (GABA A receptor agonist), and (4) placebo (identical microcrystalline cellulose capsule). After drug intake, participants practiced the 12-item keyboard sequential task as a baseline measure. Two hours after drug intake, iTBS was administered at the primary motor cortex. Following iTBS, the retention test was performed in the same manner as the baseline measure. Our findings revealed that lorazepam combined with iTBS impaired motor learning during the retention test. Future studies are still needed for a better understanding of the mechanisms through which TMS may influence human motor learning.
Collapse
|
8
|
Malania M, Lin YS, Hörmandinger C, Werner JS, Greenlee MW, Plank T. Training-induced changes in population receptive field properties in visual cortex: Impact of eccentric vision training on population receptive field properties and the crowding effect. J Vis 2024; 24:7. [PMID: 38771584 PMCID: PMC11114612 DOI: 10.1167/jov.24.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.
Collapse
Affiliation(s)
- Maka Malania
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Yih-Shiuan Lin
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - John S Werner
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Berger S, Batterink LJ. Children extract a new linguistic rule more quickly than adults. Dev Sci 2024:e13498. [PMID: 38517035 DOI: 10.1111/desc.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Children achieve better long-term language outcomes than adults. However, it remains unclear whether children actually learn language more quickly than adults during real-time exposure to input-indicative of true superior language learning abilities-or whether this advantage stems from other factors. To examine this issue, we compared the rate at which children (8-10 years) and adults extracted a novel, hidden linguistic rule, in which novel articles probabilistically predicted the animacy of associated nouns (e.g., "gi lion"). Participants categorized these two-word phrases according to a second, explicitly instructed rule over two sessions, separated by an overnight delay. Both children and adults successfully learned the hidden animacy rule through mere exposure to the phrases, showing slower response times and decreased accuracy to occasional phrases that violated the rule. Critically, sensitivity to the hidden rule emerged much more quickly in children than adults; children showed a processing cost for violation trials from very early on in learning, whereas adults did not show reliable sensitivity to the rule until the second session. Children also showed superior generalization of the hidden animacy rule when asked to classify nonword trials (e.g., "gi badupi") according to the hidden animacy rule. Children and adults showed similar retention of the hidden rule over the delay period. These results provide insight into the nature of the critical period for language, suggesting that children have a true advantage over adults in the rate of implicit language learning. Relative to adults, children more rapidly extract hidden linguistic structures during real-time language exposure. RESEARCH HIGHLIGHTS: Children and adults both succeeded in implicitly learning a novel, uninstructed linguistic rule, based solely on exposure to input. Children learned the novel linguistic rules much more quickly than adults. Children showed better generalization performance than adults when asked to apply the novel rule to nonsense words without semantic content. Results provide insight into the nature of critical period effects in language, indicating that children have an advantage over adults in real-time language learning.
Collapse
Affiliation(s)
- Sarah Berger
- Department of Psychology, University of Western Ontario, London, Canada
| | - Laura J Batterink
- Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
10
|
Xu R, Walsh EG, Watanabe T, Sasaki Y. Shift in excitation-inhibition balance underlies perceptual learning of temporal discrimination. Neuropsychologia 2024; 195:108814. [PMID: 38316210 PMCID: PMC10923091 DOI: 10.1016/j.neuropsychologia.2024.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Temporal perceptual learning (TPL) constitutes a unique and profound demonstration of neural plasticity within the brain. Our understanding for the neurometabolic changes associated with TPL on the other hand has been limited in part by the use of traditional fMRI approaches. Since plasticity in the visual cortex has been shown to underlie perceptual learning of visual information, we tested the hypothesis that TPL of an auditory interval involves a similar change in plasticity of the auditory pathway and if so, whether these changes take place in a lower-order sensory-specific brain area such as the primary auditory cortex (A1), or a higher-order modality-independent brain area such as the inferior parietal cortex (IPC). This distinction will inform us of the mechanisms underlying perceptual learning as well as the locus of change as it relates to TPL. In the present study, we took advantage of a new technique: proton magnetic resonance spectroscopy (MRS) in combination with psychophysical measures to provide the first evidence of changes in neurometabolic processing following 5 days of temporal discrimination training. We measured the (E)xcitation-to-(I)nhibition ratio as an index of learning in the right IPC and left A1 while participants learned an auditory two-tone discrimination task. During the first day of training, we found a significant task-related increase in functional E/I ratio within the IPC. While the A1 exhibited the opposite pattern of neurochemical activity, this relationship did not reach statistical significance. After timing performance has reached a plateau, there were no further changes to functional E/I. These findings support the hypothesis that improvements in temporal discrimination relies on neuroplastic changes in the IPC, but it is possible that both areas work synergistically to acquire a temporal interval.
Collapse
Affiliation(s)
- Rannie Xu
- Department of Cognitive, Linguistic & Psychological Sciences, United States.
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, 02912, United States
| | - Takeo Watanabe
- Department of Cognitive, Linguistic & Psychological Sciences, United States
| | - Yuka Sasaki
- Department of Cognitive, Linguistic & Psychological Sciences, United States
| |
Collapse
|
11
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Sigmundsson H, Hauge H. I CAN Intervention to Increase Grit and Self-Efficacy: A Pilot Study. Brain Sci 2023; 14:33. [PMID: 38248248 PMCID: PMC10813140 DOI: 10.3390/brainsci14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, there has been a growing interest in increasing motivational factors within the domain of psychology. Among these factors, Grit, Mindset, Self-Efficacy, and Well-Being (Flourishing) have been suggested to play an important role in individuals' performance and Well-Being. Thus, cultivating these factors in the general population is important. Previous interventions have displayed substantial effects in certain areas. However, these interventions have primarily been Mindset oriented. This paper presents a novel intervention approach by also emphasizing the importance of brain development; the importance of stimuli for building a network in the brain; the importance of repetition for strengthening the network; and the importance of perseverance and deliberate practice for achievement. The purpose of the current study was to examine the effects of a 35-40 min online intervention to increase the beliefs of 'I CAN' for 38 university students in Norway. The mean age of the 38 participants was 22.55 (SD = 1.59) and they completed a pre-test assessment of the Grit-S Scale, Theories of Intelligence Scale (Mindset), General Self-Efficacy Scale, and Flourishing Scale (Well-Being). This was followed up by the novel intervention and finally a post-test of the scales eight weeks later. The results showed an increase in Grit, Self-Efficacy, and Well-Being. However, only Grit displayed a significant increase. We aimed at creating an intervention where the participants would "turn on the switch", meaning that they develop stronger beliefs. These promising results warrant a further development of the intervention, and studies with a larger group.
Collapse
Affiliation(s)
- Hermundur Sigmundsson
- Department of Psychology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
- Research Center for Education and Mindset, University of Iceland, 102 Reykjavik, Iceland
| | - Håvard Hauge
- Department of Psychology, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| |
Collapse
|
13
|
Wang X, Wang C, Miao P, Wei Y, Lin L, Li Z, Zhang Y, Cheng J, Ren C. Reduced GABA concentration in patients with white matter hyperintensities. Front Neurosci 2023; 17:1320247. [PMID: 38156270 PMCID: PMC10752961 DOI: 10.3389/fnins.2023.1320247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
To investigate potential alterations of white matter hyperintensities (WMHs) on J-edited MR spectroscopy (MRS) measures of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA). Twenty-four WMHs patients and 20 healthy controls (HCs) were recruited to undergo magnetic resonance spectroscopy (MRS) scan at 3T from voxels in left centrum semiovale white matter, using the MEGA point resolved spectroscopy (MEGA-PRESS) technique with the MATLAB-based Gannet tool to estimate GABA+ co-edited macromolecule (GABA+) levels and using Tarquin software to estimate levels of glutamate + glutamine (Glx), total N-acetylaspartate (tNAA), total choline (tCho), and total creatine (tCr). Independent t-tests or Mann-Whitney U-tests were used to test group differences between WMHs and HCs. Additionally, WMHs patients were divided into mild and moderate-severe WMHs subgroup according to the Fazekas scale. Analysis of variance (ANOVA) and post-hoc tests were used among WMHs subgroups and HCs. We found there was a significant reduction in GABA+ levels (p = 0.018) in WMHs patients compared with healthy controls. In subgroup analyses, there was also a significant reduction of GABA+ levels in moderate-severe WMHs subgroup (p = 0.037) and mild WMHs subgroup (p = 0.047) when compared to HCs. Besides, the moderate-severe WMHs subgroup had significantly higher levels of tCho compared with healthy controls (p = 0.019). In conclusion, reduced GABA+ levels in WMHs patients and elevated tCho levels in moderate-severe WMHs were observed when compared with HCs. These results demonstrate that abnormalities of the GABAergic system and choline metabolism may contribute to the pathogenesis of WMHs.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peifang Miao
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wei
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuiping Ren
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Tan Q, Sasaki Y, Watanabe T. Geometric-relationship specific transfer in visual perceptual learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570648. [PMID: 38106111 PMCID: PMC10723461 DOI: 10.1101/2023.12.07.570648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Visual perceptual learning (VPL) is defined as long-term improvement on a visual task as a result of visual experience. In many cases, the improvement is highly specific to the location where the target is presented, which refers to location specificity. In the current study, we investigated the effect of a geometrical relationship between the trained location and an untrained location on transfer of VPL. We found that significant transfer occurs either diagonally or along a line passing the fixation point. This indicates that whether location specificity or location transfer occurs at least partially depends on the geometrical relationship between trained location and an untrained location.
Collapse
|
15
|
Kim D, Wang Z, Sakagami M, Sasaki Y, Watanabe T. Only cortical prediction error signals are involved in visual learning, despite availability of subcortical prediction error signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566726. [PMID: 38014275 PMCID: PMC10680585 DOI: 10.1101/2023.11.13.566726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Both the midbrain systems, encompassing the ventral striatum (VS), and the cortical systems, including the dorsal anterior cingulate cortex (dACC), play roles in reinforcing and enhancing learning. However, the specific contributions of signals from these regions in learning remains unclear. To investigate this, we examined how VS and dACC are involved in visual perceptual learning (VPL) through an orientation discrimination task. In the primary experiment, subjects fasted for 5 hours before each of 14 days of training sessions and 3 days of test sessions. Subjects were rewarded with water for accurate trial responses. During the test sessions, BOLD signals were recorded from regions including VS and dACC. Although BOLD signals in both areas were associated with positive and negative RPEs, only those in dACC associated with negative RPE showed a significant correlation with performance improvement. Additionally, no significant correlation was observed between BOLD signals associated with RPEs in VS and dACC. These results suggest that although signals associated with positive and negative RPEs from both midbrain and cortical systems are readily accessible, only RPE signals in the prefrontal system, generated without linking to RPE signals in VS, are utilized for the enhancement of VPL.
Collapse
|
16
|
Frank SM, Becker M, Malloni WM, Sasaki Y, Greenlee MW, Watanabe T. Protocol to conduct functional magnetic resonance spectroscopy in different age groups of human participants. STAR Protoc 2023; 4:102493. [PMID: 37572324 PMCID: PMC10448431 DOI: 10.1016/j.xpro.2023.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023] Open
Abstract
We present a protocol to conduct functional magnetic resonance spectroscopy (fMRS) in human participants before, during, and after training on a visual task. We describe steps for participant setup, volume-of-interest placement, fMRS measurement, and post-scan tests. We discuss the design, analysis, and interpretation of fMRS experiments. This protocol can be adapted to investigate the dynamics of chief excitatory and inhibitory neurotransmitters (glutamate and γ-aminobutyric acid, GABA, respectively) while participants perform or learn perceptual, motor, or cognitive tasks. For complete details on the use and execution of this protocol, please refer to Frank et al. (2022).1.
Collapse
Affiliation(s)
- Sebastian M Frank
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Markus Becker
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Wilhelm M Malloni
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Yuka Sasaki
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Mark W Greenlee
- University of Regensburg, Institute for Experimental Psychology, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Takeo Watanabe
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA.
| |
Collapse
|
17
|
Plueckebaum H, Meyer L, Beck AK, Menn KH. The developmental trajectory of functional excitation-inhibition balance relates to language abilities in autistic and allistic children. Autism Res 2023; 16:1681-1692. [PMID: 37493078 DOI: 10.1002/aur.2992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Autism is a neurodevelopmental condition that has been related to an overall imbalance between the brain's excitatory (E) and inhibitory (I) systems. Such an EI imbalance can lead to structural and functional cortical deviances and thus alter information processing in the brain, ultimately giving rise to autism traits. However, the developmental trajectory of EI imbalances across childhood and adolescence has not been investigated yet. Therefore, its relationship to autism traits is not well understood. In the present study, we determined a functional measure of the EI balance (f-EIB) from resting-state electrophysiological recordings for a final sample of 92 autistic children from 6 to 17 years of age and 100 allistic (i.e., non-autistic) children matched by age, sex, and nonverbal-IQ. We related the developmental trajectory of f-EIB to behavioral assessments of autism traits as well as language ability. Our results revealed differential EI trajectories for autistic compared to allistic children. Importantly, the developmental trajectory of f-EIB values related to individual language ability. In particular, elevated excitability in late childhood and early adolescence was linked to decreased listening comprehension. Our findings provide evidence against a general EI imbalance in autistic children when correcting for non-verbal IQ. Instead, we show that the developmental trajectory of EI balance shares variance with autism trait development at a specific age range. This is consistent with the proposal that the late development of inhibitory brain activity is a key substrate of autism traits.
Collapse
Affiliation(s)
- Hannah Plueckebaum
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Ann-Kathrin Beck
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Katharina H Menn
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| |
Collapse
|
18
|
Dinse HR. Developmental neuroscience: Boosting inhibition boosts learning. Curr Biol 2023; 33:R72-R75. [PMID: 36693313 DOI: 10.1016/j.cub.2022.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Compared to adults, children learn differently and more efficiently. A new study shows that in children a rapid boost of inhibition evoked during learning leads to better stabilization of learned items due to reduced retrograde interference.
Collapse
Affiliation(s)
- Hubert R Dinse
- Neural Plasticity Lab, Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany.
| |
Collapse
|