1
|
Wielento A, Lagosz-Cwik K, Potempa J, Grabiec A. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J Dent Res 2023; 102:489-496. [PMID: 36883660 PMCID: PMC10249005 DOI: 10.1177/00220345231151921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gingival fibroblasts (GFs) are essential components of the periodontium, which are responsible for the maintenance of tissue structure and integrity. However, the physiological role of GFs is not restricted to the production and remodeling of the extracellular matrix. GFs also act as sentinel cells that modulate the immune response to oral pathogens invading the gingival tissue. As an important "nonclassical" component of the innate immune system, GFs respond to bacteria and damage-related signals by producing cytokines, chemokines, and other inflammatory mediators. Although the activation of GFs supports the elimination of invading bacteria and the resolution of inflammation, their uncontrolled or excessive activation may promote inflammation and bone destruction. This occurs in periodontitis, a chronic inflammatory disease of the periodontium initiated and sustained by dysbiosis. In the inflamed gingival tissue, GFs acquire imprinted proinflammatory phenotypes that promote the growth of inflammophilic pathogens, stimulate osteoclastogenesis, and contribute to the chronicity of inflammation. In this review, we discuss the biological functions of GFs in healthy and inflamed gingival tissue, highlighting recent studies that provide insight into their role in the pathogenesis of periodontal diseases. We also draw parallels with the recently discovered fibroblast populations identified in other tissues and their roles in health and disease. This knowledge should be used in future studies to discover more about the role of GFs in periodontal diseases, especially chronic periodontitis, and to identify therapeutic strategies targeting their pathological interactions with oral pathogens and the immune system.
Collapse
Affiliation(s)
- A. Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K.B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J. Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A.M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
França BND, Gasparoni LM, Rovai ES, Ambrósio LMB, Mendonça NFD, Hagy MH, Mendoza AH, Sipert CR, Holzhausen M. Protease-activated receptor type 2 activation downregulates osteogenesis in periodontal ligament stem cells. Braz Oral Res 2023; 37:e002. [PMID: 36629588 DOI: 10.1590/1807-3107bor-2023.vol37.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 06/21/2022] [Indexed: 01/11/2023] Open
Abstract
Protease-activated receptor-2 (PAR2) is associated with the pathogenesis of many chronic diseases with inflammatory characteristics, including periodontitis. This study aimed to evaluate how the activation of PAR2 can affect the osteogenic activity of human periodontal ligament stem cells (PDLSCs) in vitro. PDLSCs collected from three subjects were treated in osteogenic medium for 2, 7, 14, and 21 days with trypsin (0.1 U/mL), PAR2 specific agonist peptide (SLIGRL-NH2) (100 nM), and PAR2 antagonist peptide (FSLLRY-NH2) (100 nM). Gene (RT-qPCR) expression and protein expression (ELISA) of osteogenic factors, bone metabolism, and inflammatory cytokines, cell proliferation, alkaline phosphatase (ALP) activity, alizarin red S staining, and supernatant concentration were assessed. Statistical analysis of the results with a significance level of 5% was performed. Activation of PAR2 led to decreases in cell proliferation and calcium deposition (p < 0.05), calcium concentration (p < 0.05), and ALP activity (p < 0.05). Additionally, PAR2 activation increased gene and protein expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) (p < 0.05) and significantly decreased the gene and protein expression of osteoprotegerin (p <0. 05). Considering the findings, the present study demonstrated PAR2 activation was able to decrease cell proliferation, decreased osteogenic activity of PDLSCs, and upregulated conditions for bone resorption. PAR2 may be considered a promising target in periodontal regenerative procedures.
Collapse
Affiliation(s)
- Bruno Nunes de França
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | | | - Emanuel Silva Rovai
- Universidade de Taubaté - Unitau, School of Dentistry, Periodontics Division, Taubaté, São Paulo, SP, Brazil
| | | | | | - Marcos Hideki Hagy
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | - Aldrin Huamán Mendoza
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- Universidade de São Paulo - USP, School of Dentistry, Department of Restorative Dentistry, São Paulo, SP, Brazil
| | - Marinella Holzhausen
- Universidade de São Paulo - USP, School of Dentistry, Department of Stomatology, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Ateeq H, Zia A, Husain Q, Khan MS, Ahmad M. Effect of inflammation on bones in diabetic patients with periodontitis via RANKL/OPG system-A review. J Diabetes Metab Disord 2022; 21:1003-1009. [PMID: 35673491 PMCID: PMC9167386 DOI: 10.1007/s40200-021-00960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 01/31/2023]
Abstract
Purpose Diabetes mellitus and periodontitis are inflammatory diseases, the severity of inflammation results in the progression and persistence of both the disorders and affects bones. Diabetic complications aggravate in diabetic subjects having periodontitis; similarly, diabetic patients are more prone to developing gingivitis and periodontitis. Periodontal and diabetic inflammation disturbs bone homeostasis, which possibly involves both innate and adaptive immune responses. The pathogenic processes that link the two diseases are the focus of much research and it is likely that upregulated inflammation arising from each condition adversely affects the other. RANKL/OPG pathway plays a prominent role in periodontal and diabetic inflammation and bone resorption. Method This review article summarises the literature on the link between inflammatory cytokines and the prevalence of disturbed bone homeostasis in diabetic patients with periodontitis. An extensive search was done in PubMed, Scopus, Medline and Google Scholar databases between April 2003 and May 2021. Result A total of 27 articles, including pilot studies, case-control studies, cross-sectional studies, cohort studies, randomized control trials, longitudinal studies, descriptive studies and experimental studies, were included in our literature review. Conclusion Since RANKL/OPG are cytokines and have immune responses, regulating these cytokines expression will help control diabetes, periodontitis and bone homeostasis. The growing evidence of bone loss and increased fracture risk in diabetic patients with periodontitis makes it imperative that health professionals carry out planned treatment focusing on monitoring oral health in diabetic patients; bone markers should also be evaluated in patients with chronic periodontitis with an impaired glycemic state.
Collapse
Affiliation(s)
- Hira Ateeq
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| | - Afaf Zia
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Sajid Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Ahmad
- Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
4
|
Yu Y, Jiang L, Li J, Lei L, Li H. Hexokinase 2-mediated glycolysis promotes receptor activator of NF-κB ligand expression in Porphyromonas gingivalis lipopolysaccharide-treated osteoblasts. J Periodontol 2021; 93:1036-1047. [PMID: 34585393 DOI: 10.1002/jper.21-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. METHODS Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. RESULTS P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. CONCLUSIONS HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Collapse
Affiliation(s)
- Yi Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
6
|
Bostanci N, Abe T, Belibasakis GN, Hajishengallis G. TREM-1 Is Upregulated in Experimental Periodontitis, and Its Blockade Inhibits IL-17A and RANKL Expression and Suppresses Bone loss. J Clin Med 2019; 8:jcm8101579. [PMID: 31581596 PMCID: PMC6832657 DOI: 10.3390/jcm8101579] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Triggering receptor expressed on myeloid cells-1 (TREM-1) is a modifier of local and systemic inflammation. There is clinical evidence implicating TREM-1 in the pathogenesis of periodontitis. However, a cause-and-effect relationship has yet to be demonstrated, as is the underlying mechanism. The aim of this study was to elucidate the role of TREM-1 using the murine ligature-induced periodontitis model. Methods: A synthetic antagonistic LP17 peptide or sham control was microinjected locally into the palatal gingiva of the ligated molar teeth. Results: Mice treated with the LP17 inhibitor developed significantly less bone loss as compared to sham-treated mice, although there were no differences in total bacterial load on the ligatures. To elucidate the impact of LP17 on the host response, we analyzed the expression of a number of immune-modulating genes. The LP17 peptide altered the expression of 27/92 genes ≥ two-fold, but only interleukin (IL)-17A was significantly downregulated (4.9-fold). Importantly, LP17 also significantly downregulated the receptor activator of nuclear factor kappa-B-ligand (RANKL) to osteoprotegerin (OPG) ratio that drives osteoclastic bone resorption in periodontitis. Conclusion: Our findings show for the first time that TREM-1 regulates the IL-17A-RANKL/OPG axis and bone loss in experimental periodontitis, and its therapeutic blockade may pave the way to a novel treatment for human periodontitis.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden.
- Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland.
| | - Toshiharu Abe
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden.
- Center of Dental Medicine, University of Zürich, 8032 Zürich, Switzerland.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Hou L, Hou J, Zhou Z, Deng Y, Yao D. Biosafety, and improvement of osteoporosis in cage layers through using chOPG protein. Saudi J Biol Sci 2019; 27:288-295. [PMID: 31889849 PMCID: PMC6933202 DOI: 10.1016/j.sjbs.2019.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022] Open
Abstract
Thirty six 56-week-old ISA cage layers were divided into two groups randomly. The cage layers in control group (12 birds) and experiment group (24 birds) were respectively injected with 300 µL sodium chloride and 300 μg eucaryon recombinant plasmid pcDNA3.1(+)-chOPG. Eighty 56-week-old ISA cage layers were divided into group A, B, C and D randomly. Group A is for control group, while plasmid pcDNA3.1(+)-chOPG was injected to B, C, D groups in muscle at the dosage of 200 μg, 400 μg, 600 μg at 57, 59, 61, 63th weeks respectively. After the detection on the expression of chOPG protein after 3 h, it reached the peak at 7 d and then fell down. After 28 d, nothing was detected in the injected skeletal muscles. The other organs did not express exogenous chOPG protein. Plasmid in liver had the fastest metabolism. The pathological effects in main organs were not observed by histological section. The concentration of plasma calcium in B, C and D groups significantly decreased, while the activity of alkaline phosphatase was significantly improved, compared to control group. The total average value of abnormal and broken eggs of group C, D was significantly higher than those of group A. The bone biomechanical property and bone radiographic density of tibia and femur in experiment group were significantly higher than control group. Therefore, one conclusion is drawn that the expression of chOPG from foreign plasmid pcDNA3.1(+)-chOPG have contribute to bone formation, chOPG can increase bone density and strength by inhibiting bone resorption. Nevertheless, it was cleared out from cellular system in a short-term after intramuscular injection and cannot integrate into host chromosome genomic in cage layers. There were no pathological effects observed in the main tissues. It is believed that 200 μg plasmid pcDNA3.1(+)-chOPG should be within the safe range for application, because it can improve bone metabolism and will not affect the production of cage layer during the post cycle.
Collapse
Affiliation(s)
- Lele Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China.,Animal Husbandry and Veterinary Research Institute of Qingdao, Qingdao 266000, China
| | - Jiafa Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Yifeng Deng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| | - Dawei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, China
| |
Collapse
|
8
|
Bi CS, Sun LJ, Qu HL, Chen F, Tian BM, Chen FM. The relationship between T-helper cell polarization and the RANKL/OPG ratio in gingival tissues from chronic periodontitis patients. Clin Exp Dent Res 2019; 5:377-388. [PMID: 31944625 PMCID: PMC7938418 DOI: 10.1002/cre2.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the relationship between inflammation‐related T‐helper cell polarization and the receptor activator for nuclear factor‐κB ligand (RANKL)/osteoprotegerin (OPG) ratio, which is associated with bone resorption or remodeling of chronic periodontitis patients. Gingival crevicular fluid (GCF) and gingival tissues were obtained from periodontally healthy individuals (PH group) and chronic periodontitis patients (CP group). The GCF levels of IFN‐γ, IL‐4, IL‐17, and IL‐10 linked to T‐helper cell polarization toward the Th1, Th2, Th17, and Treg phenotypes, respectively, were determined by ELISA. The expression levels of these cytokines and the polarized T‐helper cells in gingival tissues were assessed through immunohistochemical and immunofluorescence assays. In addition, the RANKL and OPG expression levels in gingival tissues were detected by immunohistochemical assays, and linear regression analysis was used to identify the potential relationship between T‐helper cell polarization and the RANKL/OPG ratio. In total, 22 individuals and 35 patients were enrolled in the present study. In both GCF and gingival tissues, increased levels of IL‐17 and the decreased levels of IL‐4 and IL‐10 were observed in the CP group. When polarized T‐helper cells were identified in gingival tissues, more Th1 and Th17 cells were found in the CP group, whereas more Th2 and Treg cells were found in the PH group. Although there was no significant difference in OPG expression between the two groups, the RANKL/OPG ratio in the CP group was higher than that in the PH group. The linear regression analysis showed that the presence of more Th1 and Th17 cells correlated with a higher RANKL/OPG ratio, whereas the presence of more Th2 cells correlated with a lower RANKL/OPG ratio. Th1 and Th17 cells are positively correlated and Th2 cells are negatively correlated with the RANKL/OPG ratio. Our data suggest that T‐helper cell polarization is closely linked to the RANKL/OPG ratio in gingival tissues from chronic periodontitis patients.
Collapse
Affiliation(s)
- Chun-Sheng Bi
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Li-Juan Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hong-Lei Qu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fang Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Nan L, Zheng Y, Liao N, Li S, Wang Y, Chen Z, Wei L, Zhao S, Mo S. Mechanical force promotes the proliferation and extracellular matrix synthesis of human gingival fibroblasts cultured on 3D PLGA scaffolds via TGF‑β expression. Mol Med Rep 2019; 19:2107-2114. [PMID: 30664222 PMCID: PMC6390077 DOI: 10.3892/mmr.2019.9882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022] Open
Abstract
Human gingival fibroblasts (HGFs) are responsible for connective tissue repair and scarring, and are exposed to mechanical forces under physiological and pathological conditions. The exact mechanisms underlying gingival tissue reconstruction under mechanical forces remain unclear. The present study aimfed to investigate the effects of mechanical forces on the proliferation and extracellular matrix synthesis in HGFs by establishing a 3-dimensional (3D) HGF culture model using poly(lactide-co-glycolide) (PLGA) scaffolds. HGFs were cultured in 3D PLGA scaffolds and a mechanical force of 0, 5, 15, 25 or 35 g/cm2 was applied to HGFs for 24 h. A mechanical force of 25 g/cm2 induced the highest proliferation rate, and thus was selected for subsequent experiments. Cell viability was determined using the MTT assay at 0, 24, 48 and 72 h. The expression levels of type I collagen (COL-1) and matrix metallopeptidase (MMP)-1 were examined by reverse transcription-quantitative polymerase chain reaction and ELISA, and transforming growth factor (TGF)-β expression was evaluated by ELISA. The application of mechanical force on HGFs cultured on the 3D PLGA scaffolds resulted in a significant increase in cell proliferation and COL-1 expression, as well as a decrease in MMP-1 expression. A TGF-β1 inhibitor was also applied, which attenuated the effects of mechanical force on HGF proliferation, and COL-1 and MMP-1 expression, thus suggesting that TGF-β signaling pathways may mediate the mechanical force-induced alterations observed in HGFs. In conclusion, these findings helped to clarify the mechanisms underlying mechanical force-induced HGF proliferation and ECM synthesis, which may promote the development of targeted therapeutics to treat various diseases, including gingival atrophy caused by orthodontic treatment.
Collapse
Affiliation(s)
- Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi Zheng
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ni Liao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Songze Li
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yao Wang
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhixing Chen
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuang Zhao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Serrano-Piña R, Trujillo-Güiza ML, Scougall Vilchis RJ, Layton-Tovar CF, Mendieta-Zerón H. sRANKL and its correlation with metabolic syndrome parameters in children. Int J Paediatr Dent 2018; 28:633-640. [PMID: 30252176 DOI: 10.1111/ipd.12422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activating receptor ligand for nuclear factor (RANKL) has been identified as a ligand attached to the cell membrane of osteoblasts and odontoclasts. AIM To determine a possible association of sRANKL in saliva and serum with the parameters of metabolic syndrome (MS) in paediatric population aged 8-12 years. DESIGN This was a clinical, analytical and comparative study. Students between 6 and 12 years with good oral hygiene were included. Anthropometry, clinical analysis, dentobacterial plaque registration were registered as well as sRANKL in total saliva and serum through the ELISA technique. RESULTS A total of 43 children were enrolled, with a mean age of 9.7 (±0.8 years). Contrasting the groups by the presence or absence of the waist circumference above the normal limit, the difference in serum sRANKL concentration was statistically significant (P ≤ 0.05). A negative statistical significance was found in the correlation between serum sRANKL and HDLc (r2 = -0.310, P = 0.046). Saliva sRANKL did not show statistical difference between neither gender nor body mass index and was not correlated with any parameter of the MS. CONCLUSIONS A good oral hygiene seems to avoid the effects of MS on the oral cavity.
Collapse
Affiliation(s)
- Rodrigo Serrano-Piña
- Faculty of Nursery, Autonomous University of the State of Mexico (UAEMex), Toluca, Mexico.,Faculty of Odontology, Autonomous University of Yucatan (UADY), Mérida, Mexico
| | | | | | | | - Hugo Mendieta-Zerón
- Faculty of Medicine, Autonomous University of the State of Mexico (UAEMex), Ciprés Grupo Médico S.C. (CGM) and "Mónica Pretelini Sáenz" Maternal-Perinatal Hospital (HMPMPS), Toluca, Mexico
| |
Collapse
|
11
|
Costa LC, Fonseca MAD, Pinheiro ADR, Aguiar TRDS, Machado AN, Quinelato V, Bonato LL, Aguiar DP, Vieira T, Almeida FLDD, Lobo JC, Jordão M, Lomardo PG, Granjeiro JM, Casado PL. Chronic Periodontitis and RANKL/OPG Ratio in Peri-Implant Mucosae Inflammation. Braz Dent J 2018; 29:14-22. [PMID: 29267518 DOI: 10.1590/0103-6440201801241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/23/2017] [Indexed: 11/21/2022] Open
Abstract
tHistory of chronic periodontitis (CP) is a risk factor for oseointegration failure. The osteoclastogenesis system (RANK, RANKL and OPG) is critical for bone homeostatic control. We investigated the levels of OPG and RANKL in peri-implant tissues from volunteers with and without a history of CP and their association with mucosae inflammation. This is a single-blind case-contro study. Diagnosis of a history of CP and peri-implant examination was performed on 46 volunteers, divided into control (without history of CP, n=26) and CP group (with history of CP, n=20). Gingival biopsies were harvested during implant exposure. Quantitative PCR evaluated OPG/RANKL mRNA expressions. OPG and RANKL proteins were analyzed by western blot and immunohistochemistry assay. The chi-square test analyzed the significance of nominal variables between groups while continuous variables were analyzed by T-test or Mann-Whitney test, after Shapiro-Wilk test evaluation. The 2-ΔΔCT Livak method calculation evaluated the gene expression. Values of p<0.05 were considered statistically significant. Volunteers with CP history had 23 times higher chance of developing mucosae inflammation. High mucosae levels of RANKL (p=0.04) and RANKL/OPG (p=0.001) mRNA expressions were observed in CP group. CP volunteers showed increased RANKL protein levels in opposition to decreased OPG expression. Even without active periodontitis, volunteers with a history of CP had elevated gingival levels of RANKL/OPG and higher correlation with peri-implant mucosae inflammation and implant loss.
Collapse
Affiliation(s)
- Lucas Carneiro Costa
- Postgraduate Program in Dentistry, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | | | | | - Aldir Nascimento Machado
- Postgraduate Program in Oral Implantology, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil.,Department of Dental Clinical, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Valquiria Quinelato
- Postgraduate Program in Dentistry, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Leticia Ladeira Bonato
- Postgraduate Program in Dentistry, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Thays Vieira
- Clinical Research Unit and Biology Institute, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Julie Calixto Lobo
- Clinical Research Unit and Biology Institute, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Miriam Jordão
- Department of Oral Diagnosis, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - José Mauro Granjeiro
- National Institute of Metrology, Quality and Technology, Rio de Janeiro, RJ, Brazil.,Department of Periodontology, UFF - Universidade Federal Flum inense, Niterói, RJ, Brazil
| | - Priscila Ladeira Casado
- Postgraduate Program in Dentistry, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil.,Cell Therapy Center, Clinical Research Unit and Biology Institute, UFF - Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
12
|
El Kholy K, Freire M, Chen T, Van Dyke TE. Resolvin E1 Promotes Bone Preservation Under Inflammatory Conditions. Front Immunol 2018; 9:1300. [PMID: 29946319 PMCID: PMC6005849 DOI: 10.3389/fimmu.2018.01300] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
Resolvins are endogenous lipid mediators derived from omega-3 fatty acids. Resolvin E1 (RvE1), derived from eicosapentaenoic acid (EPA), modulates osteoclasts and immune cells in periodontal disease models. The direct role of RvE1 in bone remodeling is not well understood. The objective of this study was to determine the impact of RvE1 on bone remodeling under inflammatory conditions. Our working hypothesis is that RvE1 downregulates bone resorption through direct actions on both osteoblast and osteoclast function in inflammatory osteoclastogenesis. A tumor necrosis factor-α induced local calvarial osteolysis model with or without the systemic administration of RvE1 was used. To evaluate osteoclastogenesis and NFκB signaling pathway activity, murine bone tissue was evaluated by Micro CT (μCT) analysis, TRAP staining, and immunofluorescence analysis. Mechanistically, to evaluate the direct role of RvE1 impacting bone cells, primary calvarial mouse osteoblasts were stimulated with interleukin (IL)-6 (10 ng/ml) and IL-6 receptor (10 ng/ml) and simultaneously incubated with or without RvE1 (100 nM). Expression of receptor activator of NFκB ligand (RANKL) and osteoprotegerin (OPG) was measured by ELISA. RNA sequencing (RNA-Seq) and differential expression analysis was performed to determine signaling pathways impacted by RvE1. The systemic administration of RvE1 reduced calvarial bone resorption as determined by µCT. Histologic analysis of calvaria revealed that osteoclastogenesis was reduced as determined by number and size of osteoclasts in TRAP-stained sections (p < 0.05). Immunofluorescence staining of calvarial sections revealed that RvE1 reduced RANKL secretion by 25% (p < 0.05). Stimulation of osteoblasts with IL-6 increased RANKL production by 30% changing the RANKL/OPG to favor osteoclast activation and bone resorption. The ratio changes were reversed by 100 nM RvE1. RvE1 decreased the production of RANKL maintaining an RANKL/OPG more favorable for bone formation. RNA-Seq and transcriptomic pipeline analysis revealed that RvE1 significantly downregulates osteoclast differentiation mediated by differential regulation of NFκB and PI3K-AKT pathways. RvE1 reduces inflammatory bone resorption. This action is mediated, at least in part, by direct actions on bone cells promoting a favorable RANKL/OPG ratio. Mediators of resolution in innate immunity also directly regulate bone cell gene expression that is modulated by RvE1 through at least 14 specific genes in this mouse model.
Collapse
Affiliation(s)
- Karim El Kholy
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
- School of Dental Medicine, University of Bern, Bern, Switzerland
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | | | - Tsute Chen
- The Forsyth Institute, Cambridge, MA, United States
| | - Thomas E. Van Dyke
- The Forsyth Institute, Cambridge, MA, United States
- School of Dental Medicine, Harvard University, Cambridge, MA, United States
| |
Collapse
|
13
|
Takahama A, Rôças IN, Faustino ISP, Alves FRF, Azevedo RS, Gomes CC, Araújo-Filho WR, Siqueira JF. Association between bacteria occurring in the apical canal system and expression of bone-resorbing mediators and matrix metalloproteinases in apical periodontitis. Int Endod J 2018; 51:738-746. [DOI: 10.1111/iej.12895] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- A. Takahama
- Department of Oral Medicine and Pediatric Dentistry; State University of Londrina; Londrina PR Brazil
| | - I. N. Rôças
- Department of Endodontics; Faculty of Dentistry; Estácio de Sá University; Rio de Janeiro RJ Brazil
| | - I. S. P. Faustino
- Department of Oral Pathology; Nova Friburgo Health Institute; Federal Fluminense University; Nova Friburgo RJ Brazil
| | - F. R. F. Alves
- Department of Endodontics; Faculty of Dentistry; Estácio de Sá University; Rio de Janeiro RJ Brazil
| | - R. S. Azevedo
- Department of Oral Pathology; Nova Friburgo Health Institute; Federal Fluminense University; Nova Friburgo RJ Brazil
| | - C. C. Gomes
- Department of Endodontics; Nova Friburgo Health Institute; Federal Fluminense University; Nova Friburgo RJ Brazil
| | - W. R. Araújo-Filho
- Department of Endodontics; Nova Friburgo Health Institute; Federal Fluminense University; Nova Friburgo RJ Brazil
| | - J. F. Siqueira
- Department of Endodontics; Faculty of Dentistry; Estácio de Sá University; Rio de Janeiro RJ Brazil
| |
Collapse
|
14
|
Matos AO, Ricomini-Filho AP, Beline T, Ogawa ES, Costa-Oliveira BE, de Almeida AB, Nociti Junior FH, Rangel EC, da Cruz NC, Sukotjo C, Mathew MT, Barão VA. Three-species biofilm model onto plasma-treated titanium implant surface. Colloids Surf B Biointerfaces 2017; 152:354-366. [DOI: 10.1016/j.colsurfb.2017.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/11/2022]
|
15
|
Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket. Sci Rep 2015; 5:15999. [PMID: 26525412 PMCID: PMC4630604 DOI: 10.1038/srep15999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Periodontal infections cause inflammatory destruction of the tooth supporting tissues. We recently developed a dynamic, in vitro periodontal organotypic tissue model in a perfusion bioreactor system, in co-culture with an 11-species subgingival biofilm, which may recapitulate early events during the establishment of periodontal infections. This study aimed to characterize the global proteome regulations in this host-biofilm interaction model. Semi-quantitative shotgun proteomics were applied for protein identification and quantification in the co-culture supernatants (human and bacterial) and the biofilm lysates (bacterial). A total of 896 and 3363 proteins were identified as secreted in the supernatant and expressed in the biofilm lysate, respectively. Enriched gene ontology analysis revealed that the regulated secreted human tissue proteins were related to processes of cytoskeletal rearrangement, stress responses, apoptosis, and antigen presentation, all of which are commensurate with deregulated host responses. Most secreted bacterial biofilm proteins derived from their cytoplasmic domain. In the presence of the tissue, the levels of Fusobacterium nucleatum, Actinomyces oris and Campylobacter rectus proteins were significantly regulated. The functions of the up-regulated intracellular (biofilm lysate) proteins were associated with cytokinesis. In conclusion, the proteomic overview of regulated pathways in this host-biofilm interaction model provides insights to the early events of periodontal pathogenesis.
Collapse
|
16
|
Thurnheer T, Belibasakis GN. Incorporation of staphylococci into titanium-grown biofilms: an in vitro "submucosal" biofilm model for peri-implantitis. Clin Oral Implants Res 2015; 27:890-5. [PMID: 26461083 PMCID: PMC5057304 DOI: 10.1111/clr.12715] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2015] [Indexed: 11/27/2022]
Abstract
Objectives Staphylococcus spp. are postulated to play a role in peri‐implantitis. This study aimed to develop a “submucosal” in vitro biofilm model, by integrating two staphylococci into its composition. Materials and methods The standard “subgingival” biofilm contained Actinomyces oris, Fusobacterium nucleatum, Streptococcus oralis, Veillonella dispar, Campylobacter rectus, Prevotella intermedia, Streptococcus anginosus, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, and was further supplemented with Staphyoccous aureus and/or Staphylococcus epidermidis. Biofilms were grown anaerobically on hydroxyapatite or titanium discs and harvested after 64 h for real‐time polymerase chain reaction, to determine their composition. Confocal laser scanning microscopy and fluorescence in situ hybridization were used for identifying the two staphylococci within the biofilm. Results Both staphylococci established within the biofilms when added separately. However, when added together, only S. aureus grew in high numbers, whereas S. epidermidis was reduced almost to the detection limit. Compared to the standard subgingival biofilm, addition of the two staphylococci had no impact on the qualitative or quantitative composition of the biofilm. When grown individually in the biofilm, S. epidermidis and S. aureus formed small distinctive clusters and it was confirmed that S. epidermidis was not able to grow in presence of S. aureus. Conclusions Staphyoccous aureus and S. epidermidis can be individually integrated into an oral biofilm grown on titanium, hence establishing a “submucosal” biofilm model for peri‐implantitis. This model also revealed that S. aureus outcompetes S. epidermidis when grown together in the biofilm, which may explain the more frequent association of the former with peri‐implantitis.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Georgios N Belibasakis
- Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Thurnheer T, Bostanci N, Belibasakis GN. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model. Mol Oral Microbiol 2015; 31:125-35. [PMID: 26033167 DOI: 10.1111/omi.12108] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/17/2022]
Abstract
The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms.
Collapse
Affiliation(s)
- T Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - N Bostanci
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Bostanci N, Bao K, Wahlander A, Grossmann J, Thurnheer T, Belibasakis GN. Secretome of gingival epithelium in response to subgingival biofilms. Mol Oral Microbiol 2015; 30:323-35. [PMID: 25787257 DOI: 10.1111/omi.12096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Periodontitis is the chronic inflammatory destruction of periodontal tissues as a result of bacterial biofilm formation on the tooth surface. Proteins secreted by the gingival epithelium challenged by subgingival biofilms represent an important initial response for periodontal inflammation. The aim of this in vitro study was to characterize the whole secreted proteome of gingival epithelial tissue challenged by subgingival biofilms, and to evaluate the differential effects of the presence of the red-complex species in the biofilm. Multi-layered human gingival epithelial cultures were challenged with a 10-species in vitro biofilm model or its seven-species variant excluding the red complex. Liquid chromatography-tandem mass spectrometry for label-free quantitative proteomics was applied to identify and quantify the secreted epithelial proteins in the culture supernatant. A total of 192 proteins were identified and quantified. The biofilm challenge resulted in more secreted proteins being downregulated than upregulated. Even so, presence of the red complex in the biofilm was responsible for much of this downregulatory effect. Over 24 h, the upregulated biological processes were associated with inflammation and apoptosis, whereas the downregulated processes were associated with the disruption of epithelial tissue integrity and impairment of tissue turnover. Over 48 h, negative regulation of several metabolic processes and degradation of various molecular complexes was further intensified. Again, many of these biological regulations were attributed to the presence of the red complex. In conclusion, the present study provides the secreted proteome profile of gingival epithelial tissue to subgingival biofilms, and identifies a significant role for the red-complex species in the observed effects.
Collapse
Affiliation(s)
- N Bostanci
- Oral Translational Research, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - K Bao
- Oral Translational Research, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - A Wahlander
- Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - J Grossmann
- Functional Genomics Center Zürich, University of Zürich/ETHZ, Zürich, Switzerland
| | - T Thurnheer
- Oral Microbiology and Immunology, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - G N Belibasakis
- Oral Microbiology and Immunology, Center of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Ward CL, Sanchez CJ, Pollot BE, Romano DR, Hardy SK, Becerra SC, Rathbone CR, Wenke JC. Soluble factors from biofilms of wound pathogens modulate human bone marrow-derived stromal cell differentiation, migration, angiogenesis, and cytokine secretion. BMC Microbiol 2015; 15:75. [PMID: 25886581 PMCID: PMC4381664 DOI: 10.1186/s12866-015-0412-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Background Chronic, non-healing wounds are often characterized by the persistence of bacteria within biofilms - aggregations of cells encased within a self-produced polysaccharide matrix. Biofilm bacteria exhibit unique characteristics from planktonic, or culture-grown, bacterial phenotype, including diminished responses to antimicrobial therapy and persistence against host immune responses. Mesenchymal stromal cells (MSCs) are host cells characterized by their multifunctional ability to undergo differentiation into multiple cell types and modulation of host-immune responses by secreting factors that promote wound healing. While these characteristics make MSCs an attractive therapeutic for wounds, these pro-healing activities may be differentially influenced in the context of an infection (i.e., biofilm related infections) within chronic wounds. Herein, we evaluated the effect of soluble factors derived from biofilms of clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa on the viability, differentiation, and paracrine activity of human MSCs to evaluate the influence of biofilms on MSC activity in vitro. Results Exposure of MSCs to biofilm-conditioned medias of S. aureus and P. aeruginosa resulted in reductions in cell viability, in part due to activation of apoptosis. Similarly, exposure to soluble factors from biofilms was also observed to diminish the migration ability of cells and to hinder multi-lineage differentiation of MSCs. In contrast to these findings, exposure of MSCs to soluble factors from biofilms resulted in significant increases in the release of paracrine factors involved in inflammation and wound healing. Conclusions Collectively, these findings demonstrate that factors produced by biofilms can negatively impact the intrinsic properties of MSCs, in particular limiting the migratory and differentiation capacity of MSCs. Consequently, these studies suggest use/application of stem-cell therapies in the context of infection may have a limited therapeutic effect. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0412-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine L Ward
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Carlos J Sanchez
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Beth E Pollot
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Desiree R Romano
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sharanda K Hardy
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Sandra C Becerra
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Christopher R Rathbone
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| | - Joseph C Wenke
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, TX, USA.
| |
Collapse
|
20
|
Willi M, Belibasakis GN, Bostanci N. Expression and regulation of triggering receptor expressed on myeloid cells 1 in periodontal diseases. Clin Exp Immunol 2014; 178:190-200. [PMID: 24924298 DOI: 10.1111/cei.12397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an inflammatory infectious disease that destroys the tooth-supporting tissues. It is caused by multi-species subgingival biofilms that colonize the tooth surface. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia (i.e. 'red complex' bacteria) are characteristic subgingival biofilm species. The triggering receptor expressed on myeloid cells 1 (TREM-1) is a cell surface receptor of the immunoglobulin superfamily, with a role in the amplification of proinflammatory cytokine production during infection. This study aimed to investigate TREM-1 mRNA expression in gingival tissues from patients with chronic periodontitis, generalized aggressive periodontitis and healthy subjects and its correlation with the levels of periodontal pathogens in the tissue. A further aim was to investigate the regulation of TREM-1 in human monocytic cells (MM6) challenged with an in-vitro subgingival biofilm model. Gingival tissue TREM-1 expression was increased in both chronic and aggressive periodontitis, compared to health, and correlated with the levels of the 'red complex' species in the tissue. No significant differences were detected between the two forms of periodontitis. Biofilm-challenged MM6 cells exhibited higher TREM-1 expression and secretion compared to controls, with partial involvement of the 'red complex'. Engagement or inhibition of TREM-1 affected the capacity of the biofilms to stimulate interleukin (IL)-1β, but not IL-8, secretion by the cells. In conclusion, this study reveals that TREM-1 tissue expression is enhanced in periodontal disease, and correlates with the level of periodontal pathogens. It also provides a mechanistic insight into the regulation of TREM-1 expression and the associated IL-1β production in biofilm-challenged monocytes.
Collapse
Affiliation(s)
- M Willi
- Section of Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Bao K, Akguel B, Bostanci N. Establishment and characterization of immortalized gingival epithelial and fibroblastic cell lines for the development of organotypic cultures. Cells Tissues Organs 2014; 199:228-37. [PMID: 25471635 DOI: 10.1159/000363694] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 11/19/2022] Open
Abstract
In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro.
Collapse
Affiliation(s)
- Kai Bao
- Oral Translational Research Unit, Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
22
|
Thurnheer T, Belibasakis GN, Bostanci N. Colonisation of gingival epithelia by subgingival biofilms in vitro: role of "red complex" bacteria. Arch Oral Biol 2014; 59:977-86. [PMID: 24949828 DOI: 10.1016/j.archoralbio.2014.05.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/23/2014] [Accepted: 05/25/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Biofilm formation on tooth surface results in colonisation and invasion of the juxtaposed gingival tissue, eliciting strong inflammatory responses that lead to periodontal disease. This in vitro study investigated the colonisation of human gingival multi-layered epithelium by multi-species subgingival biofilms, and evaluated the relative effects of the "red complex" species (Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola). METHODS The grown biofilm consisted of Fusobacterium nucleatum, Campylobacter rectus, Veillonella dispar, P. gingivalis, Prevotella intermedia, T. forsythia, T. denticola, Actinomyces oris, Streptococcus anginosus and Streptococcus oralis, or its variant lacking the "red complex". After 48h in co-culture with the gingival epithelia, the bacterial species in the biofilm were quantified, whereas their localisation on the cell surface was investigated by combining confocal-laser scanning microscopy (CLSM) and fluorescence in situ hybridisation (FISH), as well as by scanning electron microscopy (SEM). RESULTS Exclusion of the "red complex" quantitatively affected S. oralis, but not other species. The "red-complex" species were all able to colonise the gingival epithelial cells. A co-localisation trend was observed between P. gingivalis and T. denticola, as determined by FISH. However, in the absence of all three "red complex" bacteria from the biofilm, an immense colonisation of streptococci (potentially S. oralis) was observed on the gingival epithelia, as confirmed by both CLSM and SEM. CONCLUSIONS While the "red complex" species synergise in colonizing gingival epithelia, their absence from the biofilm enhances streptococcal colonisation. This antagonism with streptococci reveals that the "red complex" may regulate biofilm virulence, with potential implications in periodontal pathogenesis.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Switzerland.
| | - Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Switzerland
| |
Collapse
|
23
|
Belibasakis G, Bao K, Bostanci N. Transcriptional profiling of human gingival fibroblasts in response to multi-speciesin vitrosubgingival biofilms. Mol Oral Microbiol 2014; 29:174-83. [DOI: 10.1111/omi.12053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2014] [Indexed: 12/31/2022]
Affiliation(s)
- G.N. Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Centre of Dental Medicine; University of Zürich; Zürich Switzerland
| | - K. Bao
- Oral Translational Research; Institute of Oral Biology; Centre of Dental Medicine; University of Zürich; Zürich Switzerland
| | - N. Bostanci
- Oral Translational Research; Institute of Oral Biology; Centre of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
24
|
Terheyden H, Stadlinger B, Sanz M, Garbe AI, Meyle J. Inflammatory reaction - communication of cells. Clin Oral Implants Res 2013; 25:399-407. [DOI: 10.1111/clr.12176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Hendrik Terheyden
- Department of Oral & Maxillofacial Surgery; Red Cross Hospital; Kassel Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery; University of Zürich; Zürich Switzerland
| | - Mariano Sanz
- Faculty of Odontology; University Complutense of Madrid; Madrid Spain
| | - Annette I. Garbe
- Institute of Physiological Chemistry; Dresden University of Technology; Dresden Germany
| | - Jörg Meyle
- Department of Periodontology; University Gießen and Marburg; Giessen Germany
| |
Collapse
|
25
|
Sahrmann P, Zehnder M, Mohn D, Meier A, Imfeld T, Thurnheer T. Effect of low direct current on anaerobic multispecies biofilm adhering to a titanium implant surface. Clin Implant Dent Relat Res 2012; 16:552-6. [PMID: 23167678 DOI: 10.1111/cid.12018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Peri-implantitis is caused by biofilm adhering to the implant. It has been shown that bactericidal electrolysis products are generated when a low direct current is applied to a titanium implant used as the anode. The hypothesis of this study was that low-current electrolysis would eradicate viable bacteria in a simulated subgingival multispecies biofilm adhering to a titanium implant surface. MATERIAL AND METHODS Biofilms consisting of eight anaerobic species were grown on pellicle-coated titanium discs with sand-blasted, acid-etched, large-grit (SLA; Straumann, Basel, Switzerland) surface. After 40.5 hours of growth, discs were treated with 10 mA for 10 minutes in an electrolytical setup with physiological saline and gelatin. RESULTS Low direct current at discs used as the cathode caused a reduction of three to four orders of magnitude in viable counts, while no viable bacteria were recovered from anode discs (Mann-Whitney U-test, p < .01). Confocal laser scanning microscopy in combination with a live/dead stain showed biofilm detachment at the cathode and reduced viability at the anode. CONCLUSION Electrochemical treatment of diseased implants appears to be promising and well worth investigating further.
Collapse
Affiliation(s)
- Philipp Sahrmann
- Department of Preventive Dentistry, Periodontology, and Cariology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Belibasakis GN, Guggenheim B. Induction of prostaglandin E2and interleukin-6 in gingival fibroblasts by oral biofilms. ACTA ACUST UNITED AC 2011; 63:381-6. [DOI: 10.1111/j.1574-695x.2011.00863.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/27/2023]
|
27
|
Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol 2011; 39:239-48. [PMID: 22092994 DOI: 10.1111/j.1600-051x.2011.01810.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The receptor activator of NF-κB ligand-osteoprotegerin (RANKL-OPG) bi-molecular system is the "bottle-neck" regulator of osteoclastogenesis and bone resorption, both in physiological and pathological conditions. This review aims to elaborate the current knowledge on RANKL and OPG in periodontal disease, and to evaluate their diagnostic and prognostic potential as biomarkers of the disease. MATERIALS AND METHODS To pursue this aim, electronic and manual searches were performed for identifying clinical and in vivo studies on RANKL and OPG in gingival tissue, gingival crevicular fluid, saliva and blood. Smoking and diabetes mellitus were also considered for their potential effects. RESULTS Papers fulfilling the inclusion criteria demonstrate that RANKL is up-regulated, whereas OPG is down-regulated in periodontitis, compared to periodontal health, resulting in an increased RANKL/OPG ratio. This ratio is further up-regulated in smokers and diabetics, and is not affected by conventional periodontal treatment. CONCLUSIONS The increased RANKL/OPG ratio may serve as a biomarker that denotes the occurrence of periodontitis, but may not necessarily predict on-going disease activity. Its steadily elevated levels post treatment may indicate that the molecular mechanisms of bone resorption are still active, holding an imminent risk for relapse of the disease. Additional adjunct treatment modalities that would "switch-off" the RANKL/OPG ratio may therefore be required.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, Faculty of Medicine, University of Zürich, Switzerland.
| | | |
Collapse
|