1
|
Riaz B, Ryu HM, Choi B, Sohn S. Tartaric Acid Exacerbates DSS-Induced Colitis by Promoting Eosinophilic Inflammation via IL-13 and IL-5Rα Upregulation. Pathogens 2025; 14:366. [PMID: 40333150 PMCID: PMC12030069 DOI: 10.3390/pathogens14040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/01/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
Eosinophils are granulocytes involved in the effector phase of type 2 T cell immune responses, which are elevated in inflammatory conditions like ulcerative colitis (UC) and other allergic diseases. UC is a chronic inflammatory colon disease, marked by excessive eosinophil infiltration and elevated Th2 cytokines, which contribute to mucosal inflammation and tissue damage. Dietary factors, including certain organic acids, can influence UC progression by modulating gut immune responses. This research is the first to explore the dose-dependent effects of tartaric acid (TA), a naturally occurring organic acid widely used in the food industry, on eosinophil activation and Th2 cytokine response in both normal mice and a dextran sulfate sodium (DSS)-induced colitis model. Normal mice were treated with TA at varying doses (5 µg, 25 µg, and 50 µg/mouse/day), while colitis mice received 50 µg TA. Eosinophil activation markers (CD11b+, SiglecF+, and CCR3+), Th2 cytokines (IL-4, IL-13, and IL-31), and IL-17 were assessed in peripheral blood leukocytes, lymph nodes, and splenocytes using flow cytometry. Additionally, mRNA expression levels of eosinophil-associated chemokines and cytokines in the splenocytes were quantified with real-time qPCR. Our results demonstrate a dose-dependent effect of TA, with the highest dose (50 µg) significantly increasing eosinophil activation markers, Th2 cytokines, IL-17, and mRNA expression of SiglecF, CCL11, and toll-like receptor 4 in normal mice. In colitis mice, treatment with 50 µg TA showed marked increases in IL-13 levels compared to those of untreated colitis mice, reflecting increased eosinophil recruitment to inflamed tissues. Moreover, mRNA expression of IL-5Rα was elevated in normal mice and colitis mice administered with TA. These results suggest that TA enhances eosinophil proliferation, the upregulation of their regulatory molecules, and Th2 immune profiles, potentially worsening the severity of colitis.
Collapse
Affiliation(s)
- Bushra Riaz
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Bunsoon Choi
- Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Seonghyang Sohn
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| |
Collapse
|
2
|
Negrin LL, Ristl R, Wollner G, Hajdu S. Differences in Eotaxin Serum Levels between Polytraumatized Patients with and without Concomitant Traumatic Brain Injury-A Matched Pair Analysis. J Clin Med 2024; 13:4218. [PMID: 39064258 PMCID: PMC11277900 DOI: 10.3390/jcm13144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background/Objectives: Early detection of traumatic brain injury (TBI) is crucial for minimizing secondary neurological damage. Our study aimed to assess the potential of IL-4, IL-6, IL-7, IL-8, IL-10, TNF, and eotaxin serum levels-as a single clinical tool or combined into a panel-for diagnosing TBI in multiple injured patients. Methods: Out of 110 prospectively enrolled polytrauma victims (median age, 39 years; median ISS, 33; 70.9% male) admitted to our level I trauma center over four years, we matched 41 individuals with concomitant TBI (TBI cohort) to 41 individuals without TBI (non-TBI cohort) based on age, gender, Injury Severity Score (ISS), and mortality. Patients' protein levels were measured upon admission (day 0) and on days 1, 3, 5, 7, and 10 during routine blood withdrawal using one separation gel tube each time. Results: The median serum levels of IL-4, IL-6, IL-7, IL-8, IL-10, and TNF exhibited non-similar time courses in the two cohorts and showed no significant differences on days 0, 1, 3, 5, and 7. However, the median eotaxin levels had similar trend lines in both cohorts, with consistently higher levels in the TBI cohort, reaching significance on days 0, 3, and 5. In both cohorts, the median eotaxin level significantly decreased from day 0 to day 1, then significantly increased until day 10. We also found a significant positive association between day 0 eotaxin serum levels and the presence of TBI, indicating that for every 20 pg/mL increase in eotaxin level, the odds of a prevalent TBI rose by 10.5%. ROC analysis provided a cutoff value of 154 pg/mL for the diagnostic test (sensitivity, 0.707; specificity, 0.683; AUC = 0.718). Conclusions: Our findings identified the brain as a significant source, solely of eotaxin release in humans who have suffered a TBI. Nevertheless, the eotaxin serum level assessed upon admission has limited diagnostic value. IL-4, IL-6, IL-7, IL-8, IL-10, and TNF do not indicate TBI in polytraumatized patients.
Collapse
Affiliation(s)
- Lukas L. Negrin
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Robin Ristl
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gregor Wollner
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, 1090 Vienna, Austria; (G.W.); (S.H.)
| |
Collapse
|
3
|
Nygaard-Odeh K, Soloy-Nilsen H, Kristiansen MG, Brekke OL, Mollnes TE, Berk M, Bramness JG, Oiesvold T. Cytokines in hepatitis C-infected patients with or without opioid maintenance therapy. Acta Neuropsychiatr 2024; 37:e46. [PMID: 38173235 DOI: 10.1017/neu.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Both chronic hepatitis C virus (HCV) infection and opioids cause altered blood levels of cytokines. Previous studies have investigated levels of selected groups of cytokines in patients on opioid maintenance treatment. Little is known about the levels of multiple cytokines in patients with chronic HCV infection on opioid maintenance treatment. Our aim was to investigate the cytokine profile in patients with active HCV infection with and without opioid maintenance treatment. METHODS We conducted a cross-sectional study in an out-patients population included upon referral for antiviral hepatitis C infection treatment. The level of 27 cytokines was measured in serum using multiplex technology. Patients were interviewed using a modified version of the European addiction severity index. Data pertaining to weight, height, current medication, smoking habits, allergies, previous medical history and ongoing withdrawal symptoms were collected. Non-parametric testing was used to investigate differences in levels of cytokines between the two groups. A 3-model hierarchical regression analysis was used to analyse associations between cytokines and confounding variables. RESULTS Out of 120 included patients, 53 were on opioid maintenance treatment. Median duration of opioid treatment was 68.4 months. There were no demographical differences between the two groups other than age. IL-1β was lower and eotaxin-1 higher in the group on opioid maintenance treatment than in the non-opioid group. No other inter-group differences in the remaining cytokine levels were found. CONCLUSION In HCV infection patients, the impact of chronic opioid administration on peripheral circulating cytokine level is minimal.
Collapse
Affiliation(s)
- Kristin Nygaard-Odeh
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Hedda Soloy-Nilsen
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Magnhild Gangsoy Kristiansen
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Ole Lars Brekke
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital Trust, Bodoe, Norway
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
- The National Centre of Excellence in Youth Mental Health, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Jorgen G Bramness
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
- Norwegian National Advisory Unit on Concurrent Substance Abuse and Mental Health Disorders, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Alcohol, Tobacco and Drugs, Norwegian Institute of Public Health, Oslo, Norway
| | - Terje Oiesvold
- Nordland Hospital Trust, Bodoe, Norway
- Institute of Clinical Medicine, UIT - The Arctic University of Norway, Tromsoe, Norway
| |
Collapse
|
4
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Wang J, Zhou Y, Zhang H, Hu L, Liu J, Wang L, Wang T, Zhang H, Cong L, Wang Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:138. [PMID: 36964157 PMCID: PMC10039055 DOI: 10.1038/s41392-023-01344-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 03/26/2023] Open
Abstract
Allergic diseases such as allergic rhinitis (AR), allergic asthma (AAS), atopic dermatitis (AD), food allergy (FA), and eczema are systemic diseases caused by an impaired immune system. Accompanied by high recurrence rates, the steadily rising incidence rates of these diseases are attracting increasing attention. The pathogenesis of allergic diseases is complex and involves many factors, including maternal-fetal environment, living environment, genetics, epigenetics, and the body's immune status. The pathogenesis of allergic diseases exhibits a marked heterogeneity, with phenotype and endotype defining visible features and associated molecular mechanisms, respectively. With the rapid development of immunology, molecular biology, and biotechnology, many new biological drugs have been designed for the treatment of allergic diseases, including anti-immunoglobulin E (IgE), anti-interleukin (IL)-5, and anti-thymic stromal lymphopoietin (TSLP)/IL-4, to control symptoms. For doctors and scientists, it is becoming more and more important to understand the influencing factors, pathogenesis, and treatment progress of allergic diseases. This review aimed to assess the epidemiology, pathogenesis, and therapeutic interventions of allergic diseases, including AR, AAS, AD, and FA. We hope to help doctors and scientists understand allergic diseases systematically.
Collapse
Affiliation(s)
- Ji Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Yumei Zhou
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Honglei Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linhan Hu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Juntong Liu
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Lei Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 1000210, China
| | - Tianyi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Haiyun Zhang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Linpeng Cong
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Qi Wang
- National Institute of TCM constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China.
| |
Collapse
|
6
|
Rastogi T, Girerd N, Lamiral Z, Bresso E, Bozec E, Boivin JM, Rossignol P, Zannad F, Ferreira JP. Impact of smoking on cardiovascular risk and premature ageing: Findings from the STANISLAS cohort. Atherosclerosis 2022; 346:1-9. [DOI: 10.1016/j.atherosclerosis.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
|
7
|
Network Pharmacology-Based Analysis of the Underlying Mechanism of Hyssopus cuspidatus Boriss. for Antiasthma: A Characteristic Medicinal Material in Xinjiang. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7671247. [PMID: 34880921 PMCID: PMC8648465 DOI: 10.1155/2021/7671247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Background Hyssopus cuspidatus Boriss. (Shen Xiang Cao (SXC)), a traditional medicine herb in Xinjiang, has a long history of being used by minorities to treat asthma. However, its active antiasthmatic compounds and underlying mechanism of action are still unknown. The aim of this study was to investigate the bioactive compounds and explore the molecular mechanism of SCX in the treatment of asthma using network pharmacology. Methods The compounds of SCX were collected by a literature search, and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction were used to predict targets and screen active compounds. Moreover, asthma-related targets were obtained based on DisGeNET, Herb, and GeneCards databases, and a protein-protein interaction (PPI) network was built by the STRING database. Furthermore, the topological analysis of the PPI and SXC-compound-target networks were analyzed and established by Cytoscape software. Finally, the RStudio software package was used for carrying out Gene Ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. AutoDock tools and AutoDock Vina were used to molecularly dock the active compounds and key targets. Results A total of 8 active compounds and 258 potential targets related to SXC were predicted, and PPI network screened out key targets, including IL-6, JUN, TNF, IL10, and CXCL8. GO enrichment analysis involved cell responses to reactive oxygen species, oxidative stress, chemical stress, etc. In addition, KEGG pathway analysis showed that SXC effectively treated asthma through regulation of mitogen-activated protein kinases (MAPK) signaling pathways, interleukin 17 (IL-17) signaling pathways, toll-like receptor (TLR) signaling pathways, and tumor necrosis factor (TNF) signaling pathways. Conclusion The preliminary study that was based on multiple compounds, multiple targets, and multiple pathways provides a scientific basis for further elucidating the molecules involved and the underlying antiasthma-related mechanisms of SXC.
Collapse
|
8
|
Zayed M, Iohara K, Watanabe H, Nakashima M. CCR3 antagonist protects against induced cellular senescence and promotes rejuvenation in periodontal ligament cells for stimulating pulp regeneration in the aged dog. Sci Rep 2020; 10:8631. [PMID: 32451381 PMCID: PMC7248074 DOI: 10.1038/s41598-020-65301-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
Pulp regeneration after transplantation of mobilized dental pulp stem cells (MDPSCs) declines in the aged dogs due in part to the chronic inflammation and/or cellular senescence. Eotaxin-1/C-C motif chemokine 11 (CCL11) is an inflammation marker via chemokine receptor 3 (CCR3). Moreover, CCR3 antagonist (CCR3A) can inhibit CCL11 binding to CCR3 and prevent CCL11/CCR3 signaling. The study aimed to examine the effect of CCR3A on cellular senescence and anti-inflammation/immunomodulation in human periodontal ligament cells (HPDLCs). The rejuvenating effects of CCR3A on neurite extension and migratory activity to promote pulp regeneration in aged dog teeth were also evaluated. In vivo, the amount of regenerated pulp tissues was significantly increased by transplantation of MDPSCs with CCR3A compared to control without CCR3A. In vitro, senescence of HPDLCs was induced after p-Cresol exposure, as indicated by increased cell size, decreased proliferation and increased senescence markers, p21 and IL-1β. Treatment of HPDLCs with CCR3A prevented the senescence effect of p-Cresol. Furthermore, CCR3A significantly decreased expression of CCL11, increased expression of immunomodulatory factor, IDO, and enhanced neurite extension and migratory activity. In conclusion, CCR3A protects against p-Cresol-induced cellular senescence and enhances rejuvenating effects, suggesting its potential utility to stimulate pulp regeneration in the aged teeth.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan
- Department of Animal Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Misako Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, 474-8511, Japan.
- Aeras Bio Inc., Air Water Group, Kobe, Hyogo, 650-047, Japan.
| |
Collapse
|
9
|
Zhu X, Cong J, Yang B, Sun Y. Association analysis of high-mobility group box-1 protein 1 (HMGB1)/toll-like receptor (TLR) 4 with nasal interleukins in allergic rhinitis patients. Cytokine 2020; 126:154880. [DOI: 10.1016/j.cyto.2019.154880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022]
|
10
|
Athari SS. Targeting cell signaling in allergic asthma. Signal Transduct Target Ther 2019; 4:45. [PMID: 31637021 PMCID: PMC6799822 DOI: 10.1038/s41392-019-0079-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/08/2023] Open
Abstract
Asthma is chronic inflammation of the airways characterized by airway hyper-responsiveness, wheezing, cough, and dyspnea. Asthma affects >350 million people worldwide. The Th2 immune response is a major contributor to the pathophysiology of asthma. Targeted therapy modulating cell signaling pathways can be a powerful strategy to design new drugs to treat asthma. The potential molecular pathways that can be targeted include IL-4-IL-13-JAK-STAT-MAP kinases, adiponectin-iNOS-NF-κB, PGD2-CRTH2, IFNs-RIG, Wnt/β-catenin-FAM13A, FOXC1-miR-PI3K/AKT, JNK-Gal-7, Nrf2-ROS, Foxp3-RORγt, CysLTR, AMP, Fas-FasL, PTHrP/PPARγ, PAI-1, FcɛRI-LAT-SLP-76, Tim-3-Gal-9, TLRs-MyD88, PAR2, and Keap1/Nrf2/ARE. Therapeutic drugs can be designed to target one or more of these pathways to treat asthma.
Collapse
Affiliation(s)
- Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Sridhar S, Liu H, Pham TH, Damera G, Newbold P. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir Res 2019; 20:14. [PMID: 30658649 PMCID: PMC6339432 DOI: 10.1186/s12931-018-0968-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023] Open
Abstract
Background Benralizumab, a humanized, afucosylated, monoclonal antibody that targets interleukin-5 receptor α, depletes eosinophils and basophils by enhanced antibody-dependent cell-mediated cytotoxicity. It demonstrated efficacy for patients with moderate to severe asthma and, in a Phase IIa trial, for chronic obstructive pulmonary disease (COPD) with eosinophilic inflammation. We investigated effects of benralizumab 100 mg every 8 weeks (first three doses every 4 weeks) subcutaneous on blood inflammatory markers through proteomic and gene-expression analyses collected during two Phase II studies of patients with eosinophilic asthma and eosinophilic COPD. Methods Serum samples for proteomic analysis and whole blood for gene expression analysis were collected at baseline and 52 weeks (asthma study) or 32 weeks (COPD study) post-treatment. Proteomic analyses were conducted on a custom set of 90 and 147 Rules-Based Medicine analytes for asthma and COPD, respectively. Gene expression was profiled by Affymetrix Human Genome U133 plus 2 arrays (~ 54 K probes). Gene set variation analysis (GSVA) was used to determine transcriptomic activity of immune signatures. Treatment-related differences between analytes, genes, and gene signatures were analyzed for the overall population and for patient subgroups stratified by baseline blood eosinophil count (eosinophil-high [≥300 cells/μL] and eosinophil-low [< 300 cells/μL]) via t-test and repeated measures analysis of variance. Results Eosinophil chemokines eotaxin-1 and eotaxin-2 were significantly upregulated (false discovery rate [FDR] < 0.05) by approximately 2.1- and 1.4-fold in the asthma study and by 2.3- and 1.7-fold in the COPD study following benralizumab treatment. Magnitude of upregulation of these two chemokines was greater for eosinophil-high patients than eosinophil-low patients in both studies. Benralizumab was associated with significant reductions (FDR < 0.05) in expression of genes associated with eosinophils and basophils, such as CLC, IL-5Rα, and PRSS33; immune-signaling complex genes (FCER1A); G-protein–coupled receptor genes (HRH4, ADORA3, P2RY14); and further immune-related genes (ALOX15 and OLIG2). The magnitude of downregulation of gene expression was greater for eosinophil-high than eosinophil-low patients. GSVA on immune signatures indicated significant treatment reductions (FDR < 0.05) in eosinophil-associated signatures. Conclusions Benralizumab is highly selective, modulating blood proteins or genes associated with eosinophils or basophils. Modulated protein and gene expression patterns are most prominently altered in eosinophil-high vs. eosinophil-low patients. Trial registration NCT01227278 and NCT01238861. Electronic supplementary material The online version of this article (10.1186/s12931-018-0968-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sriram Sridhar
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Hao Liu
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Tuyet-Hang Pham
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Gautam Damera
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Paul Newbold
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA.
| |
Collapse
|
12
|
Lin F, Shi H, Liu D, Zhang Z, Luo W, Mao P, Zhong R, Liang Y, Yang Z. Association of CCL11, CCL24 and CCL26 with primary biliary cholangitis. Int Immunopharmacol 2018; 67:372-377. [PMID: 30583236 DOI: 10.1016/j.intimp.2018.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND CCL11, CCL24 and CCL26 are potent chemokines for eosinophils. Since there has been no study reporting the association serum CCL11, CCL24 and CCL26 with fibrotic progression of PBC, the aim of this study is to explore the association. METHODS One hundred and eight PBC patients, 52 patients with chronic hepatitis B (CHB) and 50 healthy controls (HC) were recruited. The sera were detected for CCL11, CCL24 and CCL26 using multiplex immunoassay. Other laboratory indicators were routinely measured. PBC was divided into four stages according to Scheuer's classification. RESULTS Serum CCL11, CCL24 and CCL26 levels were significantly higher in PBC patients than those with CHB and HC (P < 0.05). The ROC analyses showed that all of the three CCLs performed well for identification of PBC (all P< or =0.001). The multiple linear regression analysis showed an independent relationship of CCL26 with APRI and FIB-4 in PBC patients, but no relationship of CCL11 and CCL24 with fibrotic indicators. Additionally, serum CCL11 and CCL26 were negatively correlated with histological stage of PBC, while serum CCL24 showed no statistical correlation. CONCLUSION Serum CCL11, CCL24 and CCL26 are upregulated in PBC. CCL11 and CCL26 are associated with fibrotic progression of PBC, but CCL24 is not.
Collapse
Affiliation(s)
- Feng Lin
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Hong Shi
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Donghong Liu
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Zhencheng Zhang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Wanwan Luo
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Panying Mao
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Renqian Zhong
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Liang
- Department of Laboratory Diagnostics, Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
13
|
Pacheco-Lugo L, Sáenz-García J, Navarro Quiroz E, González Torres H, Fang L, Díaz-Olmos Y, Garavito de Egea G, Egea Bermejo E, Aroca Martínez G. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus 2018; 28:34-43. [DOI: 10.1177/0961203318812679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Systemic lupus erythematosus is a heterogeneous chronic inflammatory autoimmune disorder characterized by an exacerbated expression of cytokines and chemokines in different tissues and organs. Renal involvement is a significant contributor to the morbidity and mortality of systemic lupus erythematosus, and its diagnosis is based on renal biopsy, an invasive procedure with a high risk of complications. Therefore, the development of alternative, non-invasive diagnostic tests for kidney disease in patients with systemic lupus erythematosus is a priority. Aim To evaluate the plasma levels of a panel of cytokines and chemokines using multiplex xMAP technology in a cohort of Colombian patients with active and inactive systemic lupus erythematosus, and to evaluate their potential as biomarkers of renal involvement. Results Plasma from 40 systemic lupus erythematosus non-nephritis patients and 80 lupus nephritis patients with different levels of renal involvement were analyzed for 39 cytokines using Luminex xMAP technology. Lupus nephritis patients had significantly increased plasma eotaxin, TNF-α, interleukin-17-α, interleukin-10, and interleukin-15 as compared to the systemic lupus erythematosus non-nephritis group. Macrophage-derived chemokine, growth regulated oncogene alpha, and epidermal growth factor were significantly elevated in systemic lupus erythematosus non-nephritis patients when compared to lupus nephritis individuals. Plasma eotaxin levels allowed a discrimination between systemic lupus erythematosus non-nephritis and lupus nephritis patients, for which we performed a receiver operating characteristic curve to confirm. We observed a correlation of eotaxin levels with active nephritis (Systemic Lupus Erythematosus Disease Activity Index). Our data indicate that circulating cytokines and chemokines could be considered good predictors of renal involvement in individuals with systemic lupus erythematosus.
Collapse
Affiliation(s)
- L. Pacheco-Lugo
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
| | - J. Sáenz-García
- Grupo de Genómica Funcional de Parásitos, Universidad Federal de Paraná, Curitiba, Brasil
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Nicaragua, Managua, Nicaragua
| | - E Navarro Quiroz
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - L. Fang
- Universidad del Norte, Barranquilla, Colombia
| | | | | | | | - G. Aroca Martínez
- Grupo de Nefrología, Universidad Simón Bolívar, Barranquilla, Colombia
- Clínica de la Costa, Barranquilla, Colombia
| |
Collapse
|
14
|
Doyen V, Braun JJ, Lutz C, Khayath N, de Blay F. [The usefulness of nasal provocation tests for respiratory physicians]. Rev Mal Respir 2018; 35:788-795. [PMID: 30174237 DOI: 10.1016/j.rmr.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/15/2018] [Indexed: 10/28/2022]
Abstract
Rhinitis and asthma are common diseases that are strongly linked from both the epidemiological and patho-physiological point of view. A precise aetiological diagnosis is required in order to optimize treatment. Nasal provocation tests (NPT) determine precisely the role of the allergen in the initiation of the symptoms of rhinitis particularly when the history does not produce convincing evidence of the clinical relevance of an allergen. It may also have important consequences for the choice of an allergenic immunotherapy. NPT are not standardized but simple methods based on international recommendations provide us with good diagnostic accuracy. In this paper, we will discuss the practical aspects of NPT as well as the clinical or research situations where they may be useful for the respiratory physician.
Collapse
Affiliation(s)
- V Doyen
- Clinique d'immuno-allergologie, CHU de Brugmann, université Libre de Bruxelles (ULB), 4, place Van Gehuchten, 1200 Bruxelles, Belgique.
| | - J-J Braun
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France; Service ORL-CCF, hôpital de Hautepierre, hôpitaux universitaires de Strasbourg, 67000 Strasbourg, France
| | - C Lutz
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| | - N Khayath
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| | - F de Blay
- Service de pneumologie et d'allergologie, hôpitaux universitaires de Strasbourg, pôle de pathologie thoracique, NHC, 67000 Strasbourg, France
| |
Collapse
|
15
|
Sohn DH, Jeong H, Roh JS, Lee HN, Kim E, Koh JH, Lee SG. Serum CCL11 level is associated with radiographic spinal damage in patients with ankylosing spondylitis. Rheumatol Int 2018; 38:1455-1464. [PMID: 29850965 DOI: 10.1007/s00296-018-4073-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The clinical significance of C-C motif chemokine11 (CCL11) in bone metabolism in ankylosing spondylitis (AS) is not clearly elucidated. Thus, this cross-sectional study aimed to compare serum levels of CCL11 between patients with AS and healthy controls and to investigate the relationship between serum levels of CCL11 and radiographic spinal damage in patients with AS. We consecutively recruited 55 male patients with AS and 26 age- and sex-matched healthy controls. Serum levels of CCL11, tumor necrosis factor-α (TNF-α), interleukin-17, and Dickkopf-1 (DKK-1) were measured with commercially available enzyme-linked immunosorbent assay kits. Radiographs were scored according to the modified Stoke ankylosing spondylitis spine score (mSASSS), and syndesmophytes were defined as mSASSS ≥ 2. The serum levels of CCL11 in AS patients with syndesmophytes were significantly higher than those in AS patients without syndesmophytes (p = 0.007) and healthy controls (p = 0.006). In AS patients, the serum levels of CCL11 were significantly and positively correlated with mSASSS (p = 0.006), number of syndesmophytes (p = 0.029). After adjusting for confounding factors, elevated serum levels of CCL11 were associated with increased mSASSS (β = 0.007, p = 0.03) and higher risk for the presence of syndesmophytes (OR 2.34 per 50 pg/ml increase, p = 0.012) in AS patients. We found that the serum level of CCL11 was associated with structural damage in patients with AS, suggesting that CCL11 may serve as a promising biomarker for new bone formation in AS.
Collapse
Affiliation(s)
- Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - Jong Seong Roh
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, South Korea
| | - Han-Na Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-Gu, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Eunsung Kim
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-Gu, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-Gu, Busan, 49241, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, 179 Gudeok-Ro, Seo-Gu, Busan, 49241, South Korea. .,Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea.
| |
Collapse
|
16
|
Paplińska-Goryca M, Nejman-Gryz P, Górska K, Białek-Gosk K, Hermanowicz-Salamon J, Krenke R. Expression of Inflammatory Mediators in Induced Sputum: Comparative Study in Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1040:101-112. [PMID: 27739024 DOI: 10.1007/5584_2016_165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Asthma and COPD are the most common obstructive lung diseases characterized by inflammation in the lower airways which contribute to airflow limitation. Different inflammatory mediators are thought to play a key role in these diseases. This study was conducted in 13 patients with asthma, 12 patients with COPD, and 13 control subjects. The expression of mRNA of IL-6, IL-13, CXCL8, TSLP, IL-33, IL-25, IL-17, ECP, mast cell tryptase, CCL24, and CCL26 was assessed in induced sputum cells by real time PCR. We found that CXCL8 was strongly related to the neutrophil percentage but differed significantly in COPD and asthma patients. The expression of IL-17 was lower in patients with atopic asthma compared to non-atopic asthma. The percentage of macrophages correlated negatively with the expression of mast cell tryptase and ECP in COPD, and with CXCL8 in asthma. The expression of ECP correlated negatively with the severity of COPD symptoms measured by CAT. We conclude that asthma and COPD demonstrate a significant overlap in the airway cytokine profile. Thus, differentiation between the two diseases is difficult as based on a single cytokine, which suggests the coexistence of phenotypes sharing a common cytokine network in these obstructive lung diseases.
Collapse
Affiliation(s)
- Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland.
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland
| | - Katarzyna Białek-Gosk
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland
| | - Joanna Hermanowicz-Salamon
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pneumology and Allergology, Warsaw Medical University, 1A Banacha Street, 02-097, Warsaw, Poland
| |
Collapse
|
17
|
Kindstedt E, Holm CK, Sulniute R, Martinez-Carrasco I, Lundmark R, Lundberg P. CCL11, a novel mediator of inflammatory bone resorption. Sci Rep 2017; 7:5334. [PMID: 28706221 PMCID: PMC5509729 DOI: 10.1038/s41598-017-05654-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/01/2017] [Indexed: 01/21/2023] Open
Abstract
Normal bone homeostasis, which is regulated by bone-resorbing osteoclasts and bone-forming osteoblasts is perturbed by inflammation. In chronic inflammatory disease with disturbed bone remodelling, e.g. rheumatoid arthritis, patients show increased serum levels of the chemokine eotaxin-1 (CCL11). Herein, we demonstrate an inflammatory driven expression of CCL11 in bone tissue and a novel role of CCL11 in osteoclast migration and resorption. Using an inflammatory bone lesion model and primary cell cultures, we discovered that osteoblasts express CCL11 in vivo and in vitro and that expression increased during inflammatory conditions. Osteoclasts did not express CCL11, but the high affinity receptor CCR3 was significantly upregulated during osteoclast differentiation and found to colocalise with CCL11. Exogenous CCL11 was internalised in osteoclast and stimulated the migration of pre-osteoclast and concomitant increase in bone resorption. Our data pinpoints that the CCL11/CCR3 pathway could be a new target for treatment of inflammatory bone resorption.
Collapse
Affiliation(s)
- Elin Kindstedt
- Department of Odontology/Molecular Periodontology, Umeå University, SE-901 87, Umeå, Sweden
| | - Cecilia Koskinen Holm
- Department of Odontology/Molecular Periodontology, Umeå University, SE-901 87, Umeå, Sweden
| | - Rima Sulniute
- Department of Odontology/Molecular Periodontology, Umeå University, SE-901 87, Umeå, Sweden
| | - Irene Martinez-Carrasco
- Department of Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87, Umeå, Sweden
| | - Richard Lundmark
- Department of Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Pernilla Lundberg
- Department of Odontology/Molecular Periodontology, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
18
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
19
|
Robinson MB, Deshpande DA, Chou J, Cui W, Smith S, Langefeld C, Hastie AT, Bleecker ER, Hawkins GA. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 309:L129-38. [PMID: 26001777 DOI: 10.1152/ajplung.00288.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/14/2015] [Indexed: 12/18/2022] Open
Abstract
Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling.
Collapse
Affiliation(s)
- Mac B Robinson
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina; Wake Forest School of Medicine, Department of Neurobiology and Anatomy, Winston-Salem, North Carolina
| | - Deepak A Deshpande
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Jeffery Chou
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Wei Cui
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Shelly Smith
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Carl Langefeld
- Wake Forest School of Medicine, Center for Public Health Genomics, Winston-Salem, North Carolina
| | - Annette T Hastie
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Eugene R Bleecker
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina
| | - Gregory A Hawkins
- Wake Forest School of Medicine, Center for Genomics and Personalized Medicine Research, Winston-Salem, North Carolina;
| |
Collapse
|
20
|
Vucic EA, Chari R, Thu KL, Wilson IM, Cotton AM, Kennett JY, Zhang M, Lonergan KM, Steiling K, Brown CJ, McWilliams A, Ohtani K, Lenburg ME, Sin DD, Spira A, MacAulay CE, Lam S, Lam WL. DNA methylation is globally disrupted and associated with expression changes in chronic obstructive pulmonary disease small airways. Am J Respir Cell Mol Biol 2014; 50:912-22. [PMID: 24298892 PMCID: PMC4068945 DOI: 10.1165/rcmb.2013-0304oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/03/2013] [Indexed: 01/06/2023] Open
Abstract
DNA methylation is an epigenetic modification that is highly disrupted in response to cigarette smoke and involved in a wide spectrum of malignant and nonmalignant diseases, but surprisingly not previously assessed in small airways of patients with chronic obstructive pulmonary disease (COPD). Small airways are the primary sites of airflow obstruction in COPD. We sought to determine whether DNA methylation patterns are disrupted in small airway epithelia of patients with COPD, and evaluate whether changes in gene expression are associated with these disruptions. Genome-wide methylation and gene expression analysis were performed on small airway epithelial DNA and RNA obtained from the same patient during bronchoscopy, using Illumina's Infinium HM27 and Affymetrix's Genechip Human Gene 1.0 ST arrays. To control for known effects of cigarette smoking on DNA methylation, methylation and gene expression profiles were compared between former smokers with and without COPD matched for age, pack-years, and years of smoking cessation. Our results indicate that aberrant DNA methylation is (1) a genome-wide phenomenon in small airways of patients with COPD, and (2) associated with altered expression of genes and pathways important to COPD, such as the NF-E2-related factor 2 oxidative response pathway. DNA methylation is likely an important mechanism contributing to modulation of genes important to COPD pathology. Because these methylation events may underlie disease-specific gene expression changes, their characterization is a critical first step toward the development of epigenetic markers and an opportunity for developing novel epigenetic therapeutic interventions for COPD.
Collapse
Affiliation(s)
- Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Raj Chari
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kelsie L. Thu
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ian M. Wilson
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Allison M. Cotton
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Y. Kennett
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - May Zhang
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Kim M. Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katrina Steiling
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Carolyn J. Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annette McWilliams
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Keishi Ohtani
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marc E. Lenburg
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Don D. Sin
- University of British Columbia James Hogg Research Centre and the Institute of Heart and Lung Health, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Avrum Spira
- Division of Computational Biomedicine, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; and
| | - Calum E. MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
The role of eosinophils and basophils in allergic diseases considering genetic findings. Curr Opin Allergy Clin Immunol 2014; 13:507-13. [PMID: 23974679 DOI: 10.1097/aci.0b013e328364e9c0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Basophils and eosinophils represent less than 1 and 5% of white blood cells, respectively. Their role in asthma and allergic inflammation remains incompletely defined. The present review addresses recent advances regarding the role of these two cell populations in allergic inflammation and asthma regarding both biological and genetic point of view. RECENT FINDINGS Regarding eosinophils, the role of interleukin(IL)-25, IL-33 and thymic stromal lymphoprotein (TSLP) have been evidenced, and activation states of eosinophil β1 and β2 integrins have been found to correlate with the measurement of eosinophil recruitment and pulmonary function in asthma. New insights into the biology of basophils concern their role as regulators of Th2 cell response through IL-4 expression or the differentiation of monocytes to macrophages, and their population heterogeneity in human. The transcription factor PU.1 was reported to be involved in controlling transcription of specific genes both in eosinophils and basophils. Candidate genetic studies on eosinophils have explored genes involved in the intracellular calcium influx and apoptosis. At the genome-wide level, studies identified genetic variants belonging to IL1RL1, TSLP and IL-33, and four loci with pleiotropic effects on eosinophil and basophil counts [GATA2 (3q21), MHC (6p21), HBS1L-MYB (6q23), and ERG (21q22)]. SUMMARY Recent findings from biological and genetic studies on eosinophils and basophils highlight the role of epithelial cell-derived cytokines such as TSLP and IL-33 in asthma and allergic diseases.
Collapse
|