1
|
Simacek CA, Kirischuk S, Mittmann T. Postnatal development of vasoactive intestinal polypeptide-expressing GABAergic interneurons in mouse somatosensory cortex. Acta Physiol (Oxf) 2025; 241:e14265. [PMID: 39803724 PMCID: PMC11726421 DOI: 10.1111/apha.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/30/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
AIM Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear. METHODS Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36). RESULTS Changes in passive and active membrane properties show a maturation towards accelerated signal integrations. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) showed progressive VIP-IN integration into cortical networks, likely via synaptogenesis: mEPSC frequency increased before P8-10, while mIPSC frequency increased at P14-16. Only mIPSC kinetics became accelerated, and the E/I ratio of synaptic inputs, defined as a ratio of mEPSC to mIPSC charge transfer, remained constant throughout the investigated developmental stages. Evoked (e)EPSCs and (e)IPSCs showed increased amplitudes, while only eIPSCs demonstrated faster kinetics. eEPSCs and eIPSCs revealed a paired-pulse facilitation by P14-16, indicating probably a decrease in the presynaptic release probability (pr) and a paired-pulse depression in adulthood. eIPSCs also showed the latter, suggesting a decrease in pr for both signal transmission pathways at this time point. CONCLUSIONS VIP-INs mature towards faster signal integration and pursue different strategies to avoid overexcitation. Excitatory and inhibitory synaptic transmission become stronger and shorter via different pre- and postsynaptic alterations, likely promoting the execution of active whisking.
Collapse
Affiliation(s)
- Clara A. Simacek
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Sergei Kirischuk
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| | - Thomas Mittmann
- Institute for PhysiologyUniversity Medical Centre of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
2
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Li J, Bai Y, Ge J, Zhang Y, Zhao Q, Li D, Guo B, Gao S, Zhu Y, Cai G, Wan X, Huang J, Wu S. Cell Type-Specific Modulation of Acute Itch Processing in the Anterior Cingulate Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403445. [PMID: 39316379 DOI: 10.1002/advs.202403445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Despite remarkable progress in understanding the fundamental bases of itching, its cortical mechanisms remain poorly understood. Herein, the causal contributions of defined anterior cingulate cortex (ACC) neuronal populations to acute itch modulation in mice are established. Using cell type-specific manipulations, the opposing functions of ACC glutamatergic and GABAergic neurons in regulating acute itching are demonstrated. Photometry studies indicated that ACC glutamatergic neurons are activated during scratching induced by both histamine and chloroquine, whereas the activation pattern of GABAergic neurons is complicated by GABAergic subpopulations and acute itch modalities. By combining cell type- and projection-specific techniques, a thalamocortical circuit is further identified from the mediodorsal thalamus driving the itch-scratching cycle related to histaminergic and non-histaminergic itching, which is contingent on the activation of postsynaptic parvalbumin-expressing neurons in the ACC. These findings reveal a cellular and circuit signature of ACC neurons orchestrating behavioral responses to itching and may provide insights into therapies for itch-related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110015, China
| | - Junye Ge
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiwen Zhang
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiuying Zhao
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dangchao Li
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Baolin Guo
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shasha Gao
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Zhu
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Guohong Cai
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiangdong Wan
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Huang
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
4
|
Ramamurthy DL, Rodriguez L, Cen C, Li S, Chen A, Feldman DE. Reward history guides focal attention in whisker somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603927. [PMID: 39131281 PMCID: PMC11312476 DOI: 10.1101/2024.07.17.603927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Prior reward is a potent cue for attentional capture, but the underlying neurobiology is largely unknown. In a novel whisker touch detection task, we show that mice flexibly shift attention between specific whiskers on a trial-by-trial timescale, guided by the recent history of stimulus-reward association. Two-photon calcium imaging and spike recordings revealed a robust neurobiological correlate of attention in the somatosensory cortex (S1), boosting sensory responses to the attended whisker in L2/3 and L5, but not L4. Attentional boosting in L2/3 pyramidal cells was topographically precise and whisker-specific, and shifted receptive fields toward the attended whisker. L2/3 VIP interneurons were broadly activated by whisker stimuli, motion, and arousal but did not carry a whisker-specific attentional signal, and thus did not mediate spatially focused tactile attention. Together, these findings establish a new model of focal attention in the mouse whisker tactile system, showing that the history of stimuli and rewards in the recent past can dynamically engage local modulation in cortical sensory maps to guide flexible shifts in ongoing behavior.
Collapse
Affiliation(s)
- Deepa L. Ramamurthy
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Lucia Rodriguez
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Neuroscience PhD Program, UC Berkeley
| | - Celine Cen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Siqian Li
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Andrew Chen
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
| | - Daniel E. Feldman
- Department of Neuroscience and Helen Wills Neuroscience Institute, UC Berkeley
- Lead Contact
| |
Collapse
|
5
|
Zhu M, Kuhlman SJ, Barth AL. Transient enhancement of stimulus-evoked activity in neocortex during sensory learning. Learn Mem 2024; 31:a053870. [PMID: 38955432 PMCID: PMC11261211 DOI: 10.1101/lm.053870.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+ imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning-indeed, under our imaging conditions thalamocortical axons were robustly activated-we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Sandra J Kuhlman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
6
|
Huang Y, Zhang X, Li W. Involvement of primary somatosensory cortex in motor learning and task execution. Neurosci Lett 2024; 828:137753. [PMID: 38554843 DOI: 10.1016/j.neulet.2024.137753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.
Collapse
Affiliation(s)
- Yunxuan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyu Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wei Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
7
|
Zou J, Hires SA. Inhibitory neurons: VIP neurons expect rewards. Curr Biol 2023; 33:R909-R911. [PMID: 37699349 DOI: 10.1016/j.cub.2023.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Inhibitory neurons which express vasoactive intestinal polypeptide, VIPs, are a small subset of the mammalian cortex but in importance live up to their acronym. New research shows that these critical control knobs of cortical activity are specifically activated by actions taken when rewards are anticipated rather than consummated.
Collapse
Affiliation(s)
- Jing Zou
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|