1
|
Bonfante P. Fungal-bacterial endosymbiosis: Recreating an ancient symbiotic relationship. Cell Host Microbe 2024; 32:2037-2038. [PMID: 39667341 DOI: 10.1016/j.chom.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Fungal-bacterial endosymbioses, the most intimate typology of symbioses, have been described in different taxa of Mucoromycota, an early diverging group of Fungi. In a recent issue of Nature, Giger and colleagues describe how they implanted a Burkolderia-related microbe inside a Mucoromycota fungus, giving rise to a functional and stable endosymbiosis.
Collapse
Affiliation(s)
- Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Giger GH, Ernst C, Richter I, Gassler T, Field CM, Sintsova A, Kiefer P, Gäbelein CG, Guillaume-Gentil O, Scherlach K, Bortfeld-Miller M, Zambelli T, Sunagawa S, Künzler M, Hertweck C, Vorholt JA. Inducing novel endosymbioses by implanting bacteria in fungi. Nature 2024; 635:415-422. [PMID: 39358514 PMCID: PMC11560845 DOI: 10.1038/s41586-024-08010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
Endosymbioses have profoundly impacted the evolution of life and continue to shape the ecology of a wide range of species. They give rise to new combinations of biochemical capabilities that promote innovation and diversification1,2. Despite the many examples of known endosymbioses across the tree of life, their de novo emergence is rare and challenging to uncover in retrospect3-5. Here we implant bacteria into the filamentous fungus Rhizopus microsporus to follow the fate of artificially induced endosymbioses. Whereas Escherichia coli implanted into the cytosol induced septum formation, effectively halting endosymbiogenesis, Mycetohabitans rhizoxinica was transmitted vertically to the progeny at a low frequency. Continuous positive selection on endosymbiosis mitigated initial fitness constraints by several orders of magnitude upon adaptive evolution. Phenotypic changes were underscored by the accumulation of mutations in the host as the system stabilized. The bacterium produced rhizoxin congeners in its new host, demonstrating the transfer of a metabolic function through induced endosymbiosis. Single-cell implantation thus provides a powerful experimental approach to study critical events at the onset of endosymbiogenesis and opens opportunities for synthetic approaches towards designing endosymbioses with desired traits.
Collapse
Affiliation(s)
- Gabriel H Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | - Thomas Gassler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christoph G Gäbelein
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Whitehead Institute, Cambridge, MA, USA
| | | | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
| | | | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Carpenter SCD, Bogdanove AJ, Abbot B, Stajich JE, Uehling JK, Lovett B, Kasson MT, Carter ME. Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic Mycetohabitans spp. Microb Genom 2024; 10:001261. [PMID: 38860878 PMCID: PMC11261895 DOI: 10.1099/mgen.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.
Collapse
Affiliation(s)
- Sara C. D. Carpenter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Adam J. Bogdanove
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Bhuwan Abbot
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Jessie K. Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14850, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Morgan E. Carter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- CIPHER Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
5
|
Liu XL, Zhao H, Wang YX, Liu XY, Jiang Y, Tao MF, Liu XY. Detecting and characterizing new endofungal bacteria in new hosts: Pandoraea sputorum and Mycetohabitans endofungorum in Rhizopus arrhizus. Front Microbiol 2024; 15:1346252. [PMID: 38486702 PMCID: PMC10939042 DOI: 10.3389/fmicb.2024.1346252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
The fungus Rhizopus arrhizus (=R. oryzae) is commonly saprotrophic, exhibiting a nature of decomposing organic matter. Additionally, it serves as a crucial starter in food fermentation and can act as a pathogen causing mucormycosis in humans and animals. In this study, two distinct endofungal bacteria (EFBs), associated with individual strains of R. arrhizus, were identified using live/dead staining, fluorescence in situ hybridization, transmission electron microscopy, and 16S rDNA sequencing. The roles of these bacteria were elucidated through antibiotic treatment, pure cultivation, and comparative genomics. The bacterial endosymbionts, Pandoraea sputorum EFB03792 and Mycetohabitans endofungorum EFB03829, were purified from the host fungal strains R. arrhizus XY03792 and XY03829, respectively. Notably, this study marks the first report of Pandoraea as an EFB genus. Compared to its free-living counterparts, P. sputorum EFB03792 exhibited 28 specific virulence factor-related genes, six specific CE10 family genes, and 74 genes associated with type III secretion system (T3SS), emphasizing its pivotal role in invasion and colonization. Furthermore, this study introduces R. arrhizus as a new host for EFB M. endofungorum, with EFB contributing to host sporulation. Despite a visibly reduced genome, M. endofungorum EFB03829 displayed a substantial number of virulence factor-related genes, CE10 family genes, T3SS genes, mobile elements, and significant gene rearrangement. While EFBs have been previously identified in R. arrhizus, their toxin-producing potential in food fermentation has not been explored until this study. The discovery of these two new EFBs highlights their potential for toxin production within R. arrhizus, laying the groundwork for identifying suitable R. arrhizus strains for fermentation processes.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhao
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yi-Xin Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xin-Ye Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yang Jiang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Meng-Fei Tao
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Richter I, Hasan M, Kramer JW, Wein P, Krabbe J, Wojtas KP, Stinear TP, Pidot SJ, Kloss F, Hertweck C, Lackner G. Deazaflavin metabolite produced by endosymbiotic bacteria controls fungal host reproduction. THE ISME JOURNAL 2024; 18:wrae074. [PMID: 38691425 PMCID: PMC11104420 DOI: 10.1093/ismejo/wrae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Johannes W Kramer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - K Philip Wojtas
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 3010 Melbourne, Victoria, Australia
| | - Florian Kloss
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Thuringia, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Thuringia, Germany
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Bavaria, Germany
| |
Collapse
|
7
|
Valadez-Cano C, Olivares-Hernández R, Espino-Vázquez AN, Partida-Martínez LP. Genome-Scale Model of Rhizopus microsporus: Metabolic integration of a fungal holobiont with its bacterial and viral endosymbionts. Environ Microbiol 2024; 26:e16551. [PMID: 38072824 DOI: 10.1111/1462-2920.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Rhizopus microsporus often lives in association with bacterial and viral symbionts that alter its biology. This fungal model represents an example of the complex interactions established among diverse organisms in functional holobionts. We constructed a Genome-Scale Model (GSM) of the fungal-bacterial-viral holobiont (iHol). We employed a constraint-based method to calculate the metabolic fluxes to decipher the metabolic interactions of the symbionts with their host. Our computational analyses of iHol simulate the holobiont's growth and the production of the toxin rhizoxin. Analyses of the calculated fluxes between R. microsporus in symbiotic (iHol) versus asymbiotic conditions suggest that changes in the lipid and nucleotide metabolism of the host are necessary for the functionality of the holobiont. Glycerol plays a pivotal role in the fungal-bacterial metabolic interaction, as its production does not compromise fungal growth, and Mycetohabitans bacteria can efficiently consume it. Narnavirus RmNV-20S and RmNV-23S affected the nucleotide metabolism without impacting the fungal-bacterial symbiosis. Our analyses highlighted the metabolic stability of Mycetohabitans throughout its co-evolution with the fungal host. We also predicted changes in reactions of the bacterial metabolism required for the active production of rhizoxin. This iHol is the first GSM of a fungal holobiont.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, Mexico
| | - Astrid N Espino-Vázquez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Laila P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| |
Collapse
|
8
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Dijksterhuis J. Endosymbionts: Bacterial hijacking of fungi? Curr Biol 2023; 33:R765-R767. [PMID: 37490862 DOI: 10.1016/j.cub.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Bacteria inside fungal hyphae allow the fungus Rhizopus microsporus to form spores and operate via effectors in 'stealth' mode. When the functionality of one effector is taken away, bacteria are captured in septated cells and die.
Collapse
Affiliation(s)
- Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
| |
Collapse
|