1
|
Ma Z, Li C, Bai W, Xie W, Zhang M, Xiao H, Chen C, Li Y, Zhang W, Zhai D, Liu Y, Zhao D, Tang W, Dong Z, Liu R, Yu S. Induction of more severe central sensitization in a medication overuse headache model mice through active ingestion of rizatriptan. J Headache Pain 2025; 26:123. [PMID: 40394497 PMCID: PMC12090462 DOI: 10.1186/s10194-025-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Medication overuse headache (MOH) is a secondary headache disorder arising from excessive use of acute analgesics in patients with primary headache. Current animal models that predominantly employ passive drug administration fail to recapitulate the hallmark feature of voluntary medication-seeking behaviour observed clinically. Therefore, we established a novel MOH mouse model with the active ingestion of rizatriptan (RIZ) to better simulate the clinical characteristics of MOH and explore changes in brain activation patterns. METHODS C57BL/6 J mice received intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg) every other day. During the feeding period, they were provided with two bottles-one containing an RIZ solution (0.02 mg/kg) and the other containing deuterium depleted water (DDW)-allowing for voluntary intake. The bottle containing the RIZ solution was marked with a fixed colour indicator at the nozzle. Behavioural assessments included mechanical allodynia (von Frey filaments), anxiety-like behaviours (elevated plus maze, EPM and open field test, OFT), and drug-seeking quantification. Quantitative data from c-Fos immunostaining across 25 specific brain regions were subjected to Z score normalization, followed by three-tiered computational analyses: 1) hierarchical clustering (complete linkage) to characterize activation patterns, 2) Pearson correlation analysis for functional connectivity mapping, and 3) graph-theoretical network analysis (Cytoscape 3.2.1) to identify hub regions and their topological relationships. The small molecule calcitonin gene-related peptide (CGRP) receptor antagonist, rimegepant (100 mg/kg, i.p., 7 injections) was administered during the modelling period, and withdrawal of RIZ and NTG was applied after modelling to observe behavioural and histological changes. RESULTS Chronic RIZ consumption exacerbated NTG-induced cutaneous allodynia, prolonged central sensitization, and increased anxiety-like behaviour. Rimegepant attenuated allodynia progression, whereas withdrawal of RIZ and NTG normalized pain thresholds. Network analysis identified the prelimbic cortex (PrL) and spinal trigeminal nucleus caudalis (SPVC) as hub nodes. The PrL exhibited extensive functional connectivity with addiction-related regions (the insular cortex, IC and nucleus accumbens), whereas the SPVC showed predominant connections with pain-processing areas. CONCLUSION This study pioneers an ethologically valid MOH model that reflects more severe central sensitization and recapitulates active medication-seeking behaviour. PrL-mediated addiction-like-behaviour pathways and SPVC-centred nociceptive processing may play roles in the development of MOH. These findings provide novel neuromodulation targets (PrL, IC, SPVC) for refractory MOH management.
Collapse
Affiliation(s)
- Zhenjie Ma
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenhao Li
- The 96607 Military Hospital of Chinese PLA, BaojiShaanxi Province, 721000, China
| | - Wenhao Bai
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, 271016, China
| | - Wei Xie
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingjie Zhang
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Han Xiao
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Cancan Chen
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Li
- Department of Neurology, Aerospace Centre Hospital, Beijing, 100049, China
| | - Wenwen Zhang
- Department of Neurology, the First People's Hospital of Lin'an District, Zhejiang Province, Hangzhou, 311399, China
| | - Deqi Zhai
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingyuan Liu
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dengfa Zhao
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenjing Tang
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhao Dong
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruozhuo Liu
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shengyuan Yu
- Department of Neurology, the, First Medical Centre , Chinese PLA General Hospital, Beijing, 100853, China.
- International Headache Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Peretz-Rivlin N, Marsh-Yvgi I, Fatal Y, Terem A, Turm H, Shaham Y, Citri A. An automated group-housed oral fentanyl self-administration method in mice. Psychopharmacology (Berl) 2025; 242:1041-1053. [PMID: 38246893 PMCID: PMC12043779 DOI: 10.1007/s00213-024-06528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
RATIONALE AND OBJECTIVES Social factors play a critical role in human drug addiction, and humans often consume drugs together with their peers. In contrast, in traditional animal models of addiction, rodents consume or self-administer the drug in their homecage or operant self-administration chambers while isolated from their peers. Here, we describe HOMECAGE ("Home-cage Observation and Measurement for Experimental Control and Analysis in a Group-housed Environment"), a translationally relevant method for studying oral opioid self-administration in mice. This setting reduces experimental confounds introduced by social isolation or interaction with the experimenter. METHODS We have developed HOMECAGE, a method in which mice are group-housed and individually monitored for their consumption of a drug vs. a reference liquid. RESULTS Mice in HOMECAGE preserve naturalistic aspects of behavior, including social interactions and circadian activity. The mice showed a preference for fentanyl and escalated their fentanyl intake over time. Mice preferred to consume fentanyl in bouts during the dark cycle. Mice entrained to the reinforcement schedule of the task, optimizing their pokes to obtain fentanyl rewards, and maintained responding for fentanyl under a progressive ratio schedule. HOMECAGE also enabled the detection of cage-specific and individual-specific behavior patterns and allowed the identification of differences in fentanyl consumption between co-housed control and experimental mice. CONCLUSIONS HOMECAGE serves as a valuable procedure for translationally relevant studies on oral opioid intake under conditions that more closely mimic the human condition. The method enables naturalistic investigation of factors contributing to opioid addiction-related behaviors and can be used to identify novel treatments.
Collapse
Affiliation(s)
- Noa Peretz-Rivlin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yonatan Fatal
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Anna Terem
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Hagit Turm
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD, USA
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
- Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel.
- Program in Child and Brain Development, MaRS Centre, West Tower, Canadian Institute for Advanced Research, 661 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada.
| |
Collapse
|
3
|
Negishi K, Duan Y, Batista A, Pishgar MS, Tsai PJ, Caldwell KE, Claypool SM, Reiner DJ, Madangopal R, Bossert JM, Yang Y, Shaham Y, Fredriksson I. The Role of Claustrum in Incubation of Opioid Seeking after Electric Barrier-Induced Voluntary Abstinence in Male and Female Rats. J Neurosci 2025; 45:e0561242025. [PMID: 39933931 PMCID: PMC11949475 DOI: 10.1523/jneurosci.0561-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
We previously reported that ventral subiculum (vSub) activity is critical to incubation of oxycodone seeking after abstinence induced by adverse consequences of drug seeking. Here, we studied the role of claustrum, a key vSub input, in this incubation. We trained male and female rats to self-administer oxycodone for 2 weeks and then induced abstinence by exposing them to an electric barrier for 2 weeks. We used retrograde tracing (cholera toxin B subunit) plus the activity marker Fos to identify projections to vSub cactivated during "incubated" relapse (Abstinence Day 15). We then used pharmacological reversible inactivation to determine the causal role of claustrum in incubation and the behavioral and anatomical specificity of this role. We also used an anatomical disconnection procedure to determine the causal role of claustrum-vSub connections in incubation. Finally, we analyzed an existing functional MRI dataset to determine if functional connectivity changes in claustrum-related circuits predict incubation of oxycodone seeking. Claustrum neurons projecting to vSub were activated during relapse tests after electric barrier-induced abstinence. Inactivation of claustrum but not areas dorsolateral to claustrum decreased incubation of oxycodone seeking after electric barrier-induced abstinence; claustrum inactivation had no effect on incubation after food choice-induced abstinence. Both ipsilateral and contralateral inactivation of claustrum-vSub projections decreased incubation after electric barrier-induced abstinence. Functional connectivity changes in claustrum-cortical circuits during electric barrier-induced abstinence predicted incubated oxycodone relapse. Our study identified a novel role of claustrum in relapse to opioid drugs after abstinence induced by adverse consequences of drug seeking.
Collapse
Affiliation(s)
- Kenichiro Negishi
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ying Duan
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ashley Batista
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Mona S Pishgar
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Kiera E Caldwell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Sarah M Claypool
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - David J Reiner
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | | | | | - Yihong Yang
- Neuroimaging Research Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, Maryland 21224
| | - Ida Fredriksson
- Center for Social and Affective Neuroscience, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
4
|
Feng J, Xu N, Wang L, Wang H, Zhou Y, Shen Q. Synaptic Structure and Transcriptomic Profiling of Reward and Sensory Brain Areas in Male Mice of Fentanyl Addiction. Subst Abuse Rehabil 2024; 15:233-245. [PMID: 39659661 PMCID: PMC11630728 DOI: 10.2147/sar.s484167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Background Opioid-based medications are powerful analgesics commonly prescribed for pain management, but they are also highly addictive. The over-prescription of opioids analgesics has triggered current opioid crisis, which now has expanded to heroin and illicit synthetic opioids like fentanyl and its analogues. The side effects of fentanyl abuse have been well recognized, yet the underlying molecular adaptations across brain regions upon fentanyl exposure remain elusive. Methods The transmission electron microscopy (TEM) and next-generation RNA-sequencing (RNA-seq) were used to investigate the ultrastructure synaptic alterations and transcriptional profiling changes of reward and sensory brain regions in mice after fentanyl exposure. Results The naloxone-precipitated acute withdrawal symptoms were observed in mice exposed to fentanyl. Results of TEM showed an increase in the number of synapses, widening of synaptic gaps, and thickening of postsynaptic density in the NAc of the fentanyl addiction mice, accompanied by obvious mitochondrial swelling. RNA-seq identified differentially expressed genes (DEGs) in prefrontal cortex of mice brains after fentanyl exposure, and the expression of some addiction-related genes such as Calm4, Cdh1, Drd1/2/3/4, F2rl2, Gabra6, Ht2cr, Oprk1 and Rxfp3 showed the most striking changes among experimental groups. KEGG enrichment analysis indicated that these DEGs were related to the development of addiction behavior, dopaminergic/GABAergic/serotonergic synapse, synapse assembly/synaptic plasticity/synaptic vesicle cycle, cAMP/MAPK signaling pathway, neuroactive ligand-receptor interactions. These transcriptomic changes may be correlated with the structural and behavioral changes observed in fentanyl-exposed mice. Discussion The findings of this study contribute to a better understanding of the molecular mechanism of addiction behavior, which is essential for the development of optimized therapy strategies for addicts.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, People’s Republic of China
| | - Ningsi Xu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, People’s Republic of China
| | - Linhua Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Linping, Zhejiang, 311106, People’s Republic of China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, 310053, People’s Republic of China
| | - Yi Zhou
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Narcotics Laboratory Zhejiang Regional Center, Hangzhou, 310053, People’s Republic of China
| | - Qing Shen
- The Joint Innovation Center for Health & Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
- Laboratory of Food Nutrition and Clinical Research, Zhejiang Gongshang University, Hangzhou, 310012, People’s Republic of China
| |
Collapse
|
5
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024; 47:1028-1040. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
7
|
Faig CA, Kim GHK, Do AD, Dworsky-Fried Z, Jackson J, Taylor AMW. Claustrum projections to the anterior cingulate modulate nociceptive and pain-associated behavior. Curr Biol 2024; 34:1987-1995.e4. [PMID: 38614081 DOI: 10.1016/j.cub.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.
Collapse
Affiliation(s)
- Christian A Faig
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada
| | - Gloria H K Kim
- Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada
| | - Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Department of Physiology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada.
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, 8613 114 Street NW, Edmonton, AB T6G 2R3, Canada; Neuroscience and Mental Health Institute, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, 11315 87 Avenue NW, Edmonton, AB T6G 2E1, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, 8440 112 Street NW, Edmonton, AB T6G 2B7, Canada.
| |
Collapse
|
8
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Gu T, Dong J, Ge J, Feng J, Liu X, Chen Y, Liu J. Neurotoxic lesions of the anterior claustrum influence cued fear memory in rats. Front Psychiatry 2024; 15:1387507. [PMID: 38707622 PMCID: PMC11066318 DOI: 10.3389/fpsyt.2024.1387507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Background The claustrum (CLA), a subcortical area between the insular cortex and striatum, innervates almost all cortical regions of the mammalian brain. There is growing evidence that CLA participates in many brain functions, including memory, cognition, and stress response. It is proposed that dysfunction or malfunction of the CLA might be the pathology of some brain diseases, including stress-induced depression and anxiety. However, the role of the CLA in fear memory and anxiety disorders remains largely understudied. Methods We evaluated the influences of neurotoxic lesions of the CLA using auditory-cued fear memory and anxiety-like behaviors in rats. Results We found that lesions of anterior CLA (aCLA) but not posterior CLA (pCLA) before fear conditioning attenuated fear retrieval, facilitated extinction, and reduced freezing levels during the extinction retention test. Post-learning lesions of aCLA but not pCLA facilitated fear extinction and attenuated freezing behavior during the extinction retention test. Lesions of aCLA or pCLA did not affect anxiety-like behaviors evaluated by the open field test and elevated plus-maze test. Conclusion These data suggested that aCLA but not pCLA was involved in fear memory and extinction. Future studies are needed to further investigate the anatomical and functional connections of aCLA subareas that are involved in fear conditioning, which will deepen our understanding of CLA functions.
Collapse
Affiliation(s)
- Tengyu Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Dong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ge
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jialu Feng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoliu Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yun Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Shaker T, Dagpa GJ, Cattaud V, Marriott BA, Sultan M, Almokdad M, Jackson J. A simple and reliable method for claustrum localization across age in mice. Mol Brain 2024; 17:10. [PMID: 38368400 PMCID: PMC10874566 DOI: 10.1186/s13041-024-01082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.
Collapse
Affiliation(s)
- Tarek Shaker
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gwyneth J Dagpa
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Vanessa Cattaud
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariam Sultan
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Mohammed Almokdad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|