1
|
Miyauchi S, Kawada-Matsuo M, Furusho H, Nishi H, Nakajima A, Phat PT, Shiba F, Kitagawa M, Ouhara K, Oda N, Tokuyama T, Okubo Y, Okamura S, Takasaki T, Takahashi S, Hiyama T, Kawaguchi H, Komatsuzawa H, Miyauchi M, Nakano Y. Atrial Translocation of Porphyromonas gingivalis Exacerbates Atrial Fibrosis and Atrial Fibrillation. Circulation 2025. [PMID: 40099365 DOI: 10.1161/circulationaha.124.071310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Recent studies have indicated an association between periodontitis and atrial fibrillation (AF), although the underlying mechanisms remain unclear. Porphyromonas gingivalis is a causative agent of periodontal disease and is highly pathogenic. This study focused on P gingivalis and aimed to investigate the relationship among periodontitis, atrial translocation of P gingivalis, and atrial fibrosis and AF. METHODS An experiment was conducted using P gingivalis-infected C57BL/6J mice, in which P gingivalis was inoculated into the pulp of the molars. Immunohistochemistry was used to visualize the localization of P gingivalis, and loop-mediated isothermal amplification was employed to detect P gingivalis DNA in the left atrium. AF inducibility was examined by intracardiac stimulation. Moreover, left atrial appendage specimens were obtained from 68 patients with AF. A periodontal examination was conducted before the surgery, and the periodontal epithelial surface area and periodontal inflamed surface area, which are quantitative indices used to determine the clinical severity of periodontitis, were measured. The bacterial number of P gingivalis in human atrial tissue was analyzed via quantitative polymerase chain reaction. Atrial fibrosis was assessed using Azan-Mallory staining. RESULTS The translocation path of P gingivalis from the dental granuloma to the left atrium via the circulatory system was demonstrated by immunohistochemistry and loop-mediated isothermal amplification in P gingivalis-infected mice, which showed a higher degree of atrial fibrosis (21.9% versus 16.3%; P=0.0003) and a higher AF inducibility (30.0% versus 5.0%; P=0.04) than the control mice. Upregulation of GAL3 (galectin 3) and transforming growth factor-beta 1 in the left atrium was observed in P gingivalis-infected mice. Moreover, immunohistochemistry revealed that P gingivalis was also present in human atrial tissue. The number of P gingivalis in the human atrial tissue was positively correlated with periodontal epithelial surface area (ρ=0.35; P=0.004), periodontal inflamed surface area (ρ=0.52, P<0.0001), and the degree of atrial fibrosis (ρ=0.38; P=0.002). CONCLUSIONS P gingivalis translocation to the left atrium correlates with the clinical severity of periodontitis, which may exacerbate atrial fibrosis and AF. Atrial translocation of P gingivalis is a potential pathway explaining the causal relationship between periodontitis and AF.
Collapse
Affiliation(s)
- Shunsuke Miyauchi
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
- Division of Medicine, Health Service Center, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Japan (S.M., T.H.)
| | - Miki Kawada-Matsuo
- Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (M.K.-M., H. Komatsuzawa)
| | - Hisako Furusho
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Hiromi Nishi
- General Dentistry,Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.N., H. Kawaguchi))
| | - Ayako Nakajima
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Pham Trong Phat
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Fumie Shiba
- Collaborative Research Laboratory of Oral Inflammation Regulation (F.S., M.M.)
| | - Masae Kitagawa
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
| | - Kazuhisa Ouhara
- Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (K.O.)
| | - Noboru Oda
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Takehito Tokuyama
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Yousaku Okubo
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Sho Okamura
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| | - Taiichi Takasaki
- Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (T. Takasaki, S.T.)
| | - Shinya Takahashi
- Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (T. Takasaki, S.T.)
| | - Toru Hiyama
- Division of Medicine, Health Service Center, Hiroshima University, 1-7-1 Kagamiyama, Higashihiroshima, Japan (S.M., T.H.)
| | - Hiroyuki Kawaguchi
- General Dentistry,Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.N., H. Kawaguchi))
| | - Hitoshi Komatsuzawa
- Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (M.K.-M., H. Komatsuzawa)
| | - Mutsumi Miyauchi
- Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (H.F., A.N., P.T.P., M.K., M.M.)
- Collaborative Research Laboratory of Oral Inflammation Regulation (F.S., M.M.)
| | - Yukiko Nakano
- Departments of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan. (S.M., N.O., T. Tokuyama, Y.O., S.O., Y.N.)
| |
Collapse
|
2
|
Li X, Yao C, Lan DM, Wang Y, Qi SC. Porphyromonas gingivalis Induces Chronic Kidney Disease through Crosstalk between the NF-κB/NLRP3 Pathway and Ferroptosis in GMCs. Curr Med Sci 2024; 44:932-946. [PMID: 39446285 DOI: 10.1007/s11596-024-2923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Porphyromonas gingivalis (P.gingivalis) is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases, including chronic kidney disease (CKD), but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear. METHODS In this study, an animal model of oral P.gingivalis administration and glomerular mesangial cells (GMCs) cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed. After seven weeks of P.gingivalis gavaged, peripheral blood was collected to detect the changes in renal function. By collecting the teeth and kidneys of mice, H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice, PAS staining was used to analyze glomerular lesions. The supernatant of macrophages was treated with 5% P.gingivalis supernatant. H&E staining, IHC, Western blot and RT-PCR were applied to analyze renal inflammatory factors, macrophage M1 polarization, NF-κB, NLRP3 and ferroptosis changes in vitro. RESULTS We found that oral P.gingivalis administration induced CKD in mice. P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation, which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs. By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs, cell viability and the inflammatory response were partially alleviated in vitro. CONCLUSION We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NF κB/NLRP3 pathway and ferroptosis in GMCs. Overall, our study suggested that periodontitis can promote the pathogenesis of CKD in mice, which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD. P.gingivalis promotes ferroptosis in kidneys and accelerates the progression of CKD through NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China
| | - Chao Yao
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Dong-Mei Lan
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Yan Wang
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, China.
| | - Sheng-Cai Qi
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
| |
Collapse
|
3
|
Chen Z, Debnath R, Chikelu I, Zhou JX, Ko KI. Primed inflammatory response by fibroblast subset is necessary for proper oral and cutaneous wound healing. Mol Oral Microbiol 2024; 39:113-124. [PMID: 37902166 PMCID: PMC11058109 DOI: 10.1111/omi.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023]
Abstract
Fibroblasts are ubiquitous mesenchymal cells that exhibit considerable molecular and functional heterogeneity. Besides maintaining stromal integrity, oral fibroblast subsets are thought to play an important role in host-microbe interaction during injury repair, which is not well explored in vivo. Here, we characterize a subset of fibroblast lineage labeled by paired-related homeobox-1 promoter activity (Prx1Cre+) in oral mucosa and skin and demonstrate these fibroblasts readily respond to microbial products to facilitate the normal wound healing process. Using a reporter mouse model, we determined that Prx1Cre+ fibroblasts had significantly higher expression of toll-like receptors 2 and 4 compared to other fibroblast populations. In addition, Prx1 immunopositive cells exhibited heightened activation of inflammatory transcription factor NF-κB during the early wound healing process. At the cytokine level, CXCL1 and CCL2 were significantly upregulated by Prx1Cre+ fibroblasts at baseline and upon LPS stimulation. Importantly, lineage-specific knockout to prevent NF-κB activation in Prx1Cre+ fibroblasts drastically impaired both oral and skin wound healing processes, which was linked to reduced macrophage infiltration, failure to resolve inflammation, and clearance of bacteria. Together, our data implicate a pro-healing role of Prx1-lineage fibroblasts by facilitating early macrophage recruitment and bacterial clearance.
Collapse
Affiliation(s)
- Zhaoxu Chen
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Debnath
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ifeoma Chikelu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan X. Zhou
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation and Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Schuster A, Nieboga E, Kantorowicz M, Lipska W, Kaczmarzyk T, Potempa J, Grabiec AM. Gingival fibroblast activation by Porphyromonas gingivalis is driven by TLR2 and is independent of the LPS-TLR4 axis. Eur J Immunol 2024; 54:e2350776. [PMID: 38191758 DOI: 10.1002/eji.202350776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Gingival fibroblasts (GFs) are abundant structural cells of the periodontium that contribute to the host's innate immunity by producing cytokines and chemokines in response to oral pathogens, such as Porphyromonas gingivalis. Isolated lipopolysaccharide (Pg-LPS) is commonly used to study GF responses to P. gingivalis; however, this approach produced conflicting observations regarding its proinflammatory potential and the engagement of specific Toll-like receptors (TLRs). In this work, we demonstrate that commercially available Pg-LPS preparations are weak activators of GF innate immune responses compared with live P. gingivalis or other relevant virulence factors, such as P. gingivalis fimbriae or LPS from Escherichia coli. GF's nonresponsiveness to Pg-LPS can be only partly attributed to the low expression of TLR4 and its accessory molecules, CD14 and LY36, and is likely caused by the unique structure and composition of the Pg-LPS lipid A. Finally, we combined gene silencing and neutralizing antibody studies to demonstrate that GF response to infection with live P. gingivalis relies predominantly on TLR2. In contrast, the LPS-TLR4 signaling plays a negligible role in inflammatory cytokine production by GFs exposed to this oral pathogen, confirming that Pg-LPS stimulation is not an optimal model for studies of GF responses to P. gingivalis.
Collapse
Affiliation(s)
- Aureliusz Schuster
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Elwira Nieboga
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
5
|
Mo JJ, Lai YR, Huang QR, Li YR, Zhang YJ, Chen RY, Qian SJ. Single-cell sequencing identifies inflammation-promoting fibroblast-neutrophil interaction in peri-implantitis. J Clin Periodontol 2024; 51:196-208. [PMID: 38088448 DOI: 10.1111/jcpe.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024]
Abstract
AIM To reveal the cellular composition and molecular environment of the periodontal and peri-implant inflammatory infiltrates through a single-cell sequencing technique, which may explain the pathological difference between these two diseases. A special focus was placed on the phenotypes and potential roles of neutrophils and fibroblasts in peri-implant/periodontal tissue immunity. MATERIALS AND METHODS High-throughput single-cell transcriptomic profiling of peri-implant tissues from patients with peri-implantitis as well as periodontal tissues from patients with periodontitis and healthy donors was performed. Immunofluorescence analysis was carried out to further validate the identified cell subtypes and their involvement in peri-implantitis and periodontitis. RESULTS Based on our single-cell resolution analysis, a quantified proportional increase of neutrophil (Neu) subtypes was shown in peri-implantitis. Among these, a predominance of Neutro_CXCR2 was revealed. We also found the involvement of inflammation-promoting fibroblasts as well as a predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction in peri-implantitis. CONCLUSIONS Our study indicated that the predominance of CXCL8+ fibroblast-CXCR2+ neutrophil interaction might underline the enhanced host response in peri-implantitis compared with periodontitis. This information offers a molecular basis by which fibroblast and neutrophil subtypes might be diagnostically and therapeutically targeted in peri-implantitis.
Collapse
Affiliation(s)
- Jia-Ji Mo
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yi-Rao Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian-Ru Huang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin-Ran Li
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yi-Jie Zhang
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Rui-Ying Chen
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shu-Jiao Qian
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
6
|
Wielento A, Lagosz-Cwik K, Potempa J, Grabiec A. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J Dent Res 2023; 102:489-496. [PMID: 36883660 PMCID: PMC10249005 DOI: 10.1177/00220345231151921] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Gingival fibroblasts (GFs) are essential components of the periodontium, which are responsible for the maintenance of tissue structure and integrity. However, the physiological role of GFs is not restricted to the production and remodeling of the extracellular matrix. GFs also act as sentinel cells that modulate the immune response to oral pathogens invading the gingival tissue. As an important "nonclassical" component of the innate immune system, GFs respond to bacteria and damage-related signals by producing cytokines, chemokines, and other inflammatory mediators. Although the activation of GFs supports the elimination of invading bacteria and the resolution of inflammation, their uncontrolled or excessive activation may promote inflammation and bone destruction. This occurs in periodontitis, a chronic inflammatory disease of the periodontium initiated and sustained by dysbiosis. In the inflamed gingival tissue, GFs acquire imprinted proinflammatory phenotypes that promote the growth of inflammophilic pathogens, stimulate osteoclastogenesis, and contribute to the chronicity of inflammation. In this review, we discuss the biological functions of GFs in healthy and inflamed gingival tissue, highlighting recent studies that provide insight into their role in the pathogenesis of periodontal diseases. We also draw parallels with the recently discovered fibroblast populations identified in other tissues and their roles in health and disease. This knowledge should be used in future studies to discover more about the role of GFs in periodontal diseases, especially chronic periodontitis, and to identify therapeutic strategies targeting their pathological interactions with oral pathogens and the immune system.
Collapse
Affiliation(s)
- A. Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - K.B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - J. Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - A.M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Xue Y, Wang M, Han H. Interaction between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infection. Front Cell Infect Microbiol 2023; 13:1052020. [PMID: 37113130 PMCID: PMC10126420 DOI: 10.3389/fcimb.2023.1052020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Mycoplasma pneumoniae, as one of the most common pathogens, usually causes upper respiratory tract infections and pneumonia in humans and animals. It accounts for 10% to 40% of community-acquired pneumonia in children. The alveolar epithelial cells (AECs) are the first barrier against pathogen infections, triggering innate immune responses by recruiting and activating immune cells when pathogens invade into the lung. Alveolar macrophages (AMs) are the most plentiful innate immune cells in the lung, and are the first to initiate immune responses with pathogens invasion. The cross-talk between the alveolar epithelium and macrophages is necessary to maintain physiological homeostasis and to eradicate invaded pathogen by regulating immune responses during Mycoplasma pneumoniae infections. This review summarizes the communications between alveolar macrophages and epithelial cells during Mycoplasma pneumoniae infections, including cytokines-medicated communications, signal transduction by extracellular vesicles, surfactant associated proteins-medicated signal transmission and establishment of intercellular gap junction channels.
Collapse
Affiliation(s)
- Yazhi Xue
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengyao Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Moaz I, Fouad FA, Elmasry H, Tarek G, Elzoheiry A, Elgamal M, Ibrahim R, Hisham Y, Safwat G, Kamel MM, El-Batal HM, Fouda M. Associations Between Serum Soluble Toll-like Receptors 4 and 9 and Breast Cancer in Egyptian Patients. Cancer Control 2023; 30:10732748231204755. [PMID: 37771087 PMCID: PMC10541740 DOI: 10.1177/10732748231204755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) play an important role in regulation of immune cells and are vital in tumorigenesis due to its crucial role in inflammatory microenvironment regulation, as they promote the synthesis and release of inflammatory cytokines and chemokines. Toll-like receptors 4 and TLRs 9 were found to be highly expressed in breast cancer. The aim of this study is to investigate the soluble toll-like receptors 4 and 9 (sTLR4 and sTLR9) as potential biomarkers for diagnosis and prognosis of breast cancer and their association with the clinicopathological parameters of breast cancer. PATIENTS AND METHOD In this retrospective case-control study, 186 female subjects were recruited and divided into three groups, Group I: 62 healthy control, Group II: 62 subjects diagnosed with non-metastatic breast cancer, and Group III: 62 subjects diagnosed with metastatic breast cancer. Enzyme-linked immunosorbent assay (ELISA) technique was used to quantify the levels of sTLR4 and sTLR9 in serum. RESULTS Both non-metastatic and metastatic groups showed significant higher levels of both serum sTLR4 and sTLR9 expression compared to healthy controls. Only sTLR9 was significantly increased among metastatic patients compared to non-metastatic group. Serum levels of sTLR9 and sTLR4 were still significantly associated with breast cancer in a multiple logistic regression model (P = <.001). ROC curves showed that both sTLR4 and sTLR9 can be a significant parameter to discriminate between normal females and breast cancer patients. CONCLUSION Soluble toll-like receptors 4 and sTLR9 are over-expressed in patients with metastatic and non-metastatic BC than in benign cases. The expression levels of sTLR4 and TLR9 have clinical interest as indicators of tumor aggressiveness suggested to be prognostic biomarkers. Toll-like receptors may represent therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Inas Moaz
- National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Fayrouz A. Fouad
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza, Egypt
- Ancient DNA Lab, National Museum of Egyptian Civilization (NMEC), Cairo, Egypt
| | - Hossam Elmasry
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza, Egypt
| | - Gehad Tarek
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Aya Elzoheiry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manar Elgamal
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Randa Ibrahim
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Yasmin Hisham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mahmoud M. Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba M. El-Batal
- Department of Medical Microbiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Merhan Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Effects of estradiol on the virulence traits of Porphyromonas gingivalis. Sci Rep 2022; 12:13881. [PMID: 35974048 PMCID: PMC9381592 DOI: 10.1038/s41598-022-17019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Porphyromonas gingivalis has been strongly associated to active periodontitis sites. A number of studies have tried to elucidate the association between female steroid sex hormones and gingival health. However, until now, there is limited knowledge on estradiol effects on the virulence traits of P. gingivalis. The aim of the study was to investigate the impact of estradiol exposure on the virulence characteristics of P. gingivalis strain W50. We found that a pre- and postmenopausal concentration of estradiol increased the growth and biofilm formation of P. gingivalis W50. We also found that estradiol increased the release of lysine and arginine gingipains from W50. We then showed that IL-1β, CXCL10 and TGF-β1 release from gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. Real time-qPCR showed that the gene expression of IL-18, IL-6, IL-8, TGF-β1 and NLRP3 in gingival epithelial cells was significantly lowered by W50 pre-exposed to estradiol compared to W50 alone. We also found that estradiol in a dose-dependent manner increased P. gingivalis colonization and invasion of gingival epithelial cells. Taken together, our findings show that estradiol has the ability to alter the virulence traits of P. gingivalis.
Collapse
|
10
|
Zou X, Liu Y, Di J, Wei W, Watanabe N, Li J, Li X. ZMIZ2 promotes the development of triple-receptor negative breast cancer. Cancer Cell Int 2022; 22:52. [PMID: 35101047 PMCID: PMC8802436 DOI: 10.1186/s12935-021-02393-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2023] Open
Abstract
Background Triple-receptor negative breast cancer (TNBC) is an aggressive breast tumor subtype that generally has a poor prognosis. This study aimed to investigate the role and regulatory mechanisms of Zinc finger MIZ-type containing 2 (ZMIZ2) in relation to TNBC. Methods Based on data from The Cancer Genome Atlas (TCGA), the expression of ZMIZ2 in different subtypes and its correlation with androgen receptor (AR) were analyzed, and a regulatory mechanism network was constructed. The expression and prognostic value of ZMIZ2 in clinical TNBC tissue samples were also investigated. Furthermore, in vitro studies were conducted to investigate the effects of ZMIZ2 knockdown on the malignant behaviors of TNBC cells and target gene expression. Results Based on TCGA data, ZMIZ2 was found to be significantly upregulated in TNBC tissues and its expression was negatively correlated with AR expression. Key relationships, such as the ZMIZ2-CCL5, ZMIZ2/AR-MCM3, ZMIZ2/AR-E2F4, and the ZMIZ2/AR-DHX38 were identified, which were enriched in NOD-like receptor signaling pathway/toll-like receptor signaling pathway, DNA replication, cell cycle, and spliceosome, respectively. Moreover, ZMIZ2 was upregulated in clinical breast cancer tissues and its high expression was correlated with the poor prognosis of TNBC patients. Furthermore, ZMIZ2 expression was increased in breast cancer cells, and a knockdown of ZMIZ2 inhibited MDA-MB-231 cell proliferation, migration, and invasion, induced cell cycle arrest in the G1 phase, and promoted cell apoptosis. Furthermore, ZMIZ2 knockdown inhibited the mRNA and protein expression of CCL5, MCM3, E2F4, and DHX38. Conclusion Our findings reveal that ZMIZ2 is upregulated in TNBC tissues and is associated with its poor prognosis. ZMIZ2 may promote TNBC progression by promoting the expression of its target genes and affecting the corresponding pathways. Consequently, ZMIZ2 may serve as a promising target for future TNBC treatments. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02393-x.
Collapse
Affiliation(s)
- Xiaopan Zou
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China.,Breast and Thyroid Surgery, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Yan Liu
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China
| | - Jun Di
- Pathological Diagnostic Center, Jilin Province People's Hospital, Changchun, 130021, Jilin, China
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China
| | - Nobumoto Watanabe
- Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jiang Li
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510180, Guangdong, China.
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetic, Institute of Genetics and Cytology, Northeast Normal University, No.5268 Renmin Street, Nanguan District, Changchun, 130024, Jilin, China.
| |
Collapse
|
11
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
12
|
Lagosz-Cwik KB, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, Gibbs S, Potempa J, Grabiec AM. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep 2021; 11:10770. [PMID: 34031466 PMCID: PMC8144196 DOI: 10.1038/s41598-021-90037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/05/2021] [Indexed: 01/30/2023] Open
Abstract
In periodontitis, gingival fibroblasts (GFs) interact with and respond to oral pathogens, significantly contributing to perpetuation of chronic inflammation and tissue destruction. The aim of this study was to determine the usefulness of the recently released hTERT-immortalized GF (TIGF) cell line for studies of host–pathogen interactions. We show that TIGFs are unable to upregulate expression and production of interleukin (IL)-6, IL-8 and prostaglandin E2 upon infection with Porphyromonas gingivalis despite being susceptible to adhesion and invasion by this oral pathogen. In contrast, induction of inflammatory mediators in TNFα- or IL-1β-stimulated TIGFs is comparable to that observed in primary GFs. The inability of TIGFs to respond directly to P. gingivalis is caused by a specific defect in Toll-like receptor-2 (TLR2) expression, which is likely driven by TLR2 promoter hypermethylation. Consistently, TIGFs fail to upregulate inflammatory genes in response to the TLR2 agonists Pam2CSK4 and Pam3CSK4. These results identify important limitations of using TIGFs to study GF interaction with oral pathogens, though these cells may be useful for studies of TLR2-independent processes. Our observations also emphasize the importance of direct comparisons between immortalized and primary cells prior to using cell lines as models in studies of any biological processes.
Collapse
Affiliation(s)
- Katarzyna B Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Darczuk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
13
|
Alfonso García SL, Parada-Sanchez MT, Arboleda Toro D. The phenotype of gingival fibroblasts and their potential use in advanced therapies. Eur J Cell Biol 2020; 99:151123. [PMID: 33070040 DOI: 10.1016/j.ejcb.2020.151123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023] Open
Abstract
Advanced therapies in medicine use stem cells, gene editing, and tissues to treat a wide range of conditions. One of their goals is to stimulate endogenous repair of tissues and organs by manipulating stem cells and their niche, as well as to optimize the intrinsic characteristics and plasticity of differentiated cells in adult tissues. In this context, fibroblasts emerge as an alternative source to stem cells because they share phenotypic and regenerative characteristics. Specifically, fibroblasts of the oral mucosae have been shown to have improved regenerative capacity compared to other fibroblast populations. Additionally, their easy access by means of minimally invasive procedures without generating aesthetic problems, with easy and rapid in vitro expansion and with great capacity to respond to extrinsic factors, make oral fibroblasts an attractive and interesting resource for regenerative medicine. This review summarizes current concepts regarding the phenotypic and functional aspects of human Gingival Fibroblasts and their niche, differentiating them from other fibroblast populations of oral-lining mucosa and skin fibroblasts. Furthermore, some applications are presented in regenerative medicine, emphasizing on the biological potential of human Gingival Fibroblasts.
Collapse
Affiliation(s)
- Sandra Liliana Alfonso García
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia; Department of Oral Health, Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá, 111311, Colombia.
| | | | - David Arboleda Toro
- Department of Integrated Basic Studies, Faculty of Dentistry, Universidad de Antioquia, Medellín, 050010, Colombia
| |
Collapse
|
14
|
Exosomes: Potential Therapies for Disease via Regulating TLRs. Mediators Inflamm 2020; 2020:2319616. [PMID: 32565722 PMCID: PMC7273472 DOI: 10.1155/2020/2319616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 05/02/2020] [Indexed: 12/22/2022] Open
Abstract
Exosomes are small membrane vesicles that retain various substances such as proteins, nucleic acids, and small RNAs. Exosomes play crucial roles in many physiological and pathological processes, including innate immunity. Innate immunity is an important process that protects the organism through activating pattern recognition receptors (PRRs), which then can induce inflammatory factors to resist pathogen invasion. Toll-like receptor (TLR) is one member of PRRs and is important in pathogen clearance and nervous disease development. Although exosomes and TLRs are two independent materials, abundant evidences imply exosomes can regulate innate immunity through integrating with TLRs. Herein, we review the most recent data regarding exosome regulation of TLR pathways. Specifically, exosome-containing materials can regulate TLR pathways through the interaction with TLRs. This is a new strategy regulating immunity to resist pathogens and therapy diseases, which provide a potential method to cure diseases.
Collapse
|
15
|
Nomura R, Inaba H, Yasuda H, Shirai M, Kato Y, Murakami M, Iwashita N, Shirahata S, Yoshida S, Matayoshi S, Yasuda J, Arai N, Asai F, Matsumoto-Nakano M, Nakano K. Inhibition of Porphyromonas gulae and periodontal disease in dogs by a combination of clindamycin and interferon alpha. Sci Rep 2020; 10:3113. [PMID: 32080231 PMCID: PMC7033253 DOI: 10.1038/s41598-020-59730-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/29/2020] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gulae is a major periodontal pathogen in dogs, which can be transmitted to their owners. A major virulence factor of P. gulae consists of a 41-kDa filamentous appendage (FimA) on the cell surface, which is classified into three genotypes: A, B, and C. Thus far, inhibition of periodontal disease in dogs remains difficult. The present study assessed the inhibitory effects of a combination of clindamycin and interferon alpha (IFN-α) formulation against P. gulae and periodontal disease. Growth of P. gulae was significantly inhibited by clindamycin; this inhibition had a greater effect on type C P. gulae than on type A and B isolates. In contrast, the IFN-α formulation inhibited the expression of IL-1β and COX-2 elicited by type A and B isolates, but not that elicited by type C isolates. Furthermore, periodontal recovery was promoted by the administration of both clindamycin and IFN-α formulation to dogs undergoing periodontal treatment; moreover, this combined treatment reduced the number of FimA genotypes in oral specimens from treated dogs. These results suggest that a combination of clindamycin and IFN-α formulation inhibit P. gulae virulence and thus may be effective for the prevention of periodontal disease induced by P. gulae.
Collapse
Affiliation(s)
- Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan.
| | - Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Mitsuyuki Shirai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Yukio Kato
- Department of Veterinary Public Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaru Murakami
- Department of Molecular Biology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Naoki Iwashita
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - So Shirahata
- Primo Animal Hospital, Sagamihara, Kanagawa, Japan
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Saaya Matayoshi
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | | | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
16
|
Souza JACD, Magalhães FAC, Oliveira GJPLD, DE Molon RS, Zuanon JA, Souza PPCD. Pam2CSK4 (TLR2 agonist) induces periodontal destruction in mice. Braz Oral Res 2020; 34:e012. [PMID: 32049112 DOI: 10.1590/1807-3107bor-2020.vol34.0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/10/2019] [Indexed: 01/21/2023] Open
Abstract
Lipoproteins are important bacterial immunostimulating molecules capable of inducing receptor activator of nuclear factor-κB (RANKL) and osteoclast formation in vitro and in vivo . Although these molecules are present in periodontopathogenic bacteria, their role in periodontitis is not known. In this study, we used Pam2CSK4 (PAM2), a synthetic molecule that mimics bacterial lipoprotein, to investigate the effects of lipoproteins on periodontitis in mice. C57BL/6 male mice were randomly divided into three experimental groups: 1) Negative control group: animals received vehicle injection; 2) Positive control group: animals received injection of Escherichia coli lipopolysaccharide (LPS); 3) PAM2 group: animals received PAM2 injection. All the injections were performed bilaterally every other day into the palatal mucosa between first and second molars. After twenty-four days, the animals were euthanized to assess alveolar bone volume (micro-CT), cellular and extracellular composition in the gingiva (stereometric analysis), and osteoclast numbers (TRAP staining). Treatment with either PAM2 or LPS induced gingival inflammation, as demonstrated by increased infiltration of inflammatory cells and enhanced angiogenesis, associated with a smaller number of fibroblasts and decreased extracellular matrix. Importantly, treatment not only with LPS but also with PAM2 resulted in a larger number of TRAP+ multinucleated osteoclasts and significant loss of alveolar bone. Collectively, our data demonstrate that PAM2 can induce gingival inflammation and bone loss in mice, broadening the avenues of investigation into the role of lipoproteins in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | | | | | - Rafael Scaf DE Molon
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Diagnosis and Surgery, Araraquara, SP, Brazil
| | - José Antonio Zuanon
- Universidade Estadual Paulista - Unesp, School of Dentistry, Department of Physiology and Pathology, Araraquara, SP, Brazil
| | | |
Collapse
|
17
|
Shi S, Xu C, Fang X, Zhang Y, Li H, Wen W, Yang G. Expression profile of Toll‑like receptors in human breast cancer. Mol Med Rep 2019; 21:786-794. [PMID: 31789409 PMCID: PMC6947885 DOI: 10.3892/mmr.2019.10853] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Toll‑like receptors (TLRs) are the most widely studied pattern recognition receptors. Mounting evidence suggests an important association between TLRs and the occurrence and development of breast cancer. Thus, targeting these receptors may be a potential strategy for breast cancer treatment. The current study analyzed the data of 1,215 patients with breast cancer obtained from The Cancer Genome Atlas (TCGA) database. It was observed that, in addition to TLR6, TLR7 and TLR8, the expression of the remaining TLRs in breast cancer tissues was lower than that in normal tissues. In addition, TLR3 and TLR9 displayed significantly different expression levels in ER‑/PR‑negative breast cancer compared with the control tissues, while TLR5 expression was significantly reduced in HER2‑enriched breast cancer. Furthermore, TLR10 exhibited lower expression levels in advanced stages of the disease as compared with that observed in earlier stages. Survival analysis revealed that the expression of TLR4 and TLR7 had a significant impact on survival, and higher expression levels suggested worse prognosis. Finally, the expression levels of TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 were correlated with those of the inflammatory cytokines interleukin‑1β and tumor necrosis factor‑α, while the expression levels of TLR3, TLR7, TLR8 and TLR9 were correlated with those of interferon‑β and C‑X‑C motif chemokine ligand 10. Taken together, the current study results suggest that TLR expression may serve as a biomarker of cancer pathogenesis and progression, and may provide new insights for the treatment of breast cancer through the regulation and targeting of TLRs.
Collapse
Affiliation(s)
- Shuxun Shi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Cong Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Xiaonan Fang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Yonghuan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Wujun Wen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
18
|
Li S, Zhang D, Lu K, Wu Y, Sheng L, Tang Q. Activation of calcium signaling in human gingival fibroblasts by recombinant Porphyromonas gingivalis RgpB protein. Eur J Oral Sci 2019; 127:287-293. [PMID: 31175838 DOI: 10.1111/eos.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 11/28/2022]
Abstract
Arginine-specific cysteine proteinases, such as Arg-gingipain B (RgpB), mediate inflammation by activating protease-activated receptors (PARs). Arg-gingipain B is produced by Porphyromonas gingivalis, and is implicated in the causation of periodontal disease. The purpose of the present study was to observe the influence of recombinant RgpB protein (rRgpB) on PAR activation by monitoring intracellular Ca2+ ion concentration ([Ca2+]i) and inositol-1,4,5-triphosphate (IP3) levels in human gingival fibroblasts (HGFs). Our findings showed that rRgpB could cause a transient increase in [Ca2+]i. This increase in [Ca2+]i was completely suppressed by vorapaxar, a PAR-1 antagonist. Recombinant Arg-gingipain B increased the concentration of IP3, reaching a maximum at 60 s after treatment; this was completely inhibited by vorapaxar. We therefore conclude that rRgpB-induced calcium signaling in HGFs is mainly caused by PAR-1 activation. This suggests that PAR-1 activation plays a significant role in chronic inflammatory periodontal disease induced by P. gingivalis RgpB.
Collapse
Affiliation(s)
- Shenglai Li
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diya Zhang
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Lu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Wu
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lieping Sheng
- Dental Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
TET1 Knockdown Inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 Macrophage Polarization through the NF-κB Pathway in THP-1 Cells. Int J Mol Sci 2019; 20:ijms20082023. [PMID: 31022963 PMCID: PMC6514734 DOI: 10.3390/ijms20082023] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022] Open
Abstract
Tet-eleven translocation 1 (TET1) is a dioxygenase that plays an important role in decreasing the abundance of DNA methylation and changing the expression levels of specific genes related to inflammation. Porphyromonas gingivalis (Pg.) lipopolysaccharide (LPS) can induce periodontal diseases that present with severe bone loss and collagen fiber destruction accompanied by a high number of M1 macrophages. M1-polarized macrophages are pivotal immune cells that promote the progression of the periodontal inflammatory response, but the function of TET1 during M1 macrophage activation is still unknown. Our results showed that the mRNA and protein expression levels of TET1 decreased in THP-1 cells during M1 macrophage differentiation. TET1 knockdown resulted in a significant decrease in the production of proinflammatory markers such as IL-6, TNF-α, CCL2, and HLA-DR in Pg. LPS/IFN-γ- and Escherichia coli (E. coli) LPS/IFN-γ-induced M1 macrophages. Mechanistically, TET1 knockdown downregulated the activity of the NF-κB signaling pathway. After treatment with the NF-κB inhibitor BAY 11-7082, M1 marker expression showed no significant difference between the TET1 knockdown group and the control group. Taken together, these results suggest that TET1 depletion inhibited Pg. LPS/IFN-γ-induced M1 macrophage polarization through the NF-κB pathway in THP-1 cells.
Collapse
|
20
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Gupta N, Sinha R, Krasnodembskaya A, Xu X, Nizet V, Matthay MA, Griffin JH. The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells 2018; 36:796-806. [PMID: 29396891 PMCID: PMC5918231 DOI: 10.1002/stem.2796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
Bone marrow derived mesenchymal stromal cells have been shown to have significant therapeutic effects in experimental models of pneumonia and lung injury. The current study examined the roles of the toll like receptor 4 (TLR4) and protease activated receptor 1 (PAR1) pathways on mesenchymal stromal cell (MSC) survival and therapeutic activity in a murine model of pneumonia. MSCs from TLR4 -/- and R41Q-PAR1 mutated mice were isolated to test the effect of mutating these specific pathways on MSC survival when exposed to cytotoxic stimuli in vitro. An Escherichia coli pneumonia model was used to assess the effect of these specific pathways on MSC therapeutic activity in vivo. Our results showed that mutation of either the TLR4 or PAR1 pathways in MSCs impaired cell survival under conditions of inflammatory stress in vitro, and eliminated their therapeutic efficacy in vivo. Also, stimulation of the TLR4 pathway on MSCs led to secretion of low levels of prothrombin by MSCs, while disrupting the TLR4 pathway impaired canonical signaling through PAR1 in response to thrombin. Therefore, this study demonstrates that both TLR4 and PAR1 are required for MSC survival under inflammatory conditions in vitro and therapeutic capacity in vivo, and that the TLR4 pathway regulates signaling through PAR1 on MSCs. Stem Cells 2018;36:796-806.
Collapse
Affiliation(s)
- N Gupta
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037,Corresponding Author: Naveen Gupta, MD, Assistant Professor of Medicine, Pulmonary and Critical Care, University of California, San Diego, Assistant Adjunct Professor of Molecular Medicine, The Scripps Research Institute, ; , Phone: (415) 717-6136
| | - R Sinha
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - A Krasnodembskaya
- Queen’s University, School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Belfast, UK
| | - X Xu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - V Nizet
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093
| | - MA Matthay
- University of California, San Francisco School of Medicine, 505 Parnassus Ave, San Francisco, CA 94143
| | - JH Griffin
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
22
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
23
|
Pinheiro CR, Coelho AL, de Oliveira CE, Gasparoto TH, Garlet GP, Silva JS, Santos CF, Cavassani KA, Hogaboam CM, Campanelli AP. Recognition of Candida albicans by gingival fibroblasts: The role of TLR2, TLR4/CD14, and MyD88. Cytokine 2017; 106:67-75. [PMID: 29128406 DOI: 10.1016/j.cyto.2017.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Recent evidence indicates that nonprofessional immune cells such as epithelial cells, endothelial cells, and fibroblasts also contribute to innate immunity via secretion of cytokines. Fibroblasts are the principal type of cell found in the periodontal connective tissues and they are involved in the immune response during periodontal disease. The role of fibroblasts in the recognition of pathogens via Toll-like receptors (TLRs) has been established; however, few studies have been conducted concerning the involvement of innate immune receptors in the recognition of Candida albicans by gingival fibroblast. In the current study, we investigate the functional activity of TLR2, cluster of differentiation 14 (CD14), and myeloid differentiation primary response gene 88 (MyD88) molecules in the recognition of C. albicans by gingival fibroblast. First, we identified that gingival fibroblasts expressed TLR2, TLR3, and TLR4. Our results showed that TLR agonists had no effect on these receptors' expression by TLR2, MyD88, and CD14-deficient cells. Notably, C. albicans and a synthetic triacylated lipoprotein (Pam3CSK4) induced a remarkable increase of TLR3 expression on MyD88-deficient gingival fibroblasts. TLR4 expression levels were lower than TLR2 and TLR3 levels and remained unchanged after TLR agonist stimulation. Gingival fibroblasts presented morphological similarities; however, TLR2 deficiency on these cells leads to a lower proliferative response, whereas the deficiency on CD14 expression resulted in lower levels of type I collagen by these cells. In addition, the recognition of C. albicans by gingival fibroblasts had an effect on the secretion of cytokines and it was dependent on a specific recognition molecule. Specifically, tumor necrosis factor-α (TNF-α) production after the recognition of C. albicans was dependent on MyD88, CD14, and TLR2 molecules, whereas the production of interleukin-1β (IL-1β) and IL-13 was dependent on TLR2. These findings are the first to describe a role of gingival fibroblast in the recognition of C. albicans and the pathways involved in this process. An understanding of these pathways may lead to alternative treatments for patients with periodontal disease.
Collapse
Affiliation(s)
- Claudia Ramos Pinheiro
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Ana Lúcia Coelho
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Thaís Helena Gasparoto
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil
| | - Karen Angélica Cavassani
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Cory M Hogaboam
- Department of Medicine, Advanced Health Sciences Pavilion, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry - University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
24
|
Albiero ML, Stipp RN, Saito MT, Casati MZ, Sallum EA, Nociti FH, Silvério KG. Viability and Osteogenic Differentiation of Human Periodontal Ligament Progenitor Cells Are Maintained After Incubation With Porphyromonas gingivalis Protein Extract. J Periodontol 2017. [DOI: 10.1902/jop.2017.170116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mayra Laino Albiero
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | | | - Miki Taketomi Saito
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Márcio Zaffalon Casati
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Enilson Antonio Sallum
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco Humberto Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Karina Gonzales Silvério
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
25
|
Meyle J, Dommisch H, Groeger S, Giacaman RA, Costalonga M, Herzberg M. The innate host response in caries and periodontitis. J Clin Periodontol 2017; 44:1215-1225. [PMID: 28727164 DOI: 10.1111/jcpe.12781] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Innate immunity rapidly defends the host against infectious insults. These reactions are of limited specificity and exhaust without providing long-term protection. Functional fluids and effector molecules contribute to the defence against infectious agents, drive the immune response, and direct the cellular players. AIM To review the literature and present a summary of current knowledge about the function of tissues, cellular players and soluble mediators of innate immunity relevant to caries and periodontitis. METHODS Historical and recent literature was critically reviewed based on publications in peer-reviewed scientific journals. RESULTS The innate immune response is vital to resistance against caries and periodontitis and rapidly attempts to protect against infectious agents in the dental hard and soft tissues. Soluble mediators include specialized proteins and lipids. They function to signal to immune and inflammatory cells, provide antimicrobial resistance, and also induce mechanisms for potential repair of damaged tissues. CONCLUSIONS Far less investigated than adaptive immunity, innate immune responses are an emerging scientific and therapeutic frontier. Soluble mediators of the innate response provide a network of signals to organize the near immediate molecular and cellular response to infection, including direct and immediate antimicrobial activity. Further studies in human disease and animal models are generally needed.
Collapse
Affiliation(s)
- Joerg Meyle
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - Sabine Groeger
- Department of Periodontology, University of Giessen, Giessen, Germany
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEIES), University of Talca, Talca, Chile
| | - Massimo Costalonga
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Mark Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
26
|
Jayaprakash K, Demirel I, Gunaltay S, Khalaf H, Bengtsson T. PKC, ERK/p38 MAP kinases and NF-κB targeted signalling play a role in the expression and release of IL-1β and CXCL8 in Porphyromonas gingivalis-infected THP1 cells. APMIS 2017; 125:623-633. [PMID: 28493507 DOI: 10.1111/apm.12701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Porphyromonas gingivalis is a keystone pathogen in periodontitis and is gaining importance in cardiovascular pathogenesis. Protease-activated receptors (PARs), toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD) on monocytes recognize the structural components on P. gingivalis, inducing inflammatory intermediates. Here, we elucidate the modulation of PARs, TLRs, NODs, and the role of MAPK and NF-κB in IL-1β and CXCL8 release. THP1 cells were stimulated with P. gingivalis wild-type W50 and its isogenic gingipain mutants: Rgp mutant E8 and Kgp mutant K1A. We observed modulation of PARs, TLRs, NOD, IL-1β and CXCL8 expression by P. gingivalis. Gingipains hydrolyse IL-1β and CXCL8, which is more evident for IL-1β accumulation at 24 h. Inhibition of PKC (protein kinase C), p38 and ERK (extracellular signal-regulated kinases) partially reduced P. gingivalis-induced IL-1β at 6 h, whereas PKC and ERK reduced CXCL8 at both 6 and 24 h. Following NF-κB inhibition, P. gingivalis-induced IL-1β and CXCL8 were completely suppressed to basal levels. Overall, TLRs, PARs and NOD possibly act in synergy with PKC, MAPK ERK/p38 and NF-κB in P. gingivalis-induced IL-1β and CXCL8 release from THP1 cells. These pro-inflammatory cytokines could affect leucocytes in circulation and exacerbate other vascular inflammatory conditions such as atherosclerosis.
Collapse
Affiliation(s)
| | - Isak Demirel
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Sezin Gunaltay
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Department of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
27
|
Hong M, Park JB, Kim YS, Lee DH, Kim H, Lee JI, Ahn HS, Sohn TS, Lee TK, Song JY, Jeong SC, Yeo CD, Chae HS, Do Han K, Vu D, Lee YB. Association between Cockroach-specific Immunoglobulin E and periodontitis in Korean male adults Based on Korean National Health and Nutrition Examination Survey. Sci Rep 2017; 7:46373. [PMID: 28401926 PMCID: PMC5388886 DOI: 10.1038/srep46373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/15/2017] [Indexed: 01/22/2023] Open
Abstract
Periodontitis is an inflammatory disease affecting the tooth supporting tissues (periodontium) and associated with chronic diseases such as cardiovascular disease and insulin resistance. However, there has been no nation-wide population based epidemiologic study regarding any association between periodontitis and serum IgE. Among the 8,958 participants in the 2010 Korean National Health and Nutrition Examination Survey (KNHANES V-1), 1,731 adults aged 19 to 64 who had measured serum IgE were included in the analysis. Dentists examined the periodontal status of the participants. Multiple logistic regression analyses were used to evaluate the odds ratio of periodontitis in association with total IgE and specific IgE to cockroach and house dust mite. In males, total IgE showed a positive correlation with the presence of periodontitis. The participants in the highest tertile of cockroach specific IgE (T3, >31.6 kU/L) had a significantly increased risk of periodontitis (OR = 2.108; 95% CI, 1.233–3.606). In females, the inverse association occurred between total IgE and periodontitis (OR = 0.409; 95% CI, 0.200–0.839). The present study firstly demonstrated the association between periodontitis and serum IgE, using the Korean nationwide, population-based, cross-sectional health examination and survey. This study suggested a positive correlation between periodontitis and cockroach-specific IgE in Korean male adults.
Collapse
Affiliation(s)
- Mihee Hong
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Beom Park
- Department of Periodontics, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Soo Kim
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong-Hee Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - HeeYeon Kim
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Im Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyo-Suk Ahn
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae Seo Sohn
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tae-Kyu Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Yen Song
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seong Cheol Jeong
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang Dong Yeo
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hiun Suk Chae
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyung Do Han
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - David Vu
- Wing Dental Center, Alberta, Canada
| | - Young Bok Lee
- Epidemiology Study Cluster of Uijeongbu St. Mary's Hospital, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
28
|
Palm E, Demirel I, Bengtsson T, Khalaf H. The role of toll-like and protease-activated receptors and associated intracellular signaling in Porphyromonas gingivalis-infected gingival fibroblasts. APMIS 2017; 125:157-169. [PMID: 28120492 DOI: 10.1111/apm.12645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
Abstract
Porphyromonas gingivalis, which is considered a keystone agent in periodontitis, has evolved elaborate mechanisms to grow and survive in a hostile milieu. The gingival fibroblast is the major cell type in the gingiva and is considered to be important in the periodontitis-associated inflammation. As a part of the innate immune response, they produce cytokines such as CXCL8 and interleukin (IL)-6 which are believed to contribute to the destruction of the tooth-supporting tissues. This study investigates how the expression of protease-activated receptors (PAR1, PAR2) and toll-like receptors (TLR2, TLR4) changes with P. gingivalis exposure and how silencing of one receptor affects the expression of the other receptors. The importance of protein kinase C (PKC) and p38 in the regulation of CXCL8 and IL-6 was also examined. Receptors were knockdown with small-interfering RNA. PKC or p38 was blocked prior to stimulation with P. gingivalis. Fibroblasts were able to compensate for PAR1 knockdown with increased expression of PAR2. PKC and p38 were involved in the regulation of P. gingivalis-induced CXCL8 and IL-6. Our results indicate that PAR1 and PAR2 could be implicated in periodontitis and that PKC and P38 play a role in the inflammatory response in P. gingivalis-infected gingival fibroblasts.
Collapse
Affiliation(s)
- Eleonor Palm
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Torbjörn Bengtsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
29
|
Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 2016; 47:23-33. [DOI: 10.1016/j.jdent.2016.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/15/2022] Open
|