1
|
Balakrishnan B, Kulkarni UP, Pai AA, Illangeswaran RSS, Mohanan E, Mathews V, George B, Balasubramanian P. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol 2023; 14:1100306. [PMID: 36817455 PMCID: PMC9932777 DOI: 10.3389/fimmu.2023.1100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic cell transplantation is an established curative treatment option for various hematological malignant, and non-malignant diseases. However, the success of HCT is still limited by life-threatening early complications post-HCT, such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome (SOS), and transplant-associated microangiopathy, to name a few. A decade of research in the discovery and validation of novel blood-based biomarkers aims to manage these early complications by using them for diagnosis or prognosis. Advances in this field have also led to predictive biomarkers to identify patients' likelihood of response to therapy. Although biomarkers have been extensively evaluated for different complications, these are yet to be used in routine clinical practice. This review provides a detailed summary of various biomarkers for individual early complications post-HCT, their discovery, validation, ongoing clinical trials, and their limitations. Furthermore, this review also provides insights into the biology of biomarkers and the challenge of obtaining a universal cut-off value for biomarkers.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
2
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
3
|
Chung YH, Qian Q, Huang HY, Chiu WT, Yang CS, Tzeng SF. The Nuclear Function of IL-33 in Desensitization to DNA Damaging Agent and Change of Glioma Nuclear Structure. Front Cell Neurosci 2021; 15:713336. [PMID: 34744630 PMCID: PMC8565524 DOI: 10.3389/fncel.2021.713336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Qiu Qian
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Ying Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Emerson AE, Slaby EM, Hiremath SC, Weaver JD. Biomaterial-based approaches to engineering immune tolerance. Biomater Sci 2021; 8:7014-7032. [PMID: 33179649 DOI: 10.1039/d0bm01171a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of biomaterial-based therapeutics to induce immune tolerance holds great promise for the treatment of autoimmune diseases, allergy, and graft rejection in transplantation. Historical approaches to treat these immunological challenges have primarily relied on systemic delivery of broadly-acting immunosuppressive agents that confer undesirable, off-target effects. The evolution and expansion of biomaterial platforms has proven to be a powerful tool in engineering immunotherapeutics and enabled a great diversity of novel and targeted approaches in engineering immune tolerance, with the potential to eliminate side effects associated with systemic, non-specific immunosuppressive approaches. In this review, we summarize the technological advances within three broad biomaterials-based strategies to engineering immune tolerance: nonspecific tolerogenic agent delivery, antigen-specific tolerogenic therapy, and the emergent area of tolerogenic cell therapy.
Collapse
Affiliation(s)
- Amy E Emerson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
5
|
Khan HA, Munir T, Khan JA, Shafia Tehseen Gul AH, Ahmad MZ, Aslam MA, Umar MN, Arshad MI. IL-33 ameliorates liver injury and inflammation in Poly I:C and Concanavalin-A induced acute hepatitis. Microb Pathog 2020; 150:104716. [PMID: 33383149 DOI: 10.1016/j.micpath.2020.104716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023]
Abstract
The IL-33/ST2 axis is known to be involved in liver pathologies and IL-33 is over-expressed in mouse hepatitis models. We aimed to investigate the proposed protective effect of IL-33 in murine fulminant hepatitis induced by a Toll like receptor 3 (TLR3) viral mimetic, Poly I:C or by Concanavalin-A (ConA). The Balb/C mice were administered intravenously with ConA (15 mg/kg) or Poly I:C (30 μg/mouse) to induce acute hepatitis along with vehicle control. The recombinant mouse IL-33 (rIL-33) was injected (0.2 μg/mouse) to mice 2 h prior to ConA or Poly I:C injection to check its hepato-protective effects. The gross lesions, level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), histopathology (H&E staining) and levels of IFNγ and TNFα were measured by ELISA. The gross pathological liver injury induced by Poly I:C or ConA was reduced by rIL-33 administration in mice. The levels of AST and ALT were significantly (P ≤ 0.05) higher in mice challenged with Poly I:C or ConA in comparison to control mice. The rIL-33 pre-treated mice in both Poly I:C and ConA challenge groups showed significantly (P ≤ 0.05) lower levels of AST and ALT, and decreased liver injury (parenchymal and per-vascular necrotic areas) in histological liver sections. The soluble levels of TNFα and IFNγ were significantly (P ≤ 0.05) raised in Poly I:C or ConA challenged mice than control mice. The levels of TNFα and IFNγ were significantly reduced (P ≤ 0.05) in rIL-33 pre-treated mice. In conclusion, the exogenous IL-33 administration mitigated liver injury and inflammation (decreased levels of IFNγ and TNFα) in Poly I:C and ConA-induced acute hepatitis in mice.
Collapse
Affiliation(s)
- Hilal Ahmad Khan
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tariq Munir
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Zishan Ahmad
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Science, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | | | | |
Collapse
|
6
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
7
|
The Role of IL-33 in Experimental Heart Transplantation. Cardiol Res Pract 2020; 2020:6108362. [PMID: 32257426 PMCID: PMC7106886 DOI: 10.1155/2020/6108362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/24/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 family of proteins that are produced by a variety of cell types in multiple tissues. Under conditions of cell injury or death, IL-33 is passively released from the nucleus and acts as an "alarmin" upon binding to its specific receptor ST2, which leads to proinflammatory or anti-inflammatory effects depending on the pathological environment. To date, numerous studies have investigated the roles of IL-33 in human and murine models of diseases of the nervous system, digestive system, pulmonary system, as well as other organs and systems, including solid organ transplantation. With graft rejection and ischemia-reperfusion injury being the most common causes of grafted organ failure or dysfunction, researchers have begun to investigate the role of IL-33 in the immune-related mechanisms of graft tolerance and rejection using heart transplantation models. In the present review, we summarize the identified roles of IL-33 as well as the corresponding mechanisms by which IL-33 acts within the progression of graft rejection after heart transplantation in animal models.
Collapse
|
8
|
Chen Y, Zuo J, Chen W, Yang Z, Zhang Y, Hua F, Shao L, Li J, Chen Y, Yu Y, Shen Z. The enhanced effect and underlying mechanisms of mesenchymal stem cells with IL-33 overexpression on myocardial infarction. Stem Cell Res Ther 2019; 10:295. [PMID: 31547872 PMCID: PMC6757387 DOI: 10.1186/s13287-019-1392-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interleukin 33 is known to have an important influence in the process of myocardial infarction, and the immunoregulatory function of MSCs could be influenced by cell factors. In this study, we evaluated the therapeutic efficacy of IL-33-overexpressing bone marrow mesenchymal stem cells (IL33-MSCs) on myocardial infarction (MI) and detected the inflammatory level and cardiac function in rats. METHODS AND RESULTS First, we evaluated the proliferation of T cells and polarization of macrophages that had been co-cultured with Vector-MSCs or IL33-MSCs. Co-culture experiments indicated that IL33-MSCs reduced T cell proliferation and enhanced CD206+ macrophage polarization. Second, we determined the inflammation level and cardiac function of PBS-, Vector-MSC-, and IL33-MSC-injected rats. Echocardiography indicated that left ventricular ejection fraction (LVEF) was enhanced in IL33-MSC-injected rats compared with Vector-MSC-injected rats. Postmortem analysis of rat heart tissue showed reduced fibrosis and less inflammation in IL33-MSC-injected rats. CONCLUSION These studies indicated that the IL33-MSC injection improved heart function and reduces inflammation in rats with MI compared with PBS or Vector-MSC injections. IL-33 overexpression enhances the immunomodulatory function and therapeutic effects of MSCs on acute MI via enhancing the polarization of macrophages toward M2, enhancing the differentiation of CD4+ T cells toward CD4+IL4+Th2 cells, and finally, reducing heart inflammation and enhancing heart function.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jianfeng Zuo
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Nantong First People's Hospital, Nantong, China
| | - Weiqian Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ziying Yang
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yanxia Zhang
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianbo Shao
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingjing Li
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yunsheng Yu
- Institute for Cardiovascular Science, Soochow University, Suzhou, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Chen J, He Y, Tu L, Duan L. Dual immune functions of IL-33 in inflammatory bowel disease. Histol Histopathol 2019; 35:137-146. [PMID: 31294456 DOI: 10.14670/hh-18-149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-33 (IL-33) has emerged as a critical regulator in a variety of diseases, including inflammatory bowel disease (IBD). IL-33 can be produced by various tissues and cells, and typically induces Th2-type immune responses via binding to the receptor ST2. In addition, accumulated data have shown that IL-33 also plays a modulatory role in the function of regulatory T cells (Tregs), B cells, and innate immune cells such as macrophages and innate lymphoid cells (ILCs). IBD, including Crohn's disease and ulcerative colitis, are characterized by aberrant immunological responses leading to intestinal tissue injury and destruction. Although IL-33 expression is increased in IBD patients and correlates with the patients' disease activity index, mechanistic studies to date have demonstrated both pathogenic and protective roles in animal models of experimental colitis. In this review, we will summarize the roles and mechanisms of IL-33 in IBD, which is essential to understand the pathogenesis of IBD and determine potential therapies.
Collapse
Affiliation(s)
- Jie Chen
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Sung HY, Chen WY, Huang HT, Wang CY, Chang SB, Tzeng SF. Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression. J Neurochem 2019; 150:691-708. [PMID: 31165473 DOI: 10.1111/jnc.14788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Abstract
Interleukin-33 (IL-33), a member of the IL1 family, has been found to be expressed in oligodendrocytes (OLGs) and released as an alarmin from injured OLGs to work on other glial cell-types in the central nervous system. However, its functional role in OLGs remains unclear. Herein, we present that IL-33 was mainly expressed in the nucleus of CC1+ -oligodendrocytes (OLGs) in mouse and rat corpus callosum, as well as NG2+ -oligodendrocyte precursor cells (OPCs). The in vitro study indicated that the amount of IL-33 expressing in OPCs was higher when compared to that detected in OLGs. Results from the experiments using lentivirus-mediated shRNA delivery against IL-33 expression (IL33-KD) in OPCs showed that IL33-KD reduced the differentiation of OLGs into mature OLGs along with the down-regulation of OLG differentiation-related genes and mature OLG marker proteins, myelin basic protein (MBP) and proteolipid protein (PLP). Alternatively, we observed reduced differentiation of OLGs that were prepared from the brains of IL-33 gene knockout (IL33-KO) mice with anxiolytic-like behavior. Observations were correlated with the results showing lower levels of MBP and PLP in IL33-KO cultures than those detected in the control cultures prepared from wildtype (WT) mice. Transmission Electron Microscopy (TEM) analysis revealed that the myelin structures in the corpus callosum of the IL33-KO mice were impaired compared to those observed in the WT mice. Overall, this study provides important evidence that declined expression of IL-33 in OPCs suppresses the maturation of OLGs. Moreover, gene deficiency of IL-33 can disrupt OLG maturation and interfere with myelin compaction. Cover Image for this issue: doi: 10.1111/jnc.14522.
Collapse
Affiliation(s)
- Hsin-Yu Sung
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hui-Ting Huang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yen Wang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Song-Bin Chang
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Biological Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Yamada Y, Brüstle K, Jungraithmayr W. T Helper Cell Subsets in Experimental Lung Allograft Rejection. J Surg Res 2018; 233:74-81. [PMID: 30502290 DOI: 10.1016/j.jss.2018.07.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/10/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human lung transplantation has evolved to an established treatment for pulmonary diseases in their end stages; however, the long-term outcome is worse when compared to all other solid transplantable organs. The major reason for this unfavorable outcome is rejection, either in its acute or chronic form, the latter termed as chronic lung allograft dysfunction. METHODS A systematic review search was performed. RESULTS One of the most important immune cells responsible for rejection are T cells. Beside alloreactive CD8+ T cells, CD4+ T cells play a key role during the evolvement of allograft rejection. Certain subsets of these allograft CD4+ T cells have been identified which have been shown to exert either transplant-protective or transplant-injuring properties. These effects have been proven in various experimental models, mainly in rats and mice, and allowed for the gain of important insights into these proinflammatory and anti-inflammatory characteristics including their targetability: while the subsets Th1, Th17, Th22, and Tfh cells have been shown to act in a rather proinflammatory way, Tregs, Th2, and Th9 subsets exert anti-inflammatory effects. Chronic airway obstruction is mainly induced by IL17 as shown across models. CONCLUSIONS This review shall summarize and provide an overview of the current evidence about the role and effects of proinflammatory and anti-inflammatory CD4-+ T helper cell subsets during lung allograft rejection in experimental rodent models.
Collapse
Affiliation(s)
- Yoshito Yamada
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Karina Brüstle
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland; Department of Thoracic Surgery, Brandenburg Medical School, Neurupppin, Germany.
| |
Collapse
|
12
|
Dziki JL, Badylak SF. Extracellular Matrix for Myocardial Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:151-171. [PMID: 30238370 DOI: 10.1007/978-3-319-97421-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple strategies have been investigated to restore functional myocardium following injury or disease including the local administration of cytokines or chemokines, stem/progenitor cell therapy, mechanical circulatory support, pharmacologic use, and the use of inductive biomaterials. The use of xenogeneic biologic scaffolds composed of extracellular matrix (ECM) has been shown to facilitate functional restoration of several tissues and organs including the esophagus, skeletal muscle, skin, and myocardium, among others. The present chapter describes the current understanding of specific components of biologic scaffolds composed of ECM, the mechanisms by which ECM bioscaffolds promote constructive cardiac remodeling after injury, determinants of remodeling outcome, and the versatility of ECM as a potential cardiac therapeutic.
Collapse
Affiliation(s)
- Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Dai C, Lu FN, Jin N, Yang B, Gao C, Zhao B, Fu JZ, Hong SF, Liang HT, Chen LH, Chen ZS, Chen J, Qi ZQ. Recombinant IL-33 prolongs leflunomide-mediated graft survival by reducing IFN-γ and expanding CD4(+)Foxp3(+) T cells in concordant heart transplantation. J Transl Med 2016; 96:820-9. [PMID: 27295346 DOI: 10.1038/labinvest.2016.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
Interleukin (IL)-33 is a novel IL-1 family member, and its administration has been associated with promotion of T helper type-2 (Th2) cell activity and cytokines, particularly IL-4 and IL-5 in vivo. Recently, IL-33 was shown to increase CD4(+)Foxp3(+) regulatory T cells (Tregs) and to suppress levels of the Th1-type cytokine IFN-γ in allogeneic heart transplantation in mice. Therefore, we hypothesized that IL-33 and leflunomide (Lef) could prolong graft survival in the concordant mouse-to-rat heart transplantation model. In this model, xenografts undergo acute humoral xenograft rejection (AHXR) typically on day 3 or cell-mediated rejection approximately on day 7 if AHXR is inhibited by Lef treatment. Recipients were treated with Lef (n=6), IL-33 (n=6), IL-33 combined with Lef (n=6), or left untreated (n=6) for survival studies. Heart grafts were monitored until they stopped beating. Mouse heterotopic grafts were performed, and recipients were sacrificed on days 2 and 7 for histological and flow cytometric analyses. The combination of IL-33 and Lef significantly prolonged the grafts from 17.3±2.3 to 2.8±0.4 days, compared to untreated controls. IL-33 administration with Lef, while facilitating Th2-associated cytokines (IL-4 on day 2 but not day 7), also decreased IFN-γ on day 2 and day 7, compared with Lef treatment only. Furthermore, IL-33 with Lef administration caused an expansion of suppressive CD4(+)Foxp3(+) Tregs in rats. The IL-33 and Lef combination therapy resulted in significantly prolonged graft survival, associated with markedly decreased Th1 cells and increased IL-10 levels. In addition, the combination therapy significantly decreased the percentage of CD-45(+) B cells on days 2 and 7, compared with monotherapy. These findings reveal a new immunoregulatory property of IL-33. Specifically, it facilitates regulatory cells, particularly functional CD4(+)Foxp3(+) Tregs that underlie IL-33-mediated cardiac xenograft survival. Moreover, it can decrease Th1 cells and cytokine expression of Th1 T cells in xenograft recipients, for example IFN-γ.
Collapse
Affiliation(s)
- Chen Dai
- Institute of Organ Transplantation, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of the Ministry of Education, Wuhan, Hubei, PR China.,Key Laboratory of Organ Transplantation of the Ministry of Health, Wuhan, Hubei, PR China
| | - Fang-Na Lu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Ning Jin
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of the Ministry of Education, Wuhan, Hubei, PR China.,Key Laboratory of Organ Transplantation of the Ministry of Health, Wuhan, Hubei, PR China
| | - Chang Gao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Bin Zhao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Jia-Zhao Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Shi-Fu Hong
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Han-Ting Liang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Li-Hong Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Zhi-Shui Chen
- Institute of Organ Transplantation, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of the Ministry of Education, Wuhan, Hubei, PR China.,Key Laboratory of Organ Transplantation of the Ministry of Health, Wuhan, Hubei, PR China
| | - Jie Chen
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
14
|
Liu Q, Turnquist HR. Controlling the burn and fueling the fire: defining the role for the alarmin interleukin-33 in alloimmunity. Curr Opin Organ Transplant 2016; 21:45-52. [PMID: 26709577 DOI: 10.1097/mot.0000000000000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide a general update on recent developments in the immunobiology of IL-33 and IL-33-targeted immune cells. We also discuss emerging concepts regarding the potential role IL-33 appears to play in altering alloimmune responses mediating host-versus-graft and graft-versus-host alloresponses. RECENT FINDINGS Stromal cells and leukocytes display regulated expression of IL-33 and may actively or passively secrete this pleotropic cytokine. Type 2 innate lymphoid cells and a large proportion of tissue resident regulatory T cells (Treg) express membrane-bound suppressor of tumorigenicity 2 (ST2), the IL-33 receptor. Although Treg are appreciated suppressors of the inflammatory function of immune cells, both type 2 innate lymphoid cells and tissue resident Treg could play key roles in tissue repair and homeostasis. The functions of IL-33 in transplantation are poorly understood. However, like other disease models, the functions of IL-33 in alloimmunity appear to be quite pleiotropic. IL-33 is associated with immune regulation and graft protection in cardiac transplant settings. Yet, it is highly proinflammatory and stimulates lethal graft-versus-host disease through its capacity to stimulate type 1 immunity. SUMMARY Intensive studies on IL-33/ST2 signaling pathways and ST2 cell populations in solid organ and cell transplantation are warranted. A better understanding of this important pathway will provide promising therapeutic targets controlling pathogenic alloimmune responses, as well as potentially facilitating the function of regulatory and reparative immune cells posttransplantation.
Collapse
Affiliation(s)
- Quan Liu
- aThomas E. Starzl Transplantation Institute and Department of Surgery, Pittsburgh, Pennsylvania, USA bDepartment of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China cDepartment of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania , USA
| | | |
Collapse
|
15
|
Peri-alloHCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD. Blood 2016; 128:427-39. [PMID: 27222477 DOI: 10.1182/blood-2015-12-684142] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
During allogeneic hematopoietic cell transplantation (alloHCT), nonhematopoietic cell interleukin-33 (IL-33) is augmented and released by recipient conditioning to promote type 1 alloimmunity and lethal acute graft-versus-host disease (GVHD). Yet, IL-33 is highly pleiotropic and exhibits potent immunoregulatory properties in the absence of coincident proinflammatory stimuli. We tested whether peri-alloHCT IL-33 delivery can protect against development of GVHD by augmenting IL-33-associated regulatory mechanisms. IL-33 administration augmented the frequency of regulatory T cells (Tregs) expressing the IL-33 receptor, suppression of tumorigenicity-2 (ST2), which persist following total body irradiation. ST2 expression is not exclusive to Tregs and IL-33 expands innate immune cells with regulatory or reparative properties. However, selective depletion of recipient Foxp3(+) cells concurrent with peri-alloHCT IL-33 administration accelerated acute GVHD lethality. IL-33-expanded Tregs protected recipients from GVHD by controlling macrophage activation and preventing accumulation of effector T cells in GVHD-target tissue. IL-33 stimulation of ST2 on Tregs activates p38 MAPK, which drives expansion of the ST2(+) Treg subset. Associated mechanistic studies revealed that proliferating Tregs exhibit IL-33-independent upregulation of ST2 and the adoptive transfer of st2(+) but not st2(-) Tregs mediated GVHD protection. In total, these data demonstrate the protective capacity of peri-alloHCT administration of IL-33 and IL-33-responsive Tregs in mouse models of acute GVHD. These findings provide strong support that the immunoregulatory relationship between IL-33 and Tregs can be harnessed therapeutically to prevent GVHD after alloHCT for treatment of malignancy or as a means for tolerance induction in solid organ transplantation.
Collapse
|
16
|
Mahapatro M, Foersch S, Hefele M, He GW, Giner-Ventura E, Mchedlidze T, Kindermann M, Vetrano S, Danese S, Günther C, Neurath MF, Wirtz S, Becker C. Programming of Intestinal Epithelial Differentiation by IL-33 Derived from Pericryptal Fibroblasts in Response to Systemic Infection. Cell Rep 2016; 15:1743-56. [PMID: 27184849 DOI: 10.1016/j.celrep.2016.04.049] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
The intestinal epithelium constitutes an efficient barrier against the microbial flora. Here, we demonstrate an unexpected function of IL-33 as a regulator of epithelial barrier functions. Mice lacking IL-33 showed decreased Paneth cell numbers and lethal systemic infection in response to Salmonella typhimurium. IL-33 was produced upon microbial challenge by a distinct population of pericryptal fibroblasts neighboring the intestinal stem cell niche. IL-33 programmed the differentiation of epithelial progenitors toward secretory IEC including Paneth and goblet cells. Finally, IL-33 suppressed Notch signaling in epithelial cells and induced expression of transcription factors governing differentiation into secretory IEC. In summary, we demonstrate that gut pericryptal fibroblasts release IL-33 to translate bacterial infection into an epithelial response to promote antimicrobial defense.
Collapse
Affiliation(s)
- Mousumi Mahapatro
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Sebastian Foersch
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Manuela Hefele
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Gui-Wei He
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Elisa Giner-Ventura
- Department of Pharmacology, University of Valencia, Burjassot, Valencia 46100, Spain
| | - Tamar Mchedlidze
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Markus Kindermann
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | | | - Silvio Danese
- Humanitas Clinical and Research Center, Milan 20089, Italy
| | - Claudia Günther
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Markus F Neurath
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany
| | - Christoph Becker
- Medical Clinic 1, Friedrich-Alexander-University, Erlangen 91054, Germany.
| |
Collapse
|
17
|
Interleukin-33: increasing role in dermatological conditions. Arch Dermatol Res 2016; 308:287-96. [DOI: 10.1007/s00403-016-1638-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/21/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
|
18
|
Mathews L, Lott JM, Isse K, Lesniak A, Landsittel D, Demetris AJ, Sun Y, Mercer DF, Webber SA, Zeevi A, Fischer RT, Feingold B, Turnquist HR. Elevated ST2 Distinguishes Incidences of Pediatric Heart and Small Bowel Transplant Rejection. Am J Transplant 2016; 16:938-50. [PMID: 26663613 PMCID: PMC5078748 DOI: 10.1111/ajt.13542] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/27/2015] [Accepted: 09/19/2015] [Indexed: 01/25/2023]
Abstract
Elevated serum soluble (s) suppressor of tumorigenicity-2 is observed during cardiovascular and inflammatory bowel diseases. To ascertain whether modulated ST2 levels signify heart (HTx) or small bowel transplant (SBTx) rejection, we quantified sST2 in serially obtained pediatric HTx (n = 41) and SBTx recipient (n = 18) sera. At times of biopsy-diagnosed HTx rejection (cellular and/or antibody-mediated), serum sST2 was elevated compared to rejection-free time points (1714 ± 329 vs. 546.5 ± 141.6 pg/mL; p = 0.0002). SBTx recipients also displayed increased serum sST2 during incidences of rejection (7536 ± 1561 vs. 2662 ± 543.8 pg/mL; p = 0.0347). Receiver operator characteristic (ROC) analysis showed that serum sST2 > 600 pg/mL could discriminate time points of HTx rejection and nonrejection (area under the curve [AUC] = 0.724 ± 0.053; p = 0.0003). ROC analysis of SBTx measures revealed a similar discriminative capacity (AUC = 0.6921 ± 0.0820; p = 0.0349). Quantitative evaluation of both HTx and SBTx biopsies revealed that rejection significantly increased allograft ST2 expression. Pathway and Network Analysis of biopsy data pinpointed ST2 in the dominant pathway modulated by rejection and predicted tumor necrosis factor-α and IL-1β as upstream activators. In total, our data indicate that alloimmune-associated pro-inflammatory cytokines increase ST2 during rejection. They also demonstrate that routine serum sST2 quantification, potentially combined with other biomarkers, should be investigated further to aid in the noninvasive diagnosis of rejection.
Collapse
Affiliation(s)
- L.R. Mathews
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA
| | - J. M. Lott
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - K. Isse
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Lesniak
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D. Landsittel
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Division of General Internal Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. J. Demetris
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Y. Sun
- Department of Pediatric Gastroenterology, University of Nebraska Medical Center, Omaha, NE
| | - D. F. Mercer
- Department of Pediatric Gastroenterology, University of Nebraska Medical Center, Omaha, NE
| | - S. A. Webber
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - A. Zeevi
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - R. T. Fischer
- Department of Pediatric Gastroenterology, University of Nebraska Medical Center, Omaha, NE
| | - B. Feingold
- Division of Pediatric Cardiology, Children's Hospital of Pittsburgh of UPMC and Division of Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - H. R. Turnquist
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Hēth R. Turnquist, PhD,
| |
Collapse
|
19
|
Abstract
Thymic-derived, regulatory T cells (Treg) represent a subset of CD4(+) T cells that are required for normal immune homeostasis and suppression of unwanted responses against self-antigens (Ags) that prevent autoimmunity. Their role as immune regulators and potent ability to suppress T cell responses has been the focus of intense investigations aimed at utilizing these cells therapeutically, particularly in the settings of autoimmunity and transplantation. Many methods for expanding Treg have been described; however, efforts to generate large numbers of Treg for use in vivo often compromise their suppressor function or rely on the induction of Treg rather than their expansion. Our recent studies have focused on the barrier tissue-derived cytokine IL-33, a recently described IL-1 family member. IL-33 has emerged as a multifunctional protein, with reported roles in driving potent Type 1 and Type 2 immunity, as well as facilitating profound Treg expansion in vitro and in vivo. IL-33-expanded Treg express the IL-33 receptor (R) ST2, and express classical markers associated with Treg phenotype and suppressor function. They suppress both CD4(+) and CD8(+) T cell proliferation and effector functions in vitro, and Treg expressing ST2 have been identified as important regulators of detrimental immune responses in vivo. In the present chapter, we detail methods for expanding significant numbers of Treg using IL-33 both in vitro and in vivo that may potentially be used to promote/maintain organ transplant tolerance or suppress autoimmunity.
Collapse
Affiliation(s)
- Benjamin M Matta
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hēth R Turnquist
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Mansell H, Soliman M, Elmoselhi H, Shoker A. Elevated Circulating Interleukin 33 Levels in Stable Renal Transplant Recipients at High Risk for Cardiovascular Events. PLoS One 2015; 10:e0142141. [PMID: 26544186 PMCID: PMC4636241 DOI: 10.1371/journal.pone.0142141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background The Major Adverse Cardiovascular Events calculator (CRCRTR-MACE) estimates the burden of cardiovascular risk in renal transplant recipients (RTR). Our recent study of 95 RTR reported the 7-year median risk of cardiovascular events (CVE) to be 9.97%, ranging from 1.93 to 84.27%. Nearly a third (28.4%) of the cohort was above 20% risk for a CVE. Since interleukins (ILs) as part of the inflammatory response may play a role in the pathogenesis of cardiovascular disease (CVD), we extended this study to identify which ILs are associated with high cardiovascular risk in this population. Methods Twenty-two ILs were measured by multiplexed fluorescent bead-based immunoassay in 95 RTR and 56 normal controls. Stepwise analysis after multivariate determination of significant demographic and inflammatory variables was performed between the high and low-CVD risk groups (which were arbitrarily set at scores <10% and ≥20%, respectively). Normalized data was presented as mean ± SD and non-normalized data as median (minimum–maximum). Significance was measured at <0.05. Results 27.5% of the low-risk and 31.3% of the high-risk groups had mean IL levels above the 95 percentile of the normal control levels. In the non-parametric analysis IL-6, 9, 16, 17 and 33 were significantly higher in the high-risk group compared to the control. Univariate analysis (UVA) of the high-risk group identified IL-33 as the only IL that remained significantly higher than the control and low-risk groups (p = 0.000). The percentage of patients with IL-33 levels above the 90 percentile of control value in the low and high-risk groups were 15.6% and 52.0%, respectively (p<0.002). UVA of factors significant to high IL-33 levels included estimated glomerular filtration rate (eGFR), while diabetes mellitus, serum phosphorus, microalbuminuria and age also remained significant in the multivariate analysis. Conclusion Circulating IL-33 level is positively associated with high CRCRTR-MACE score. Diminished eGFR, age, diabetes, serum phosphorus and microalbuminurea demonstrate significant relationship with elevated IL-33 levels, supporting the possible pathognomonic role of IL-33 in the cardiovascular burden in RTR.
Collapse
Affiliation(s)
- Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | - Mahmoud Soliman
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Hamdi Elmoselhi
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
| | - Ahmed Shoker
- St. Paul's Hospital, Saskatchewan Renal Transplant Program, Saskatoon, SK, Canada
- Department of Medicine, University of Saskatchewan, University of Saskatchewan, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
21
|
Gajardo T, Morales RA, Campos-Mora M, Campos-Acuña J, Pino-Lagos K. Exogenous interleukin-33 targets myeloid-derived suppressor cells and generates periphery-induced Foxp3⁺ regulatory T cells in skin-transplanted mice. Immunology 2015; 146:81-88. [PMID: 25988395 PMCID: PMC4552503 DOI: 10.1111/imm.12483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022] Open
Abstract
Interleukin-33 (IL-33) has been a focus of study because of its variety of functions shaping CD4(+) T-cell biology. In the present work, we evaluated the modulatory effect of IL-33 on suppressor cells in an in vivo transplantation model. C57BL/6 wild-type mice were grafted with syngeneic or allogeneic skin transplants and treated with exogenous IL-33 daily. After 10 days of treatment, we analysed draining lymph node cellularity and found in allogeneic animals an increment in myeloid-derived suppressor cells, which co-express MHC-II, and become enriched upon IL-33 treatment. In line with this observation, inducible nitric oxide synthase and arginase 1 expression were also increased in allogeneic animals upon IL-33 administration. In addition, IL-33 treatment up-regulated the number of Foxp3(+) regulatory T (Treg) cells in the allogeneic group, complementing the healthier integrity of the allografts and the increased allograft survival. Moreover, we demonstrate that IL-33 promotes CD4(+) T-cell expansion and conversion of CD4(+) Foxp3(-) T cells into CD4(+) Foxp3(+) Treg cells in the periphery. Lastly, the cytokine pattern of ex vivo-stimulated draining lymph nodes indicates that IL-33 dampens interferon-γ and IL-17 production, stimulating IL-10 secretion. Altogether, our work complements previous studies on the immune-modulatory activity of IL-33, showing that this cytokine affects myeloid-derived suppressor cells at the cell number and gene expression levels. More importantly, our research demonstrates for the first time that IL-33 allows for in vivo Foxp3(+) Treg cell conversion and favours an anti-inflammatory or tolerogenic state by skewing cytokine production. Therefore, our data suggest a potential use of IL-33 to prevent allograft rejection, bringing new therapeutics to the transplantation field.
Collapse
Affiliation(s)
- Tania Gajardo
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los AndesSantiago, Chile
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Rodrigo A Morales
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Mauricio Campos-Mora
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los AndesSantiago, Chile
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Javier Campos-Acuña
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los AndesSantiago, Chile
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
22
|
The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 2015; 125:3183-92. [PMID: 25814531 DOI: 10.1182/blood-2014-10-606830] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/11/2015] [Indexed: 12/19/2022] Open
Abstract
Interleukin (IL)-33 binding to the receptor suppression of tumorigenicity 2 (ST2) produces pro-inflammatory and anti-inflammatory effects. Increased levels of soluble ST2 (sST2) are a biomarker for steroid-refractory graft-versus-host disease (GVHD) and mortality. However, whether sST2 has a role as an immune modulator or only as a biomarker during GVHD was unclear. We show increased IL-33 production by nonhematopoietic cells in the gastrointestinal (GI) tract in mice post-conditioning and patients during GVHD. Exogenous IL-33 administration during the peak inflammatory response worsened GVHD. Conversely, GVHD lethality and tumor necrosis factor-α production was significantly reduced in il33(-/-) recipients. ST2 was upregulated on murine and human alloreactive T cells and sST2 increased as experimental GVHD progressed. Concordantly, st2(-/-) vs wild-type (WT) donor T cells had a marked reduction in GVHD lethality and GI histopathology. Alloantigen-induced IL-18 receptor upregulation was lower in st2(-/-) T cells, and linked to reduced interferon-γ production by st2(-/-) vs WT T cells during GVHD. Blockade of IL-33/ST2 interactions during allogeneic-hematopoietic cell transplantation by exogenous ST2-Fc infusions had a marked reduction in GVHD lethality, indicating a role of ST2 as a decoy receptor modulating GVHD. Together, these studies point to the IL-33/ST2 axis as a novel and potent target for GVHD therapy.
Collapse
|
23
|
Lott JM, Sumpter TL, Turnquist HR. New dog and new tricks: evolving roles for IL-33 in type 2 immunity. J Leukoc Biol 2015; 97:1037-48. [DOI: 10.1189/jlb.3ri1214-595r] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
|
24
|
Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, Lu J, Qin W, Qi Y, Xie F, Jiang J, Wu C, Zhang X, Chen X, Turnquist H, Zhu Y, Lu B. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. THE JOURNAL OF IMMUNOLOGY 2014; 194:438-45. [PMID: 25429071 DOI: 10.4049/jimmunol.1401344] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy has shown great promise as a new standard cancer therapeutic modality. However, the response rates are limited for current approach that depends on enhancing spontaneous antitumor immune responses. Therefore, increasing tumor immunogenicity by expressing appropriate cytokines should further improve the current immunotherapy. IL-33 is a member of the IL-1 family of cytokines and is released by necrotic epithelial cells or activated innate immune cells and is thus considered a "danger" signal. The role of IL-33 in promoting type 2 immune responses and tissue inflammation has been well established. However, whether IL-33 drives antitumor immune responses is controversial. Our previous work established that IL-33 promoted the function of CD8(+) T cells. In this study, we showed that the expression of IL-33 in two types of cancer cells potently inhibited tumor growth and metastasis. Mechanistically, IL-33 increased numbers and IFN-γ production by CD8(+) T and NK cells in tumor tissues, thereby inducing a tumor microenvironment favoring tumor eradication. Importantly, IL-33 greatly increased tumor Ag-specific CD8(+) T cells. Furthermore, both NK and CD8(+) T cells were required for the antitumor effect of IL-33. Moreover, depletion of regulatory T cells worked synergistically with IL-33 expression for tumor elimination. Our studies established "alarmin" IL-33 as a promising new cytokine for tumor immunotherapy through promoting cancer-eradicating type 1 immune responses.
Collapse
Affiliation(s)
- Xin Gao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Xuefeng Wang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215007, People's Republic of China
| | - Qianting Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Key Laboratory of Infection and Immunity, Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong 518112, China
| | - Xin Zhao
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; The First Affiliated Hospital, Soochow University, Suzhou 215006, People's Republic of China
| | - Wen Wen
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Gang Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Junfeng Lu
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Haidian District, Beijing 100190, People's Republic of China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuan Qi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Fang Xie
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Jingting Jiang
- The Third Affiliated Hospital, Soochow University, Changzhou 213003, China
| | - Changping Wu
- The Third Affiliated Hospital, Soochow University, Changzhou 213003, China
| | - Xueguang Zhang
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Xinchun Chen
- Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Key Laboratory of Infection and Immunity, Third People's Hospital, Guangdong Medical College, Shenzhen, Guangdong 518112, China
| | - Heth Turnquist
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Yibei Zhu
- Department of Immunology, Institute of Medical Biotechnology, Soochow University, Suzhou 215007, People's Republic of China
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
25
|
Matta BM, Lott JM, Mathews LR, Liu Q, Rosborough BR, Blazar BR, Turnquist HR. IL-33 is an unconventional Alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:4010-20. [PMID: 25217167 DOI: 10.4049/jimmunol.1400481] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-33 is a recently characterized IL-1 family member that is proposed to function as an alarmin, or endogenous signal of cellular damage, as well as act as a pleiotropic cytokine. The ability of IL-33 to potentiate both Th1 and Th2 immunity supports its role in pathogen clearance and disease immunopathology. Yet, IL-33 restrains experimental colitis and transplant rejection by expanding regulatory T cells (Treg) via an undefined mechanism. We sought to determine the influence of IL-33 on hematopoietic cells that drives Treg expansion and underlies the therapeutic benefit of IL-33 administration. In this study, we identify a feedback loop in which conventional mouse CD11c(+) dendritic cells (DC) stimulated by IL-33 secrete IL-2 to selectively expand IL-33R(ST2(+))- suppressive CD4(+)Foxp3(+) Treg. Interestingly, this occurs in the absence of classical DC maturation, and DC-derived (innate) IL-2 increases ST2 expression on both DC and interacting Treg. ST2(+) Treg represent an activated subset of Foxp3(+) cells, demonstrated to be ICOS(high)CD44(high) compared with their ST2(-) counterparts. Furthermore, although studies have shown that IL-33-exposed DC promote Th2 responses, we reveal that ST2(+) DC are required for IL-33-mediated in vitro and in vivo Treg expansion. Thus, we have uncovered a relationship between IL-33 and innate IL-2 that promotes the selective expansion of ST2(+) Treg over non-Treg. These findings identify a novel regulatory pathway driven by IL-33 in immune cells that may be harnessed for therapeutic benefit or for robust expansion of Treg in vitro and in vivo.
Collapse
Affiliation(s)
- Benjamin M Matta
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeremy M Lott
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lisa R Mathews
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261
| | - Quan Liu
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Brian R Rosborough
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Graduate Training Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455; and
| | - Hēth R Turnquist
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|