1
|
Song H, Begley J, Asheim C, Albini TA, Conrady CD, Yeh S. Clinical, molecular, and immunologic mechanisms of CMV retinitis: Evolving understanding in HIV and non-HIV immunosuppressed patients. EXPERT REVIEW OF OPHTHALMOLOGY 2024; 20:19-28. [PMID: 39925880 PMCID: PMC11805338 DOI: 10.1080/17469899.2024.2417067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 02/11/2025]
Abstract
Introduction Rates of CMV retinitis (CMVR) resulting from HIV have declined following the advent of highly active antiretroviral therapy (HAART); however, other immunosuppressed populations are becoming increasingly affected by CMVR. More research is required to identify and target differences found in these patients, as they may represent a promising avenue for targeted treatment therapy. Areas covered This review includes information from studies on the prevalence, pathophysiology, and clinical manifestations of CMV and CMVR. It also discusses the impact of antiretroviral therapy on CMVR incidence, explores various risk factors, and examines the molecular mechanisms and immune responses associated with CMV infection. Additionally, the article discusses diagnostic considerations, treatment strategies, and the potential for new therapeutic approaches. Expert opinion Cytomegalovirus retinitis (CMVR) remains a major cause of vision loss in immunocompromised individuals. CMVR presents differently in HIV-positive and HIV-negative patients, suggesting a possible variation in underlying pathophysiology between the two groups. More research is needed to characterize the potential differences in molecular mechanisms, immunopathology, and genetic markers implicated in the development of CMVR in these populations to develop targeted therapies.
Collapse
Affiliation(s)
- Helen Song
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jack Begley
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Collin Asheim
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas A. Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Steven Yeh
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Kobayashi R, Hashida N. Overview of Cytomegalovirus Ocular Diseases: Retinitis, Corneal Endotheliitis, and Iridocyclitis. Viruses 2024; 16:1110. [PMID: 39066272 PMCID: PMC11281654 DOI: 10.3390/v16071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Cytomegalovirus (CMV) infection is a significant clinical concern in newborns, immunocompromised patients with acquired immunodeficiency syndrome (AIDS), and patients undergoing immunosuppressive therapy or chemotherapy. CMV infection affects many organs, such as the lungs, digestive organs, the central nerve system, and eyes. In addition, CMV infection sometimes occurs in immunocompetent individuals. CMV ocular diseases includes retinitis, corneal endotheliitis, and iridocyclitis. CMV retinitis often develops in infected newborns and immunocompromised patients. CMV corneal endotheliitis and iridocyclitis sometimes develop in immunocompetent individuals. Systemic infections and CMV ocular diseases often require systemic treatment in addition to topical treatment.
Collapse
Affiliation(s)
| | - Noriyasu Hashida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Shah S, Patel V. Targeting posterior eye infections with colloidal carriers: The case of Ganciclovir. Int J Pharm 2023; 645:123427. [PMID: 37729977 DOI: 10.1016/j.ijpharm.2023.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The ocular system, unlike any other human body organ, is a system in which foreign bodies appear quite defenceless in front of the eye. Several infections of the ocular system occur due to various opportunistic conditions. Cytomegalovirus (CMV) is one of the opportunivores that causes several posterior eye infections. Ganciclovir (GCV),9-(2-hydroxy-1-(hydroxymethyl) ethoxymethyl), is aguanine-antiviral agent primarily used to treat CMV diseases. However, the major challenge is of lower bioavailability. Hence, GCV must be dosed repeatedly to enhance drug absorption. but this causes side effects like neutropenia and bone marrow suppression. So, formulators have used alternative formulation strategies such as prodrug formulation and colloidal drug delivery systems. In the prodrug strategy, they attempted to bind various compounds into the parent drug to increase the permeability and bioavailability of GCV. In colloidal drug delivery systems, mucoadhesive microspheres, nanoparticles, Niosome and liposome were employed to extend the drug residence time at the application site. This paper discusses several colloidal carriers combined with GCV to treat opportunistic CMV infection in the posterior ocular system. It reviews the limitations of conventional ocular therapy and explores various novel formulation approaches to improve the ocular bioavailability of GCV in the posterior chamber of the eye.
Collapse
Affiliation(s)
- Srushti Shah
- Parul Institute of Pharmacy, ParulUniversity, Gujarat 391760, India.
| | - Vandana Patel
- Krishna School of Pharmacy and Research, KPGU, Gujarat 391240, India
| |
Collapse
|
4
|
A Mouse Model That Mimics AIDS-Related Cytomegalovirus Retinitis: Insights into Pathogenesis. Pathogens 2021; 10:pathogens10070850. [PMID: 34358000 PMCID: PMC8308774 DOI: 10.3390/pathogens10070850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
With the appearance of the worldwide AIDS pandemic four decades ago came a number of debilitating opportunistic infections in patients immunosuppressed by the pathogenic human retrovirus HIV. Among these was a severe sight-threatening retinal disease caused by human cytomegalovirus (HCMV) that remains today a significant cause of vision loss and blindness in untreated AIDS patients without access or sufficient response to combination antiretroviral therapy. Early investigations of AIDS-related HCMV retinitis quickly characterized its hallmark clinical features and unique histopathologic presentation but did not begin to identify the precise virologic and immunologic events that allow the onset and development of this retinal disease during HIV-induced immunosuppression. Toward this end, several mouse models of experimental cytomegalovirus retinitis have been developed to provide new insights into the pathophysiology of HCMV retinitis during AIDS. Herein, we provide a summary and comparison of these mouse models of AIDS-related HCMV retinitis with particular emphasis on one mouse model developed in our laboratory in which mice with a murine acquired immunodeficiency syndrome (MAIDS) of murine retrovirus origin develops a reproducible and well characterized retinitis following intraocular infection with murine cytomegalovirus (MCMV). The MAIDS model of MCMV retinitis has advanced the discovery of many clinically relevant virologic and immunologic mechanisms of virus-induced retinal tissue destruction that are discussed and summarized in this review. These findings may extend to the pathogenesis of AIDS-related HCMV retinitis and other AIDS-related opportunistic virus infections.
Collapse
|
5
|
Carter JJ, Nemeno JGE, Oh JJ, Houghton JE, Dix RD. Atypical cytomegalovirus retinal disease in pyroptosis-deficient mice with murine acquired immunodeficiency syndrome. Exp Eye Res 2021; 209:108651. [PMID: 34097907 DOI: 10.1016/j.exer.2021.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023]
Abstract
Pyroptosis is a caspase-dependent programmed cell death pathway that initiates and sustains inflammation through release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 following formation of gasdermin D (GSDMD)-mediated membrane pores. To determine the possible pathogenic contributions of pyroptosis toward development of full-thickness retinal necrosis during AIDS-related human cytomegalovirus retinitis, we performed a series of studies using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS). Initial investigations demonstrated significant transcription and translation of key pyroptosis-associated genes within the ocular compartments of MCMV-infected eyes of mice with MAIDS. Subsequent investigations compared MCMV-infected eyes of groups of wildtype MAIDS mice with MCMV-infected eyes of groups of caspase-1-/- MAIDS mice, GSDMD-/- MAIDS mice, or IL-18-/- MAIDS mice to explore a possible contribution of pyroptosis towards the pathogenesis of MAIDS-related MCMV retinitis. Histopathologic analysis revealed typical full-thickness retinal necrosis in 100% of MCMV-infected eyes of wildtype MAIDS mice. In sharp contrast, none (0%) of MCMV-infected eyes of MAIDS mice that were deficient in either caspase-1, GSDMD, or IL-18 developed full-thickness retinal necrosis but instead exhibited an atypical pattern of retinal disease characterized by thickening and proliferation of the retinal pigmented epithelium layer with relative sparing of the neurosensory retina. Surprisingly, MCMV-infected eyes of all groups of deficient MAIDS mice harbored equivalent intraocular amounts of infectious virus as seen in MCMV-infected eyes of groups of wildtype MAIDS mice despite failure to develop full-thickness retinal necrosis. We conclude that pyroptosis plays a significant role in the development of full-thickness retinal necrosis during the pathogenesis of MAIDS-related MCMV retinitis. This observation may extend to the pathogenesis of AIDS-related HCMV retinitis and other AIDS-related opportunistic virus infections.
Collapse
Affiliation(s)
- Jessica J Carter
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia; Department of Ophthalmology, Emory University School of Medicine, Atlanta, 30322, Georgia
| | - Judee Grace E Nemeno
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - Jay J Oh
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - John E Houghton
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, 30303, Georgia; Department of Ophthalmology, Emory University School of Medicine, Atlanta, 30322, Georgia.
| |
Collapse
|
6
|
Mora Scarpetta GA, Carter JJ, Nemeño JGE, Dix RD. Evidence for the involvement of interleukin-1α during development of experimental cytomegalovirus retinitis in immunosuppressed mice. Cytokine 2021; 144:155596. [PMID: 34078571 DOI: 10.1016/j.cyto.2021.155596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/24/2023]
Abstract
Interleukin-1α (IL-1α) is an alarmin involved in the recruitment of macrophages and neutrophils during tissue inflammation. IL-1α can undergo cleavage by proteases, such as calpain-1, that enhances IL-1α binding to its receptor, although proteolytic cleavage is not necessary for biological activity. Macrophages and neutrophils are involved in the retinal inflammation associated with development of AIDS-related human cytomegalovirus (HCMV) retinitis. We therefore performed studies to test the hypothesis that IL-1α gene expression is stimulated intraocularly during retinitis development using two mouse models of murine cytomegalovirus (MCMV) retinitis that differ in method of immunosuppression, one by retrovirus-induced immunosuppression (MAIDS) and the other by corticosteroid-induced immunosuppression. MCMV-infected eyes of groups of retinitis-susceptible mice with MAIDS of 10 weeks duration (MAIDS-10 mice) and retinitis-susceptible corticosteroid-treated mice showed significant stimulation of IL-1α mRNA. Western blot analysis confirmed IL-1α protein production within the MCMV-infected eyes of MAIDS-10 mice. Whereas significant intraocular calpain-1 mRNA and protein production were also observed within MCMV-infected eyes of MAIDS-10 mice, the MCMV-infected eyes of retinitis-susceptible corticosteroid-treated mice showed a pattern of mRNA synthesis equivalent to that found within the MCMV-infected eyes of healthy mice that fail to develop retinitis. Our findings suggest a role for the alarmin IL-1α in the pathogenesis of MCMV retinitis in immunosuppressed mice. These findings may extend to the pathogenesis of HCMV retinitis in patients with AIDS or other forms of immunosuppression.
Collapse
Affiliation(s)
| | - Jessica J Carter
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA; Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
| | - Judee Grace E Nemeño
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, USA; Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Fisher MA, Lloyd ML. A Review of Murine Cytomegalovirus as a Model for Human Cytomegalovirus Disease-Do Mice Lie? Int J Mol Sci 2020; 22:ijms22010214. [PMID: 33379272 PMCID: PMC7795257 DOI: 10.3390/ijms22010214] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Since murine cytomegalovirus (MCMV) was first described in 1954, it has been used to model human cytomegalovirus (HCMV) diseases. MCMV is a natural pathogen of mice that is present in wild mice populations and has been associated with diseases such as myocarditis. The species-specific nature of HCMV restricts most research to cell culture-based studies or to the investigation of non-invasive clinical samples, which may not be ideal for the study of disseminated disease. Initial MCMV research used a salivary gland-propagated virus administered via different routes of inoculation into a variety of mouse strains. This revealed that the genetic background of the laboratory mice affected the severity of disease and altered the extent of subsequent pathology. The advent of genetically modified mice and viruses has allowed new aspects of disease to be modeled and the opportunistic nature of HCMV infection to be confirmed. This review describes the different ways that MCMV has been used to model HCMV diseases and explores the continuing difficulty faced by researchers attempting to model HCMV congenital cytomegalovirus disease using the mouse model.
Collapse
Affiliation(s)
- Michelle A. Fisher
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
| | - Megan L. Lloyd
- Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia;
- Marshall Centre for Infectious Diseases Research and Training, Division of Infection and Immunity, School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
8
|
Carter JJ, Gardner JM, Poling BP, Welch MM, Nemeno JGE, Houghton JE, Dix RD. Transcriptional analysis of immune response genes during pathogenesis of cytomegalovirus retinitis in mice with murine acquired immunodeficiency syndrome. PLoS Pathog 2020; 16:e1009032. [PMID: 33156834 PMCID: PMC7647057 DOI: 10.1371/journal.ppat.1009032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with greater clarity the immunologic mechanisms that contribute to the progression of AIDS-related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward this end, we provide herein a comprehensive assessment of immune response gene expression during the onset and development of MAIDS-related MCMV retinitis employing NanoString nCounter. In so doing, we analyzed and compared the intraocular expressions of 561 immune response genes within MCMV-infected eyes of groups of healthy mice, MCMV-infected mice with MAIDS of 4 weeks' (MAIDS-4) duration, and MCMV-infected eyes of mice with MAIDS of 10 weeks' (MAIDS-10) duration. These animal groups show a progression of retinal disease from absolute resistance to retinitis development in healthy mice to the development of classic full-thickness retinal necrosis in MAIDS-10 mice but through an intermediate stage of retinal disease development in MAIDS-4 mice. Our findings showed that increased susceptibility to MCMV retinitis during the progression of MAIDS is associated with robust upregulation or downregulation of a surprisingly large number of immune response genes that operate within several immune response pathways often unique to each animal group. Analysis of 14 additional immune response genes associated with programmed cell death pathways suggested involvement of necroptosis and pyroptosis during MAIDS-related MCMV retinitis pathogenesis. Use of the NanoString nCounter technology provided new and unexpected information on the immunopathogenesis of retinitis within MCMV-infected eyes of mice with retrovirus-induced immunosuppression. Our findings may provide new insights into the immunologic events that operate during the pathogenesis of AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jessica J. Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jesse M. Gardner
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Brent P. Poling
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Madeline M. Welch
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Judee Grace E. Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - John E. Houghton
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
| | - Richard D. Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia, United States of America
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Carter J, Alston CI, Oh J, Duncan LA, Esquibel Nemeno JG, Byfield SN, Dix RD. Mechanisms of AIDS-related cytomegalovirus retinitis. Future Virol 2019. [DOI: 10.2217/fvl-2019-0033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) generates a significant clinical burden worldwide, particularly among the immune compromised. In approximately 30% of untreated HIV/AIDS patients without access or sufficient response to antiretroviral therapies, for example, HCMV causes a sight-threatening retinitis. To study the mechanisms of AIDS-related HCMV retinitis, our lab has for many years used a mouse model in which a mixture of mouse retroviruses induces murine AIDS after approximately 10 weeks, rendering otherwise resistant mice susceptible to opportunistic pathogens. This immunodeficiency combined with subretinal inoculation of murine cytomegalovirus yields a reproducible model of the human disease, facilitating the discovery of many clinically relevant virologic and immunologic mechanisms of retinal destruction which we summarize in this review.
Collapse
Affiliation(s)
- Jessica Carter
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christine I Alston
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jay Oh
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Lauren-Ashley Duncan
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | - Shauntelle N Byfield
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Richard D Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Suppressor of Cytokine Signaling 1 (SOCS1) and SOCS3 Are Stimulated within the Eye during Experimental Murine Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression. J Virol 2018; 92:JVI.00526-18. [PMID: 29976680 DOI: 10.1128/jvi.00526-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022] Open
Abstract
AIDS-related human cytomegalovirus retinitis remains the leading cause of blindness among untreated HIV/AIDS patients worldwide. To study mechanisms of this disease, we used a clinically relevant animal model of murine cytomegalovirus (MCMV) retinitis with retrovirus-induced murine AIDS (MAIDS) that mimics the progression of AIDS in humans. We found in this model that MCMV infection significantly stimulates ocular suppressor of cytokine signaling 1 (SOCS1) and SOCS3, host proteins which hinder immune-related signaling by cytokines, including antiviral type I and type II interferons. The present study demonstrates that in the absence of retinal disease, systemic MCMV infection of mice without MAIDS, but not in mice with MAIDS, leads to mild stimulation of splenic SOCS1 mRNA. In sharp contrast, when MCMV is directly inoculated into the eyes of retinitis-susceptible MAIDS mice, high levels of intraocular SOCS1 and SOCS3 mRNA and protein are produced which are associated with significant intraocular upregulation of gamma interferon (IFN-γ) and interleukin-6 (IL-6) mRNA expression. We also show that infiltrating macrophages, granulocytes, and resident retinal cells are sources of intraocular SOCS1 and SOCS3 protein production during development of MAIDS-related MCMV retinitis, and SOCS1 and SOCS3 mRNA transcripts are detected in retinal areas histologically characteristic of MCMV retinitis. Furthermore, SOCS1 and SOCS3 are found in both MCMV-infected cells and uninfected cells, suggesting that these SOCS proteins are stimulated via a bystander mechanism during MCMV retinitis. Taken together, our findings suggest a role for MCMV-related stimulation of SOCS1 and SOCS3 in the progression of retinal disease during ocular, but not systemic, MCMV infection.IMPORTANCE Cytomegalovirus infection frequently causes blindness in untreated HIV/AIDS patients. This virus manipulates host cells to dysregulate immune functions and drive disease. Here, we use an animal model of this disease to demonstrate that cytomegalovirus infection within eyes during retinitis causes massive upregulation of immunosuppressive host proteins called SOCS. As viral overexpression of SOCS proteins exacerbates infection with other viruses, they may also enhance cytomegalovirus infection. Alternatively, the immunosuppressive effect of SOCS proteins may be protective against immunopathology during cytomegalovirus retinitis, and in such a case SOCS mimetics or overexpression treatment strategies might be used to combat this disease. The results of this work therefore provide crucial basic knowledge that contributes to our understanding of the mechanisms of AIDS-related cytomegalovirus retinitis and, together with future studies, may contribute to the development of novel therapeutic targets that could improve the treatment or management of this sight-threatening disease.
Collapse
|