1
|
Gozashti L, Corbett-Detig R. Double-stranded DNA viruses may serve as vectors for horizontal transfer of intron-generating transposons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643946. [PMID: 40166157 PMCID: PMC11957031 DOI: 10.1101/2025.03.18.643946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Specialized transposable elements capable of generating introns, termed introners, are one of the major drivers of intron gain in eukaryotes. Horizontal gene transfer (HGT) is thought to play an important role in shaping introner distributions. Viruses could function as vehicles of introner HGT since they often integrate into host genomes and have been implicated in widespread HGT in eukaryotes. We annotated integrated viral elements in diverse dinoflagellate genomes with active introners and queried viral elements for introner sequences. We find that 25% of viral elements contain introners. The vast majority of viral elements represent maverick-polinton-like double-stranded DNA (dsDNA) viruses as well as giant dsDNA viruses. By querying a previously annotated set of maverick-polinton-like proviruses, we show that introners populate full-length elements with machinery required for transposition as well as viral infection. Introners in the vast majority of viral elements are younger than or similar in age to others in their host genome, suggesting that most viral elements acquired introners after integration. However, a subset of viral elements show the opposite pattern wherein viral introners are significantly older than other introners, possibly consistent with virus-to-host horizontal transfer. Together, our results suggest that dsDNA viruses may serve as vectors for HGT of introners between individuals and species, resulting in the introduction of intron-generating transposons to new lineages.
Collapse
Affiliation(s)
- Landen Gozashti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
2
|
Rogers SO, Bendich AJ. Direct repeats found in the vicinity of intron splice sites. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:14. [PMID: 39883174 PMCID: PMC11782384 DOI: 10.1007/s00114-025-01966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
Four main classes of introns (group I, group II, spliceosomal, and archaeal) have been reported for all major types of RNA from nuclei and organelles of a wide range of taxa. When and how introns inserted within the genic regions of genomes, however, is often unclear. Introns were examined from Archaea, Bacteria, and Eukarya. Up to 80 bp surrounding each of the 5' and 3' intron/exon borders were compared to search for direct repeats (DRs). For each of the 213 introns examined, DNA sequence analysis revealed DRs at or near the intron/exon borders, ranging from 4 to 30 bp in length, with a mean of 11.4 bp. More than 80% of the repeats were within 10 bp of the intron/exon borders. The numbers of DRs 6-30 bp in length were greater than expected by chance. When a DNA segment moves into a new genomic location, the insertion involves a double-strand DNA break that must be repaired to maintain genome stability and often results in a pair of DRs that now flank the insert. This insertion process applies to both mobile genetic elements (MGEs), such as transposons, and to introns as reported here. The DNA break at the insertion site may be caused by transposon-like events or recombination. Thus, introns and transposons appear to be members of a group of parasitic MGEs that secondarily may benefit their host cell and have expanded greatly in eukaryotes from their prokaryotic ancestors.
Collapse
Affiliation(s)
- Scott O Rogers
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
3
|
Lin S. A decade of dinoflagellate genomics illuminating an enigmatic eukaryote cell. BMC Genomics 2024; 25:932. [PMID: 39367346 PMCID: PMC11453091 DOI: 10.1186/s12864-024-10847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Dinoflagellates are a remarkable group of protists, not only for their association with harmful algal blooms and coral reefs but also for their numerous characteristics deviating from the rules of eukaryotic biology. Genome research on dinoflagellates has lagged due to their immense genome sizes in most species (~ 1-250 Gbp). Nevertheless, the last decade marked a fruitful era of dinoflagellate genomics, with 27 genomes sequenced and many insights attained. This review aims to synthesize information from these genomes, along with other omic data, to reflect on where we are now in understanding dinoflagellates and where we are heading in the future. The most notable insights from the decade-long genomics work include: (1) dinoflagellate genomes have been expanded in multiple times independently, probably by a combination of rampant retroposition, accumulation of repetitive DNA, and genome duplication; (2) Symbiodiniacean genomes are highly divergent, but share about 3,445 core unigenes concentrated in 219 KEGG pathways; (3) Most dinoflagellate genes are encoded unidirectionally and are not intron-poor; (4) The dinoflagellate nucleus has undergone extreme evolutionary changes, including complete or nearly complete loss of nucleosome and histone H1, and acquisition of dinoflagellate viral nuclear protein (DVNP); (5) Major basic nuclear protein (MBNP), histone-like protein (HLP), and bacterial HU-like protein (HCc) belong to the same protein family, and MBNP can be the unifying name; (6) Dinoflagellate gene expression is regulated by poorly understood mechanisms, but microRNA and other epigenetic mechanisms are likely important; (7) Over 50% of dinoflagellate genes are "dark" and their functions remain to be deciphered using functional genetics; (8) Initial insights into the genomic basis of parasitism and mutualism have emerged. The review then highlights functionally unique and interesting genes. Future research needs to obtain a finished genome, tackle large genomes, characterize the unknown genes, and develop a quantitative molecular ecological model for addressing ecological questions.
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT, 06340, USA.
| |
Collapse
|
4
|
Mikina W, Hałakuc P, Milanowski R. Transposon-derived introns as an element shaping the structure of eukaryotic genomes. Mob DNA 2024; 15:15. [PMID: 39068498 PMCID: PMC11282704 DOI: 10.1186/s13100-024-00325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
The widely accepted hypothesis postulates that the first spliceosomal introns originated from group II self-splicing introns. However, it is evident that not all spliceosomal introns in the nuclear genes of modern eukaryotes are inherited through vertical transfer of intronic sequences. Several phenomena contribute to the formation of new introns but their most common origin seems to be the insertion of transposable elements. Recent analyses have highlighted instances of mass gains of new introns from transposable elements. These events often coincide with an increase or change in the spliceosome's tolerance to splicing signals, including the acceptance of noncanonical borders. Widespread acquisitions of transposon-derived introns occur across diverse evolutionary lineages, indicating convergent processes. These events, though independent, likely require a similar set of conditions. These conditions include the presence of transposon elements with features enabling their removal at the RNA level as introns and/or the existence of a splicing mechanism capable of excising unusual sequences that would otherwise not be recognized as introns by standard splicing machinery. Herein we summarize those mechanisms across different eukaryotic lineages.
Collapse
Affiliation(s)
- Weronika Mikina
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, Warsaw, 02‑089, Poland.
| |
Collapse
|
5
|
Kalvelage J, Rabus R. Multifaceted Dinoflagellates and the Marine Model Prorocentrum cordatum. Microb Physiol 2024; 34:197-242. [PMID: 39047710 DOI: 10.1159/000540520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.
Collapse
Affiliation(s)
- Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Wang H, Wu P, Xiong L, Kim HS, Kim JH, Ki JS. Nuclear genome of dinoflagellates: Size variation and insights into evolutionary mechanisms. Eur J Protistol 2024; 93:126061. [PMID: 38394997 DOI: 10.1016/j.ejop.2024.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Recent progress in high-throughput sequencing technologies has dramatically increased availability of genome data for prokaryotes and eukaryotes. Dinoflagellates have distinct chromosomes and a huge genome size, which make their genomic analysis complicated. Here, we reviewed the nuclear genomes of core dinoflagellates, focusing on the genome and cell size. Till now, the genome sizes of several dinoflagellates (more than 25) have been measured by certain methods (e.g., flow cytometry), showing a range of 3-250 pg of genomic DNA per cell. In contrast to their relatively small cell size, their genomes are huge (about 1-80 times the human haploid genome). In the present study, we collected the genome and cell size data of dinoflagellates and compared their relationships. We found that dinoflagellate genome size exhibits a positive correlation with cell size. On the other hand, we recognized that the genome size is not correlated with phylogenetic relatedness. These may be caused by genome duplication, increased gene copy number, repetitive non-coding DNA, transposon expansion, horizontal gene transfer, organelle-to-nucleus gene transfer, and/or mRNA reintegration into the genome. Ultimate verification of these factors as potential causative mechanisms would require sequencing of more dinoflagellate genomes in the future.
Collapse
Affiliation(s)
- Hui Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Peiling Wu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Lu Xiong
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 03016, Republic of Korea; Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
7
|
Dougan KE, Deng ZL, Wöhlbrand L, Reuse C, Bunk B, Chen Y, Hartlich J, Hiller K, John U, Kalvelage J, Mansky J, Neumann-Schaal M, Overmann J, Petersen J, Sanchez-Garcia S, Schmidt-Hohagen K, Shah S, Spröer C, Sztajer H, Wang H, Bhattacharya D, Rabus R, Jahn D, Chan CX, Wagner-Döbler I. Multi-omics analysis reveals the molecular response to heat stress in a "red tide" dinoflagellate. Genome Biol 2023; 24:265. [PMID: 37996937 PMCID: PMC10666404 DOI: 10.1186/s13059-023-03107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes. RESULTS We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate. CONCLUSIONS Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.
Collapse
Affiliation(s)
- Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi-Luo Deng
- Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Carsten Reuse
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Boyke Bunk
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Juliane Hartlich
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Karsten Hiller
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, 26129, Oldenburg, Germany
| | - Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Johannes Mansky
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Meina Neumann-Schaal
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörg Overmann
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörn Petersen
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Selene Sanchez-Garcia
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Kerstin Schmidt-Hohagen
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cathrin Spröer
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Helena Sztajer
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Hui Wang
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Irene Wagner-Döbler
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.
| |
Collapse
|