1
|
García-López JM. Diagnosis and Minimally Invasive Surgical Treatment for Enhancing Intrathecal/Intrasynovial Tendon Injuries. Vet Clin North Am Equine Pract 2025:S0749-0739(25)00022-7. [PMID: 40517028 DOI: 10.1016/j.cveq.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025] Open
Abstract
Intrathecal and intrasynovial tendon and ligament injuries can result in extrusion of tendon/ligament fibers, granuloma, and adhesion formation that not only impairs healing of the original injury but can create new injuries that negatively affect adequate healing and return to athletic work. In these cases, endoscopic evaluation and debridement, not only of the lesion, but also any other secondary injury present, can enhance the healing of the tendon or ligament and improve the athletic prognosis. Careful planning of the approach, positioning, instrumentation, and thorough knowledge of the anatomy are vital features that can enhance a successful outcome.
Collapse
Affiliation(s)
- José M García-López
- Department of Clinical Studies- New Bolton Center, University of Pennsylvania School of Veterinary Medicine, 382 West Street Road, Kennett Square, PA 19348, USA.
| |
Collapse
|
2
|
McCarthy RD, Ordóñez HJ, Semevolos SA. In vivo effects of cold therapy and bandaging on core temperatures of equine superficial and deep digital flexor tendons. Vet Surg 2025; 54:470-477. [PMID: 39996479 DOI: 10.1111/vsu.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
OBJECTIVE To compare core temperatures of superficial and deep digital flexor tendons (SDFT, DDFT) during application of a compression cooling system versus ice boots and during subsequent lower limb bandaging. STUDY DESIGN Experimental study. ANIMALS Paired forelimbs of six sedated horses. METHODS Thermocouples were placed in the core of SDFT and DDFT of both front limbs of each horse. A compression cooling system was applied to one front limb and an ice boot was applied to the other front limb for 60 min and then removed for 60 min. Standing bandages were then applied to both front limbs for 60 min and removed. A random coefficient regression model was fitted for cold therapy data and two-way ANOVA with repeated measures was performed to compare treatment effects of time and cold therapy method (p ≤ .05). RESULTS The compression cooling system resulted in greater drop in core temperatures from baseline of both tendons than ice boots (p = .04) (decreased by 10.8 ± 4.0°C SDFT, 9.8 ± 3.6°C DDFT in compression cooling system limbs; 7.5 ± 3.1°C SDFT, 6.5 ± 2.4°C DDFT in ice boot limbs). Standing bandages significantly increased core temperatures of the SDFT (4.1° ± 2.7) and DDFT (3.7° ± 2.5) from baseline during the treatment period (p < .0001). CONCLUSION The compression cooling system provided superior cooling of the SDFT and DDFT than ice boots, when applied to normal horses in an experimental setting. Bandaging increased flexor tendon temperatures but remained within physiological limits. CLINICAL SIGNIFICANCE The compression cooling system is recommended rather than ice boots for more rapid and consistent cooling of tendons.
Collapse
Affiliation(s)
- Robert D McCarthy
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Heather J Ordóñez
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stacy A Semevolos
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
3
|
Xiongce L, Tao Y, Zhu J, Jin Y, Wang L. A bibliometric analysis from 2013 to 2023 reveals research hotspots and trends in the connection between sport and regenerative medicine. Medicine (Baltimore) 2024; 103:e38846. [PMID: 38968451 PMCID: PMC11224857 DOI: 10.1097/md.0000000000038846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/07/2024] Open
Abstract
The field of regenerative medicine for sports injuries has grown significantly in the 21st century. This study attempted to provide an overview of the current state of research and key findings regarding the relationship between sport and regenerative medicine in general, identifying trends and hotspots in research topics. We gathered the literature from the Web of Science (WOS) database covering the last 10 years (2013-2023) pertaining to regenerative medicine for sporter and applied Citespace to assess the knowledge mapping. The findings demonstrated that there were 572, with a faster increase after 2018. The country, institution, and author with the most publications are the USA, Harvard University, and Maffulli Nicola. In addition, the most co-cited reference is J Acad Nutr Diet (2016) (199). Adipose tissue, high tibial osteotomy, and bone marrow are the hot spots in this field in the next few years.
Collapse
Affiliation(s)
- Lv Xiongce
- Department of Physical Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ye Tao
- Department of Physical Education, Beijing University of Posts and Telecommunications, Beijing, China
| | - Jing Zhu
- Department of Psychology, Russian Sports University, Moscow, Russia
| | - Yan Jin
- Department of Propaganda, Hebei University of Science and Technology, Shijiazhuang, China
| | - Lixia Wang
- College of Sports, Shijiazhuang University, Shijiazhuang, China
| |
Collapse
|
4
|
Reis IL, Lopes B, Sousa P, Sousa AC, Rêma A, Caseiro AR, Briote I, Rocha AM, Pereira JP, Mendonça CM, Santos JM, Lamas L, Atayde LM, Alvites RD, Maurício AC. Case report: Equine metacarpophalangeal joint partial and full thickness defects treated with allogenic equine synovial membrane mesenchymal stem/stromal cell combined with umbilical cord mesenchymal stem/stromal cell conditioned medium. Front Vet Sci 2024; 11:1403174. [PMID: 38840629 PMCID: PMC11150641 DOI: 10.3389/fvets.2024.1403174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Here, we describe a case of a 5-year-old show-jumping stallion presented with severe lameness, swelling, and pain on palpation of the left metacarpophalangeal joint (MCj). Diagnostic imaging revealed full and partial-thickness articular defects over the lateral condyle of the third metacarpus (MC3) and the dorsolateral aspect of the first phalanx (P1). After the lesion's arthroscopic curettage, the patient was subjected to an innovative regenerative treatment consisting of two intra-articular injections of equine synovial membrane mesenchymal stem/stromal cells (eSM-MSCs) combined with umbilical cord mesenchymal stem/stromal cells conditioned medium (UC-MSC CM), 15 days apart. A 12-week rehabilitation program was accomplished, and lameness, pain, and joint effusion were remarkably reduced; however, magnetic resonance imaging (MRI) and computed tomography (CT) scan presented incomplete healing of the MC3's lesion, prompting a second round of treatment. Subsequently, the horse achieved clinical soundness and returned to a higher level of athletic performance, and imaging exams revealed the absence of lesions at P1, fulfillment of the osteochondral lesion, and cartilage-like tissue formation at MC3's lesion site. The positive outcomes suggest the effectiveness of this combination for treating full and partial cartilage defects in horses. Multipotent mesenchymal stem/stromal cells (MSCs) and their bioactive factors compose a novel therapeutic approach for tissue regeneration and organ function restoration with anti-inflammatory and pro-regenerative impact through paracrine mechanisms.
Collapse
Affiliation(s)
- I. L. Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra, Gandra, Portugal
| | - B. Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - P. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. R. Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Coimbra, Portugal
| | - I. Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - A. M. Rocha
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - J. P. Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - C. M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - J. M. Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - L. Lamas
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, Lisboa, Portugal
| | - L. M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - R. D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra, Gandra, Portugal
| | - A. C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| |
Collapse
|
5
|
Hansen SH, Bramlage LR, Moore GE. Racing performance of Thoroughbred racehorses with suspensory ligament branch desmitis treated with mesenchymal stem cells (2010-2019). Equine Vet J 2024; 56:503-513. [PMID: 37534804 DOI: 10.1111/evj.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Suspensory ligament branch desmitis (SLBD) is a common injury in Thoroughbred racehorses. Orthobiologic treatment of these injuries is a relatively new approach, and there is limited information available on post injury racing performance in racehorses treated with mesenchymal stem cells (MSCs). OBJECTIVES To assess racing performance post injury in Thoroughbred racehorses with SLBD treated with MSCs. STUDY DESIGN Retrospective case series. METHODS Medical records of racehorses with SLBD treated with MSCs from 2010 to 2019 were reviewed. All horses were treated with allogeneic stem cells injected locally at the time of diagnosis and subsequently received 3-4 treatments with autologous bone-marrow derived MSCs. Ultrasonographic and radiographic images were evaluated to determine the degree of suspensory branch injury and sesamoiditis of the associated proximal sesamoid bone. Race performance was assessed by career length, class of races, number of starts and earnings post injury. Race performance of horses that raced pre and post injury were compared. RESULTS Of 69 treated horses, 71% (49/69) [95% CI: 59%-81%] raced post injury. Horses that had raced pre injury were more likely to race post injury (90% [18/20]) than horses that did not race pre injury (63% [31/49]; p = 0.03). Females were less likely to race post injury than males (52% [11/21] vs. 79% [38/49], respectively; p = 0.02). In the 18 horses that raced pre and post injury, the number of races, earnings and earnings per start were not significantly different pre and post injury. The average career length of all horses that raced post injury was 29.5 months. MAIN LIMITATIONS Retrospective study design and lack of controls. CONCLUSIONS Treatment with MSCs resulted in a majority of Thoroughbred racehorses with SLBD racing post treatment. Racing pre injury and being male was positively associated with racing post injury.
Collapse
Affiliation(s)
- Stefanie H Hansen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | | | - George E Moore
- Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
6
|
Reis IL, Lopes B, Sousa P, Sousa AC, Caseiro AR, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Equine Musculoskeletal Pathologies: Clinical Approaches and Therapeutical Perspectives-A Review. Vet Sci 2024; 11:190. [PMID: 38787162 PMCID: PMC11126110 DOI: 10.3390/vetsci11050190] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Musculoskeletal injuries such as equine osteoarthritis, osteoarticular defects, tendonitis/desmitis, and muscular disorders are prevalent among sport horses, with a fair prognosis for returning to exercise or previous performance levels. The field of equine medicine has witnessed rapid and fruitful development, resulting in a diverse range of therapeutic options for musculoskeletal problems. Staying abreast of these advancements can be challenging, prompting the need for a comprehensive review of commonly used and recent treatments. The aim is to compile current therapeutic options for managing these injuries, spanning from simple to complex physiotherapy techniques, conservative treatments including steroidal and non-steroidal anti-inflammatory drugs, hyaluronic acid, polysulfated glycosaminoglycans, pentosan polysulfate, and polyacrylamides, to promising regenerative therapies such as hemoderivatives and stem cell-based therapies. Each therapeutic modality is scrutinized for its benefits, limitations, and potential synergistic actions to facilitate their most effective application for the intended healing/regeneration of the injured tissue/organ and subsequent patient recovery. While stem cell-based therapies have emerged as particularly promising for equine musculoskeletal injuries, a multidisciplinary approach is underscored throughout the discussion, emphasizing the importance of considering various therapeutic modalities in tandem.
Collapse
Affiliation(s)
- Inês L. Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana R. Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Veterinary Sciences Department, University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge M. Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
7
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho MV, Caseiro AR, Rêma A, Briote I, Mendonça CM, Santos JM, Atayde LM, Alvites RD, Maurício AC. Treatment of Equine Tarsus Long Medial Collateral Ligament Desmitis with Allogenic Synovial Membrane Mesenchymal Stem/Stromal Cells Enhanced by Umbilical Cord Mesenchymal Stem/Stromal Cell-Derived Conditioned Medium: Proof of Concept. Animals (Basel) 2024; 14:370. [PMID: 38338013 PMCID: PMC10854557 DOI: 10.3390/ani14030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Horses are high-performance athletes prone to sportive injuries such as tendonitis and desmitis. The formation of fibrous tissue in tendon repair remains a challenge to overcome. This impels regenerative medicine to develop innovative therapies that enhance regeneration, retrieving original tissue properties. Multipotent Mesenchymal Stem/Stromal Cells (MSCs) have been successfully used to develop therapeutic products, as they secrete a variety of bioactive molecules that play a pivotal role in tissue regeneration. These factors are released in culture media for producing a conditioned medium (CM). The aforementioned assumptions led to the formulation of equine synovial membrane MSCs (eSM-MSCs)-the cellular pool that naturally regenerates joint tissue-combined with a medium enriched in immunomodulatory factors (among other bioactive factors) produced by umbilical cord stroma-derived MSCs (eUC-MSCs) that naturally contribute to suppressing the immune rejection in the maternal-fetal barrier. A description of an equine sport horse diagnosed with acute tarsocrural desmitis and treated with this formulation is presented. Ultrasonographic ligament recovery occurred in a reduced time frame, reducing stoppage time and allowing for the horse's return to unrestricted competition after the completion of a physical rehabilitation program. This study focused on the description of the therapeutic formulation and potential in an equine desmitis treatment using the cells themselves and their secretomes.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Lordemão, 3020-210 Coimbra, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Inês Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Carla M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| | - Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (I.L.R.); (B.L.); (P.S.); (A.C.S.); (M.V.B.); (A.R.); (I.B.); (C.M.M.); (J.M.S.); (L.M.A.); (R.D.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Rua da Braziela n° 100, 4485-144 Vairão, Portugal
| |
Collapse
|
8
|
Tognoloni A, Bartolini D, Pepe M, Di Meo A, Porcellato I, Guidoni K, Galli F, Chiaradia E. Platelets Rich Plasma Increases Antioxidant Defenses of Tenocytes via Nrf2 Signal Pathway. Int J Mol Sci 2023; 24:13299. [PMID: 37686103 PMCID: PMC10488198 DOI: 10.3390/ijms241713299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Tendinopathies are common disabling conditions in equine and human athletes. The etiology is still unclear, although reactive oxygen species (ROS) and oxidative stress (OS) seem to play a crucial role. In addition, OS has been implicated in the failure of tendon lesion repair. Platelet-rich plasma (PRP) is rich in growth factors that promote tissue regeneration. This is a promising therapeutic approach in tendon injury. Moreover, growing evidence has been attributed to PRP antioxidant effects that can sustain tissue healing. In this study, the potential antioxidant effects of PRP in tenocytes exposed to oxidative stress were investigated. The results demonstrated that PRP reduces protein and lipid oxidative damage and protects tenocytes from OS-induced cell death. The results also showed that PRP was able to increase nuclear levels of redox-dependent transcription factor Nrf2 and to induce some antioxidant/phase II detoxifying enzymes (superoxide dismutase 2, catalase, heme oxygenase 1, NAD(P)H oxidoreductase quinone-1, glutamate cysteine ligase catalytic subunit and glutathione, S-transferase). Moreover, PRP also increased the enzymatic activity of catalase and glutathione S-transferase. In conclusion, this study suggests that PRP could activate various cellular signaling pathways, including the Nrf2 pathway, for the restoration of tenocyte homeostasis and to promote tendon regeneration and repair following tendon injuries.
Collapse
Affiliation(s)
- Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Desiree Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Marco Pepe
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Antonio Di Meo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Kubra Guidoni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| |
Collapse
|
9
|
Pechanec MY, Beall JM, Katzman S, Maga EA, Mienaltowski MJ. Examining the Effects of In Vitro Co-Culture of Equine Adipose-Derived Mesenchymal Stem Cells With Tendon Proper and Peritenon Cells. J Equine Vet Sci 2023; 126:104262. [PMID: 36841345 DOI: 10.1016/j.jevs.2023.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/26/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.
Collapse
Affiliation(s)
- Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA
| | - Scott Katzman
- School of Veterinary Medicine, University of California Davis, Davis, CA
| | - Elizabeth A Maga
- Department of Animal Science, University of California Davis, Davis, CA
| | | |
Collapse
|
10
|
Leal Reis I, Lopes B, Sousa P, Sousa AC, Branquinho M, Caseiro AR, Pedrosa SS, Rêma A, Oliveira C, Porto B, Atayde L, Amorim I, Alvites R, Santos JM, Maurício AC. Allogenic Synovia-Derived Mesenchymal Stem Cells for Treatment of Equine Tendinopathies and Desmopathies-Proof of Concept. Animals (Basel) 2023; 13:ani13081312. [PMID: 37106875 PMCID: PMC10135243 DOI: 10.3390/ani13081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Tendon and ligament injuries are frequent in sport horses and humans, and such injuries represent a significant therapeutic challenge. Tissue regeneration and function recovery are the paramount goals of tendon and ligament lesion management. Nowadays, several regenerative treatments are being developed, based on the use of stem cell and stem cell-based therapies. In the present study, the preparation of equine synovial membrane mesenchymal stem cells (eSM-MSCs) is described for clinical use, collection, transport, isolation, differentiation, characterization, and application. These cells are fibroblast-like and grow in clusters. They retain osteogenic, chondrogenic, and adipogenic differentiation potential. We present 16 clinical cases of tendonitis and desmitis, treated with allogenic eSM-MSCs and autologous serum, and we also include their evaluation, treatment, and follow-up. The concerns associated with the use of autologous serum as a vehicle are related to a reduced immunogenic response after the administration of this therapeutic combination, as well as the pro-regenerative effects from the growth factors and immunoglobulins that are part of its constitution. Most of the cases (14/16) healed in 30 days and presented good outcomes. Treatment of tendon and ligament lesions with a mixture of eSM-MSCs and autologous serum appears to be a promising clinical option for this category of lesions in equine patients.
Collapse
Affiliation(s)
- Inês Leal Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Mariana Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
- Vasco da Gama Research Center (CIVG), University School Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, 3020-210 Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Jorge Miguel Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
11
|
Duddy HR, Schoonover MJ, Hague BA. Outcome following local injection of a liquid amnion allograft for treatment of equine tendonitis or desmitis – 100 cases. BMC Vet Res 2022; 18:391. [PMID: 36345002 PMCID: PMC9639279 DOI: 10.1186/s12917-022-03480-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Tendon and ligament injuries are significant causes of loss of use and early retirement in performance horses. Amniotic fluid and tissue are excellent sources of growth factors and cytokines important in tendon and ligament healing. Thus, an equine-origin liquid amnion allograft (ELAA) may be beneficial in the treatment of equine tendonitis and desmitis. Objectives of this study were to report the outcome achieved (i.e. ability to return to work) for horses diagnosed with tendonitis or desmitis lesions treated with local injection of ELAA and to compare these outcomes to those reported for other regenerative medicine modalities. Methods A prospective, multi-center, non-blinded clinical trial was conducted. Equine veterinarians at 14 sites were selected to participate in the data collection for the trial. Criterion for inclusion was a horse presenting with lameness which was attributed to tendonitis or desmitis by diagnostic anesthesia and/or imaging. These horses were subsequently treated by local injection of the lesion with ELAA by the attending veterinarian. Standardized questionnaires describing each horse’s signalment, discipline, ability to return to work, and any adverse events were completed and submitted by the attending veterinarian following a minimum of six months of follow-up. The current literature was reviewed to identify clinical studies reporting outcomes of equine tendonitis/desmitis lesions treated with other regenerative therapies. Contingency table analyses were performed comparing outcomes. Results Questionnaires for 100 horses with 128 tendonitis and desmitis lesions met the inclusion criteria. Of these, 72 horses with 94 lesions returned to or exceeded their original level of work, 10 horses with 13 lesions returned to work but could not perform to previous standards, and 18 horses with 20 lesions did not return to work as a result of the injury. No differences were observed when outcome of horses treated with ELAA were compared to those of similar studies using other regenerative therapies. Conclusions Treatment of tendonitis and desmitis lesions by local injection of ELAA resulted in similar outcomes for horses returning to previous level of performance as other regenerative modalities such as mesenchymal stem cells, platelet-rich plasma, and autologous conditioned serum; however, blinded placebo-controlled studies are indicated. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03480-5.
Collapse
|
12
|
Jacobs CC, O'Neil E, Prange T. Efficacy of a commercial dry sleeve cryotherapy system for cooling the equine metacarpus. Vet Surg 2022; 51:1070-1077. [PMID: 35834384 PMCID: PMC9796254 DOI: 10.1111/vsu.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine the ability of a commercial cryotherapy system (Game Ready Equine) to cool the metacarpal subcutaneous tissue and the superficial digital flexor tendon (SDFT) in horses. STUDY DESIGN Experimental study. ANIMALS OR SAMPLE POPULATION Six healthy adult horses. METHODS Thermocouples were implanted into the metacarpal subcutaneous tissues and the SDFT of six horses. Two treatments (cryotherapy or cryotherapy with 5-50 mmHg intermittent compression) were randomly assigned to forelimbs and performed for 20 minutes. Temperatures were compared to the target range of 10-19°C and between groups. RESULTS Only one limb in the cryotherapy/compression group reached the target range after cryotherapy. Temperatures did not differ between treatment groups at time 0. Lowest temperatures achieved in the subcutaneous tissue (p = .0043) and SDFT (p = .005) were 4.9 and 7.6°C lower when intermittent compression was applied. Similarly, applying compression induced a maximum change in temperature of approximately 7.0°C in the subcutaneous tissue (p = .014) and 10.2°C in the SDFT (p = .0001). CONCLUSION The cryotherapy system did not cool equine subcutaneous tissue or SDFT to the target temperature range, except in one limb. Combining cryotherapy with intermittent compression did result in lower temperatures and a greater change in temperature of the subcutaneous tissue and SDFT. CLINICAL SIGNIFICANCE When using this cryotherapy system, the addition of intermittent compression should be considered to achieve lower temperatures and potentially greater reduction in inflammation. Further studies are warranted to determine the effect of longer treatment times, higher compression settings, and the optimal temperature for benefits in normal and diseased equine tissues.
Collapse
Affiliation(s)
- Carrie C. Jacobs
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Erin O'Neil
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| | - Timo Prange
- Department of Clinical SciencesCollege of Veterinary Medicine, North Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
13
|
Cahalan SD, Boehm I, Jones RA, Piercy RJ. Recognising the potential of large animals for modelling neuromuscular junction physiology and disease. J Anat 2022; 241:1120-1132. [PMID: 36056593 PMCID: PMC9558152 DOI: 10.1111/joa.13749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/28/2022] Open
Abstract
The aetiology and pathophysiology of many diseases of the motor unit remain poorly understood and the role of the neuromuscular junction (NMJ) in this group of disorders is particularly overlooked, especially in humans, when these diseases are comparatively rare. However, elucidating the development, function and degeneration of the NMJ is essential to uncover its contribution to neuromuscular disorders, and to explore potential therapeutic avenues to treat these devastating diseases. Until now, an understanding of the role of the NMJ in disease pathogenesis has been hindered by inherent differences between rodent and human NMJs: stark contrasts in body size and corresponding differences in associated axon length underpin some of the translational issues in animal models of neuromuscular disease. Comparative studies in large mammalian models, including examination of naturally occurring, highly prevalent animal diseases and evaluation of their treatment, might provide more relevant insights into the pathogenesis and therapy of equivalent human diseases. This review argues that large animal models offer great potential to enhance our understanding of the neuromuscular system in health and disease, and in particular, when dealing with diseases for which nerve length dependency might underly the pathogenesis.
Collapse
Affiliation(s)
- Stephen D Cahalan
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Ines Boehm
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Biozentrum University of Basel, Basel, Switzerland
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Richard J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
14
|
Genetic Therapy in Veterinary Medicine. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Knott LE, Fonseca-Martinez BA, O'Connor AM, Goodrich LR, McIlwraith CW, Colbath AC. Current use of biologic therapies for musculoskeletal disease: A survey of board-certified equine specialists. Vet Surg 2022; 51:557-567. [PMID: 35383972 PMCID: PMC9322007 DOI: 10.1111/vsu.13805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/05/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
Objective To evaluate the use of mesenchymal stem cells (MSCs), autologous conditioned serum (ACS), platelet‐rich plasma (PRP), and autologous protein solution (APS) for the treatment of equine musculoskeletal disease by diplomates of the American College of Veterinary Surgery (ACVS), and American College of Veterinary Sports Medicine and Rehabilitation (ACVSMR). Study design Cross‐sectional study. Sample population Diplomates (n = 423). Methods An email link was sent to ACVS and ACVMR diplomates. A survey contained 59 questions regarding demographics, as well as indications, frequency, adverse effects, and limitations of use. Responses were analyzed using Fisher's exact test. Results One hundred and fifty four surveys were analyzed. Years in practice and type of practice were not associated with biologic therapy use. PRP was the most used therapy (120/137; 87.5%). PRP and MSCs were most often administered intralesionally while ACS and APS were most often administered intra‐articularly. ACS (50/104; 48.1%) treatment was repeated commonly within 2 weeks of initial injection. MSCs (39/90; 43.3%) and PRP (38/100; 38%) were commonly repeated 1‐2 months after initial injection and APS was typically repeated >4 months after initial injection (21/53; 39.6%). Local inflammation and expense were the most common adverse effect and limitation of use. Conclusion Diplomates most commonly utilized PRP and MSC intralesionally for soft‐tissue injuries, and ACS and ACP intra‐articularly for joint injury. Protocols for repeated administration varied widely. Local inflammation was a clinical concern with the use of biologics. Clinical significance Biologic therapies are used commonly by ACVS and ACVSMR diplomates for soft tissue and joint disease.
Collapse
Affiliation(s)
- Lindsay E Knott
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - B Alexander Fonseca-Martinez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Annette M O'Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Aimee C Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
16
|
Prządka P, Buczak K, Frejlich E, Gąsior L, Suliga K, Kiełbowicz Z. The Role of Mesenchymal Stem Cells (MSCs) in Veterinary Medicine and Their Use in Musculoskeletal Disorders. Biomolecules 2021; 11:1141. [PMID: 34439807 PMCID: PMC8391453 DOI: 10.3390/biom11081141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a dynamically developing field of human and veterinary medicine. The animal model was most commonly used for mesenchymal stem cells (MSCs) treatment in experimental and preclinical studies with a satisfactory therapeutic effect. Year by year, the need for alternative treatments in veterinary medicine is increasing, and other applications for promising MSCs and their biological derivatives are constantly being sought. There is also an increase in demand for other methods of treating disease states, of which the classical treatment methods did not bring the desired results. Cell therapy can be a realistic option for treating human and animal diseases in the near future and therefore additional research is needed to optimize cell origins, numbers, or application methods in order to standardize the treatment process and assess its effects. The aim of the following work was to summarize available knowledge about stem cells in veterinary medicine and their possible application in the treatment of chosen musculoskeletal disorders in dogs and horses.
Collapse
Affiliation(s)
- Przemysław Prządka
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| | - Ewelina Frejlich
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Ludwika Gąsior
- Vets & Pets Veterinary Clinic, Zakladowa 11N, 50-231 Wroclaw, Poland;
| | - Kamil Suliga
- Student Veterinary Surgical Society “LANCET”, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwaldzki 51, 50-366 Wroclaw, Poland;
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, Pl. Grunwadzki 51, 50-366 Wroclaw, Poland; (K.B.); (Z.K.)
| |
Collapse
|
17
|
Oliveira Bonow M, Caetano Veado H, de Cássia Campebell R, Soto‐Blanco B, Carlos Lopes Câmara A. Successful calcaneal common tendon tenorrhaphy in a Dorper lamb. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariana Oliveira Bonow
- Large Animal Veterinary Teaching Hospital College of Agronomy and Veterinary Medicine Newcastle University Universidade de Brasília Brasilia DF Brazil
| | - Henrique Caetano Veado
- Large Animal Veterinary Teaching Hospital College of Agronomy and Veterinary Medicine Newcastle University Universidade de Brasília Brasilia DF Brazil
| | | | - Benito Soto‐Blanco
- Department of Veterinary Clinics and Surgery, Veterinary School Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Antonio Carlos Lopes Câmara
- Large Animal Veterinary Teaching Hospital College of Agronomy and Veterinary Medicine Newcastle University Universidade de Brasília Brasilia DF Brazil
| |
Collapse
|
18
|
King W, Cawood K, Bookmiller M. The Use of Autologous Protein Solution (Pro-Stride ®) and Leukocyte-Rich Platelet-Rich Plasma (Restigen ®) in Canine Medicine. VETERINARY MEDICINE-RESEARCH AND REPORTS 2021; 12:53-65. [PMID: 33777723 PMCID: PMC7989049 DOI: 10.2147/vmrr.s286913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 12/01/2022]
Abstract
The use of autologous orthobiologics is an emerging area of interest in veterinary medicine. In this retrospective study, we reviewed the clinical results achieved using two orthobiologics devices to address orthopedic injuries and tissue repair. Leukocyte (White blood cell)-rich platelet-rich plasma (L-PRP) devices produce outputs containing high concentrations of growth factors from venous blood. The Autologous Protein Solution (APS) device produces an orthobiologic containing high concentrations of growth factors and anti-inflammatory cytokines. L-PRP has commonly been used to address soft tissue injuries. APS has been injected into the joint to address osteoarthritis. In the last five years, our practice has treated 35 dogs (38 treatments) with L-PRP and 98 dogs (108 treatments) with APS. Our group has used L-PRP and APS to address orthopedic conditions including osteoarthritis, bursitis, tendinitis, tendon/ligament rupture/repair procedures, post-surgical femoral head osteotomy/tibial-plateau-leveling osteotomy tissue repair, lumbosacral stenosis, patellar luxation, joint laxity, and osteochondral dissecans. The results achieved with L-PRP and APS have been favorable (observed pain improvement and minimal adverse reactions), but sometimes have not achieved complete pain relief or tissue repair. The most common application for L-PRP was patellar luxation and the most common application for APS was injection post-ACL surgery. Canine OA has been successfully managed in several patients with repeat injections of APS over the course of several years. Future studies on specific conditions are ongoing and including efforts to further characterize these products in canine medicine.
Collapse
Affiliation(s)
| | - Kevin Cawood
- Indian Creek Veterinary Hospital, Fort Wayne, IN, USA
| | | |
Collapse
|
19
|
Montano C, Auletta L, Greco A, Costanza D, Coluccia P, Del Prete C, Meomartino L, Pasolini MP. The Use of Platelet-Rich Plasma for Treatment of Tenodesmic Lesions in Horses: A Systematic Review and Meta-Analysis of Clinical and Experimental Data. Animals (Basel) 2021; 11:793. [PMID: 33809227 PMCID: PMC7998797 DOI: 10.3390/ani11030793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
The use of platelet-rich plasma (PRP) to enhance tenodesmic lesion healing has been questioned over the years. The aim of this study was to evaluate current literature to establish the effectiveness of PRP for treating tenodesmic lesions through a systematic review, in accordance with the PRISMA guidelines, and a meta-analysis. Studies comparing PRP with placebo or other treatments for horses with tenodesmic injuries or evaluated PRP effect on tendon and ligament explants were included. Outcomes were clinical, ultrasound, histologic, molecular evaluation, and adverse effects. Two authors independently extracted data and assessed each study's risk of bias. Treatment effects were evaluated using risk ratios for dichotomous data, together with 95% CI. Data were pooled using the random-effects model. The quality of the evidence for each outcome was assessed using GRADE criteria. Twenty-four trials met inclusion criteria for systematic review, while fifteen studies were included in the meta-analysis. Results showed no significant differences in the outcomes between PRP and control groups. Finally, there is no definitive evidence that PRP enhances tendons and ligaments healing. Therefore, there is a need for more controlled trials to draw a firmer conclusion about the efficacy of PRP as a treatment for tenodesmic lesions in the horse.
Collapse
Affiliation(s)
- Chiara Montano
- Veterinary Teaching Hospital, School of Veterinary Medicine, University of Córdoba, 14004 Córdoba, Spain;
| | - Luigi Auletta
- Institute of Biostructure and Bioimaging, National Research Council (IBB CNR), Via T. De Amicis 95, 80145 Napoli, Italy;
| | - Adelaide Greco
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Dario Costanza
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Pierpaolo Coluccia
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (C.D.P.); (M.P.P.)
| | - Leonardo Meomartino
- Interdepartmental Centre of Veterinary Radiology, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (A.G.); (P.C.); (L.M.)
| | - Maria Pia Pasolini
- Department of Veterinary Medicine and Animal Production, University of Napoli “Federico II”, Via Federico Delpino 1, 80137 Napoli, Italy; (C.D.P.); (M.P.P.)
| |
Collapse
|
20
|
Connard SS, Linardi RL, Even KM, Berglund AK, Schnabel LV, Ortved KF. Effects of continuous passage on the immunomodulatory properties of equine bone marrow-derived mesenchymal stem cells in vitro. Vet Immunol Immunopathol 2021; 234:110203. [PMID: 33636546 DOI: 10.1016/j.vetimm.2021.110203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The immunomodulatory properties of mesenchymal stem cells (MSCs) have been studied extensively due to their increasing clinical application for tissue regeneration and repair following culture expansion. We have studied the effect of continuous passage on the immunomodulatory capacity of equine bone marrow-derived MSCs (BM-MSCs). Equine BM-MSCs were isolated and culture expanded to passage three, six, and nine (P3, P6, P9). Immunomodulatory properties of each passage were assessed using a T cell proliferation assay and cytokine synthesis following stimulation with interferon gamma (IFN-γ). RESULTS Equine BM-MSCs maintained their primary cell morphology and immunophenotype throughout all passages. T cell proliferation was suppressed by all passages of BM-MSCs, compared to peripheral blood mononuclear cells (PBMCs) alone. There was no significant difference in suppression of T cell proliferation between P3, P6, and P9 BM-MSCs. All passages of BM-MSCs significantly increased cytokine synthesis in response to stimulation with IFN-γ. There were no significant differences in production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) or regulate on activation, normal T cell expressed and secreted (RANTES) following stimulation with IFN-γ between P3, P6, and P9 BM-MSCs. P9 BM-MSCs had significantly increased production of tumor necrosis factor alpha (TNF-α), (IL-1β), and (IL-10) compared to P3 BM-MSCs. Additionally, there was a significant increase in production of (IL-8) in P6 and P9 BM-MSCs in comparison to P3 BM-MSCs. CONCLUSIONS Our findings demonstrate that culture expansion affects some of the immunomodulatory properties of BM-MSCs in vitro, which may suggest that MSCs isolated from a single collection of bone marrow may be culture expanded, but only those from lower passage numbers would be ideal for clinical application.
Collapse
Affiliation(s)
- Shannon S Connard
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Renata L Linardi
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kayla M Even
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and the Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
21
|
Bukowska J, Szóstek-Mioduchowska AZ, Kopcewicz M, Walendzik K, Machcińska S, Gawrońska-Kozak B. Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Rev Rep 2020; 17:719-738. [PMID: 33025392 PMCID: PMC8166671 DOI: 10.1007/s12015-020-10049-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Adipose-derived stem cells (ASCs) isolated from domestic animals fulfill the qualitative criteria of mesenchymal stem cells, including the capacity to differentiate along multiple lineage pathways and to self-renew, as well as immunomodulatory capacities. Recent findings on human diseases derived from studying large animal models, have provided evidence that administration of autologous or allogenic ASCs can improve the process of healing. In a narrow group of large animals used in bioresearch studies, pigs and horses have been shown to be the best suited models for study of the wound healing process, cardiovascular and musculoskeletal disorders. To this end, current literature demonstrates that ASC-based therapies bring considerable benefits to animal health in both spontaneously occurring and experimentally induced clinical cases. The purpose of this review is to provide an overview of the diversity, isolation, and characterization of ASCs from livestock. Particular attention has been paid to the functional characteristics of the cells that facilitate their therapeutic application in large animal models of human disease. In this regard, we describe outcomes of ASCs utilization in translational research with pig and horse models of disease. Furthermore, we evaluate the current status of ASC-based therapy in veterinary practice, particularly in the rapidly developing field of equine regenerative medicine. In conclusion, this review presents arguments that support the relevance of animal ASCs in the field of regenerative medicine and it provides insights into the future perspectives of ASC utilization in animal husbandry.
Collapse
Affiliation(s)
- Joanna Bukowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | | | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
22
|
Abstract
Biologics are a growing field that has shown immense promise for the treatment of musculoskeletal conditions both in orthopedic sports medicine and interventional pain management. These procedures utilize injection of supraphysiologic levels of platelets and growth factors to invoke the body's own inflammatory cascade to augment the healing of many bony and soft tissue conditions. While many patients improve with conservative care, there is a need to address the gap between those that improve with rehabilitation alone and those who ultimately require operative management. Orthobiologic procedures have the potential to fill this void. The purpose of this review is to summarize the basic science, evidence for use, and post-injection rehabilitation concepts of platelet-rich plasma (PRP) and mesenchymal stromal cells (MSCs) as they pertain to joints, tendons, ligaments, and the spine.
Collapse
Affiliation(s)
- Robert L Bowers
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA.
| | - Wesley D Troyer
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
| | - Rudolph A Mason
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA; Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Mautner
- Department of Physical Medicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
23
|
Pennati A, Apfelbeck T, Brounts S, Galipeau J. Washed Equine Platelet Extract as an Anti-Inflammatory Biologic Pharmaceutical. Tissue Eng Part A 2020; 27:582-592. [PMID: 32854583 DOI: 10.1089/ten.tea.2020.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian platelets participate in the immediate tissue injury response by initiating coagulation and further promoting tissue injury mitigation and repair. The latter properties are deployed following platelet release of presynthetized morphogens, cytokines, and growth and chemotactic factors, which launch a tissue regenerative, angiogenic, and anti-inflammatory program. Several blood-derived biologic products, like platelet-rich plasma (PRP) and platelet lysate (PL), are currently on the market to allow proper healing and tissue regeneration. However, not all growth factors are released from the platelets and the final products contain plasma proteins such as albumin, fibrinogen, complement, and immunoglobulins, increasing the risks of serum sickness or allergic reaction. To address this problem, we developed a new platelet extract where equine blood platelets are concentrated, washed, and thereafter lysed by detergent Triton X-114. Distinct from PRP, this extract is devoid of albumin, fibrinogen, and immunoglobulins and is 266-fold enriched in platelet-derived growth factor content relative to PRP. Washed equine platelet extract (WEPLEX) is amenable to lyophilization without loss of biological activity. In vitro, WEPLEX significantly inhibits human and equine T cell proliferative response to phytohemagglutinin and also polarizes murine CD45+/CD11b+ peritoneal macrophages to an IL-10+ M2-like phenotype. In vivo, WEPLEX substantially improves clinical outcome of murine experimental dextran sulfate sodium colitis. We propose that equine-sourced, zoonosis-free WEPLEX may serve as an anti-inflammatory biological therapy across mammalian species.
Collapse
Affiliation(s)
- Andrea Pennati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Taylor Apfelbeck
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Surgical Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Sabrina Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Jacques Galipeau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Future of Chondroprotectors in the Treatment of Degenerative Processes of Connective Tissue. Pharmaceuticals (Basel) 2020; 13:ph13090220. [PMID: 32872387 PMCID: PMC7557725 DOI: 10.3390/ph13090220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis is one of the most common diseases of the connective tissue of the elderly. It was found that most epidemiological studies used the Kellgren and Lawrence system for classification of osteoarthritis, which indicates one of the 5 degrees (0-4) of osteoarthritis in various joints according to the radiographic atlas. It has been proven that chondroprotectors are represented by the following active substances: chondroitin sulfate, glucosamine sulfate or hydrochloride, hyaluronic acid, glycosaminoglycans, extraction preparations from animal or plant raw materials. The sources of raw materials for the manufacture of combined chondroprotectors are known, methods for their preparation and use are described. The main drugs on the chondroprotective market are presented. The effectiveness of their use for the treatment of osteoarthritis has been proven. It was found that preparations containing chondroitin sulfate have anti-inflammatory activity, affecting mainly the cellular component of inflammation, stimulate the synthesis of hyaluronic acid and proteoglycans. Methods of treating osteoarthritis using cell therapy (the use of readily available, highly proliferative, and multipotent mesenchymal stromal cells) are presented.
Collapse
|
25
|
Homing and Engraftment of Intravenously Administered Equine Cord Blood-Derived Multipotent Mesenchymal Stromal Cells to Surgically Created Cutaneous Wound in Horses: A Pilot Project. Cells 2020; 9:cells9051162. [PMID: 32397125 PMCID: PMC7290349 DOI: 10.3390/cells9051162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Limb wounds on horses are often slow to heal and are prone to developing exuberant granulation tissue (EGT) and close primarily through epithelialization, which results in a cosmetically inferior and non-durable repair. In contrast, wounds on the body heal rapidly and primarily through contraction and rarely develop EGT. Intravenous (IV) multipotent mesenchymal stromal cells (MSCs) are promising. They home and engraft to cutaneous wounds and promote healing in laboratory animals, but this has not been demonstrated in horses. Furthermore, the clinical safety of administering >1.00 × 108 allogeneic MSCs IV to a horse has not been determined. A proof-of-principle pilot project was performed with two horses that were administered 1.02 × 108 fluorescently labeled allogeneic cord blood-derived MSCs (CB-MSCs) following wound creation on the forelimb and thorax. Wounds and contralateral non-wounded skin were sequentially biopsied on days 0, 1, 2, 7, 14, and 33 and evaluated with confocal microscopy to determine presence of homing and engraftment. Results confirmed preferential homing and engraftment to wounds with persistence of CB-MSCs at 33 days following wound creation, without clinically adverse reactions to the infusion. The absence of overt adverse reactions allows further studies to determine effects of IV CB-MSCs on equine wound healing.
Collapse
|
26
|
Fuggle NR, Cooper C, Oreffo ROC, Price AJ, Kaux JF, Maheu E, Cutolo M, Honvo G, Conaghan PG, Berenbaum F, Branco J, Brandi ML, Cortet B, Veronese N, Kurth AA, Matijevic R, Roth R, Pelletier JP, Martel-Pelletier J, Vlaskovska M, Thomas T, Lems WF, Al-Daghri N, Bruyère O, Rizzoli R, Kanis JA, Reginster JY. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin Exp Res 2020; 32:547-560. [PMID: 32170710 PMCID: PMC7170824 DOI: 10.1007/s40520-020-01515-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is the most common joint condition and, with a burgeoning ageing population, is due to increase in prevalence. Beyond conventional medical and surgical interventions, there are an increasing number of ‘alternative’ therapies. These alternative therapies may have a limited evidence base and, for this reason, are often only afforded brief reference (or completely excluded) from current OA guidelines. Thus, the aim of this review was to synthesize the current evidence regarding autologous chondrocyte implantation (ACI), mesenchymal stem cell (MSC) therapy, platelet-rich plasma (PRP), vitamin D and other alternative therapies. The majority of studies were in knee OA or chondral defects. Matrix-assisted ACI has demonstrated exceedingly limited, symptomatic improvements in the treatment of cartilage defects of the knee and is not supported for the treatment of knee OA. There is some evidence to suggest symptomatic improvement with MSC injection in knee OA, with the suggestion of minimal structural improvement demonstrated on MRI and there are positive signals that PRP may also lead to symptomatic improvement, though variation in preparation makes inter-study comparison difficult. There is variability in findings with vitamin D supplementation in OA, and the only recommendation which can be made, at this time, is for replacement when vitamin D is deplete. Other alternative therapies reviewed have some evidence (though from small, poor-quality studies) to support improvement in symptoms and again there is often a wide variation in dosage and regimens. For all these therapeutic modalities, although controlled studies have been undertaken to evaluate effectiveness in OA, these have often been of small size, limited statistical power, uncertain blindness and using various methodologies. These deficiencies must leave the question as to whether they have been validated as effective therapies in OA (or chondral defects). The conclusions of this review are that all alternative interventions definitely require clinical trials with robust methodology, to assess their efficacy and safety in the treatment of OA beyond contextual and placebo effects.
Collapse
Affiliation(s)
- N R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - C Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Tremona Road, Southampton, SO16 6YD, UK.
- NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK.
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - A J Price
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - J F Kaux
- Department of Physical and Rehabilitation Medicine & Sports Traumatology, FIFA Medical Centre of Excellence, IOC Research Centre for Prevention of Injury and Protection of Athlete Health, FIMS Collaborative Center of Sports Medicine, University Hospital and University of Liège, Liege, Belgium
| | - E Maheu
- Rheumatology Department, AP-HP, Saint-Antoine Hospital, 4 Blvd. Beaumarchais, Paris, France
| | - M Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - G Honvo
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - F Berenbaum
- Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Saint-Antoine Hospital, Paris, France
| | - J Branco
- Centro Hospitalar de Lisboa Ocidental- Hospital Egas Moniz, Lisbon, Portugal
- CEDOC / NOVA Medical School, Nova University of Lisbon, Lisbon, Portugal
| | - M L Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - B Cortet
- Department of Rheumatology and EA 4490, Lille University Hospital, Lille, France
| | - N Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| | - A A Kurth
- Department of Orthopaedic Surgery, Themistocles Gluck Hospital, Ratingen, Germany
| | - R Matijevic
- Faculty of Medicine, Clinic for Orthopedic Surgery and Traumatology, Clinical Center of Vojvodina, University of Novi Sad, Novi Sad, Serbia
| | - R Roth
- Institute of Outdoor Sports and Environmental Science, German Sport University, Cologne, Germany
| | - J P Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - J Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - M Vlaskovska
- Medical Faculty, Department of Pharmacology, Medical University Sofia, 2, Zdrave Str, 1431, Sofia, Bulgaria
| | - T Thomas
- Department of Rheumatology, Hôpital Nord, CHU de Saint-Etienne, Saint-Étienne, France
- INSERM U1059, Université de Lyon, Saint-Étienne, France
| | - W F Lems
- Location VU Medical Center, Department of Rheumatology and Immunology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - N Al-Daghri
- Chair for Biomarkers Research, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - O Bruyère
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - R Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - J A Kanis
- Mary McKillop Health Institute, Australian Catholic University, Melbourne, Australia
- Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
| | - J Y Reginster
- WHO Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
- Chair for Biomarkers Research, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Public Health, Epidemiology and Health Economics, University of Liège, CHU Sart Tilman B23, 4000, Liege, Belgium
| |
Collapse
|
27
|
Atkinson F, Evans R, Guest JE, Bavin EP, Cacador D, Holland C, Guest DJ. Cyclical strain improves artificial equine tendon constructs in vitro. J Tissue Eng Regen Med 2020; 14:690-700. [PMID: 32181983 DOI: 10.1002/term.3030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023]
Abstract
Tendon injuries are a common cause of morbidity in humans. They also occur frequently in horses, and the horse provides a relevant, large animal model in which to test novel therapies. To develop novel cell therapies that can aid tendon regeneration and reduce subsequent reinjury rates, the mechanisms that control tendon tissue regeneration and matrix remodelling need to be better understood. Although a range of chemical cues have been explored (growth factors, media etc.), the influence of the mechanical environment on tendon cell culture has yet to be fully elucidated. To mimic the in vivo environment, in this study, we have utilised a novel and affordable, custom-made bioreactor to apply a cyclical strain to tendon-like constructs generated in three-dimensional (3D) culture by equine tenocytes. Dynamic shear analysis (DSA), dynamic scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy were used to determine the mechanical and chemical properties of the resulting tendon-like constructs. Our results demonstrate that equine tenocytes exposed to a 10% cyclical strain have an increased amount of collagen gel contraction after 7 and 8 days of culture compared with cells cultured in 3D in the absence of external strain. While all the tendon-like constructs have a very similar chemical composition to native tendon, the application of strain improves their mechanical properties. We envisage that these results will contribute towards the development of improved biomimetic artificial tendon models for the development of novel strategies for equine regenerative therapies.
Collapse
Affiliation(s)
- Francesca Atkinson
- Animal Health Trust, Suffolk, UK.,Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | - Christopher Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
28
|
Factors associated with euthanasia in horses and ponies enrolled in a laminitis cohort study in Great Britain. Prev Vet Med 2019; 174:104833. [PMID: 31751854 DOI: 10.1016/j.prevetmed.2019.104833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
Euthanasia is a complex topic, with animal owners using multiple factors to shape their decision-making process. Previous epidemiological studies have described causes of equine mortality in specific populations, but there is limited evidence regarding factors contributing specifically to equine euthanasia in Great Britain (GB). This observational study used a prospective cohort design: the objectives were to describe owner-reported reasons for euthanasia, estimate the rate of euthanasia and identify associated factors in horses/ponies enrolled in a web-based epidemiological study of laminitis in GB. Self-selected horse/pony owners submitted regular management and health data over 29 months and reported dates and reasons for euthanasia during this period. The overall incidence of euthanasia was estimated and associated factors were identified using multivariable Cox regression modelling, adjusted for age, with variables retained in the final model if P ≤ 0.05. Data were available for 1070 horses/ponies contributing 1093 horse-years at risk (HYAR), with 80 owner-reported euthanasias. The incidence of euthanasia was 7.3 euthanasias per 100 HYAR (95 % confidence interval [CI] 5.9, 9.1). The most frequently reported health reasons contributing to euthanasia were laminitis-related consequences (25.0 % ; CI 16.8, 35.5 %), colic (21.3 % ; CI 13.7, 31.4 %), non-laminitic lameness (20.0 % ; CI 12.7, 30.1 %) and age-related deterioration, including owner-perceived compromised quality of life (20.0 % ; CI 12.7, 30.1 %). Health-related factors associated with significantly higher rates of euthanasia were colic (hazard ratio [HR] 26.4; CI 12.5, 55.8), pituitary pars intermedia dysfunction (HR 3.0; CI 1.7, 5.4) and lameness due to navicular syndrome (HR 5.9; CI 1.8, 20.0), soft tissue injury (HR 6.5; CI 2.7, 15.6) or laminitis (HR 2.7; CI 1.3, 5.7). Further factors included being pure bred (HR 1.7; CI 1.0, 2.8), female (HR 1.7; CI 1.0, 2.9), having poor owner-perceived hoof quality (HR 2.4; CI 1.1, 5.2), being entirely stabled (HR 5.0; HR 2.1, 12.0), being on loan or under temporary care of the study participant (HR 2.3; CI 1.2, 4.4) and participating in affiliated or professional competitions (HR 5.9; CI 2.4, 14.8). Euthanasia rates were significantly higher in the first two study years compared to the third (P < 0.001). Animals whose owners used the study's custom-designed weight tracker tool had significantly lower rates of euthanasia (HR 0.6; CI 0.3, 0.95). This study has identified a number of, arguably preventable, health-related factors associated with higher rates of euthanasia. Data on owners' decision-making process regarding euthanasia, including emotive and financial impacts, were not recorded but are important contributors to euthanasia that require better understanding.
Collapse
|
29
|
Chung MJ, Park S, Son JY, Lee JY, Yun HH, Lee EJ, Lee EM, Cho GJ, Lee S, Park HS, Jeong KS. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use. Cell Cycle 2019; 18:2954-2971. [PMID: 31505996 DOI: 10.1080/15384101.2019.1664224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In previous work, we established an equine induced pluripotent stem cell line (E-iPSCs) from equine adipose-derived stem cells (ASCs) using a lentiviral vector encoding four transcription factors: Oct4, Sox2, Klf4, and c-Myc. In the current study, we attempted to differentiate these established E-iPSCs into mesenchymal stem cells (MSCs) by serial passaging using MSC-defined media for stem cell expansion. Differentiation of the MSCs was confirmed by analyzing expression levels of the MSC surface markers CD44 and CD29, and the pluripotency markers Nanog and Oct4. Results indicated that the E-iPSC-derived MSCs (E-iPSC-MSCs) retained the characteristics of MSCs, including the ability to differentiate into chondrogenic, osteogenic, or myogenic lineages. E-iPSC-MSCs were rendered suitable for therapeutic use by inhibiting immune rejection through exposure to transforming growth factor beta 2 (TGF-β2) in culture, which down-regulated the expression of major histocompatibility complex class I (MHC class I) proteins that cause immune rejection if they are incompatible with the MHC antigen of the recipient. We reported 16 cases of E-iPSC-MSC transplantations into injured horses with generally positive effects, such as reduced lameness and fraction lines. Our findings indicate that E-iPSC-MSCs can demonstrate MSC characteristics and be safely and practically used in the treatment of musculoskeletal injuries in horses.
Collapse
Affiliation(s)
- Myung-Jin Chung
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - SunYoung Park
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Yoon Son
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Jae-Yeong Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Hyun Ho Yun
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| | - Eun-Joo Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Eun Mi Lee
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Sunray Lee
- Cell Engineering For Origin , Seoul , Republic of Korea
| | | | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University , Daegu , Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|