1
|
Li Q. Diagnostic utility of Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in pulpal blood for assessing pulpitis severity. BMC Oral Health 2025; 25:527. [PMID: 40217258 PMCID: PMC11987416 DOI: 10.1186/s12903-025-05936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE To evaluate the diagnostic utility of T-helper type 2 (Th2) cytokines, specifically Interleukin-4 (IL-4), IL-5, IL-10, and IL-13, in distinguishing different stages of pulpitis and their combined performance in clinical diagnosis. METHODS A total of 161 participants were enrolled and categorized into normal pulp (NP, n = 45), reversible pulpitis (RP, n = 75), and symptomatic irreversible pulpitis (IP, n = 41). Th2 cytokine levels in pulpal blood samples were measured using enzyme-linked immunosorbent assays (ELISA). RESULTS Th2 cytokine levels (IL-4, IL-5, IL-10, and IL-13) were significantly elevated in pulpitis cases compared to normal pulp, with the highest concentrations observed in symptomatic IP. Diagnostic analysis showed that IL-4 and IL-13 had the highest diagnostic accuracy for distinguishing pulpitis (both RP and IP) from normal pulp, with AUCs of 0.91, and perfect specificity (100%). IL-5 demonstrated the best balance between sensitivity (68%) and specificity (97%) for differentiating IP from NP (AUC = 0.84). IL-13, though less effective overall, provided moderate accuracy (AUC = 0.63) for distinguishing RP from NP. Additionally, the combined diagnostic model of all four cytokines achieved high AUCs, particularly in distinguishing irreversible pulpitis from normal pulp (AUC = 0.94) and irreversible pulpitis from reversible pulpitis (AUC = 0.90). CONCLUSIONS Th2 cytokines, especially IL-4, IL-5, and IL-13, are effective biomarkers for identifying different stages of pulpitis. Their elevated levels, particularly in irreversible pulpitis, provide strong diagnostic accuracy. Combined cytokine analysis enhances diagnostic precision, making Th2 cytokine profiling a valuable tool for assessing pulpitis severity.
Collapse
Affiliation(s)
- Qun Li
- Department of Stomatology, China Resources & WISCO General Hospital, Wuhan, Hubei, 430000, China.
| |
Collapse
|
2
|
Xie B, Liang C, Liu C, Wang X, Zhou H, Zhou J, Li K, Xu H, Su X, Luo Y, Zhang H, Liang D, Long A, Zhuo S, He X, Lin D, Chen Z, Chen W, Wang Y, Jiang X. Visual Antimicrobial Gold Nanocluster Hydrogel with Inflammation-Responsive and Time-Regulated Swelling/Degradation for Regenerative Endodontic Procedures. ACS NANO 2025; 19:11861-11877. [PMID: 40118781 DOI: 10.1021/acsnano.4c14202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Regenerative endodontic procedures (REPs) have become the primary therapy for immature permanent teeth. Double antibiotic (DA, ciprofloxacin, and metronidazole) is recommended as the intracanal medicament in REPs. However, it has several limitations, such as toxicity to stem cells, short-term antibacterial efficacy, and inability to be visualized radiographically. In this study, a method is induced to construct an antimicrobial gold nanocluster (Au NC) hydrogel loading DA (DA@Au NCs) via electrostatic interactions and disulfide bond generation for REPs. As exposed to interstitial fluid from root canal infection, DA@Au NCs can swell and fill the canal to thoroughly contact with bacteria in its biofilm. The increasing interstitial fluid and its internal protease can trigger the degradation of DA@Au NC hydrogel to release DA, and it has been found that the cross-linking time of hydrogel can regulate its degradation time because of the positive correlation between them. Au NC hydrogel has the characteristics of radiographical visualization to track the drug location and release dynamics. These properties can improve the antimicrobial efficiency, achieve long-term antibacterial effects, and reduce cells toxicity. Moreover, the hydrogel can also kill planktonic bacteria and biofilm, even penetrating dentin tubules. Attributed to the introduction of Au NCs, it also supports stem cell proliferation, migration, adhesion, and mineralization by regulating the expression of alkaline phosphatase (ALP). The in vivo experiments also verified that the multiple properties of DA@Au NC hydrogel offer a solution to address the problem of REPs.
Collapse
Affiliation(s)
- Beibei Xie
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chunyun Liang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Cong Liu
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xu Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hailun Zhou
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Zhou
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Kangjing Li
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huasheng Xu
- Stomatology Department, Affiliated Minzu Hospital of Guangxi Medical University, Guangxi, Nanning, Guangxi 530001, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hao Zhang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dan Liang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ao Long
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shufang Zhuo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xuan He
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dan Lin
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhiyong Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Wenxia Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Conservative Dentistry & Endodontics Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yaling Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinglu Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Experimental Research Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
- Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Chen Y, Wang Q, Li M, Fang Y, Bi X, Wu J, Han Q, Zhu H, Shen Z, Wang X. Nell-1 inhibits lipopolysaccharide-activated macrophages into M1 phenotype through the modulation of NF-κB pathway. J Mol Histol 2025; 56:108. [PMID: 40095095 DOI: 10.1007/s10735-025-10385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Nel-like molecule-1 (Nell-1), as a novel osteo-inductive molecule with great potential for clinical applications, has various functions including promoting chondrogenesis, suppressing osteoclastic activity, promoting osteogenesis, suppressing inflammation and promoting vascularization. Its anti-inflammatory potential has been widely studied. However, its anti-inflammatory potential in macrophage and possible underlying molecular mechanisms are poorly understood. Therefore, the present study aims to evaluate the anti-inflammatory potential and the regulation to macrophage polarization of Nell-1 in human myeloid cell line (THP-1) derived macrophages. M1-related markers and M2-related markers were studied in THP-1 derived macrophages. The suppressive potential of Nell-1 on lipopolysaccharide (LPS)-induced translocation of nuclear factor-kappa B (NF-κB) in THP-1 macrophage was studied. Results showed that Nell-1 significantly reduced M1 macrophage-related surface marker cluster of differentiation 86 (CD86) and inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) and reversed the LPS-induced M1 polarization of macrophages by upregulating the M2-specific markers of vascular endothelial growth factor (VEGF), arginase-1(Arg-1), and cluster of differentiation 206 (CD206) in vitro. In addition, the possible mechanism of the anti-inflammatory effects of Nell-1 is via regulating NF-κB pathway. Hence, Nell-1 is a potential suppressor of inflammation and is involved in the regulation of macrophage polarization. Nell-1 may be a potential candidate for treating inflammatory diseases and promoting tissue regeneration.
Collapse
Affiliation(s)
- Yue Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qiang Wang
- Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Stomatological Hospital, Jinan, 250001, Shandong Province, China
| | - Mengyue Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yixuan Fang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiuting Bi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiameng Wu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Qi Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Hongfan Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Zhien Shen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Xiaoying Wang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Zhang J, Yu Z, Wang M, Kang X, Wu X, Yang F, Yang L, Sun S, Wu LA. Enhanced exosome secretion regulated by microglial P2X7R in the medullary dorsal horn contributes to pulpitis-induced pain. Cell Biosci 2025; 15:28. [PMID: 39987146 PMCID: PMC11847359 DOI: 10.1186/s13578-025-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/06/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain. METHODS An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β. RESULTS In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses. CONCLUSION This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Mingjun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoning Kang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoke Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fengjiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Li-An Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Li C, Sun Y. Investigation of chromatin remodeling-related biomarkers and associated molecular mechanism in pulpitis. Gene 2025; 934:149016. [PMID: 39433267 DOI: 10.1016/j.gene.2024.149016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
The current study aimed to identify potential chromatin remodeling-related biomarkers and the associated molecular mechanisms in pulpitis. Differentially expressed genes associated with chromatin remodeling (DECRGs) were identified using datasets from an online database. Enrichment and protein-protein interaction (PPI) network analyses were performed based on the DECRGs to identify biomarkers for pulpitis, followed by GSEA (gene set enrichment analysis). The diagnostic value of these biomarkers were evaluated by ROC (Receiver operating characteristic) and nomogram investigation. Next, microRNA(miRNA)-mRNA-TF (transcription factor), ceRNA (competing endogenous RNA), and drug prediction networks were constructed based on the biomarkers. Finally, reverse transcription-real-time quantitative PCR analysis and western blot were performed to validate the results of the bioinformatic analysis. This study identified 87 DECRGs between pulpitis and normal dental pulp samples that were mainly enriched in chromatin remodeling functions and pathways in cancer. A PPI network identified five biomarkers: TNF, STAT3, MYC, ACTB, and MAPK8. ROC and nomogram analyses demonstrated the diagnostic value of these biomarkers. GSEA of biomarkers such as STAT3 was mainly enriched in functions such as the B cell receptor signaling pathway. A biomarker-disease network and miRNA-mRNA-TF interactions were constructed using these biomarkers. A ceRNA network was constructed with interactions including chr22-38_28785274-29006793.1-miR-125b-5p-STAT3. A drug-gene network was established using 170 drugs and five biomarkers. Finally, qRT-PCR was used to validate the expression of all five biomarkers identified by the bioinformatics analysis. TNF, STAT3, MYC, ACTB, and MAPK8 are potential chromatin remodeling-related diagnostic markers for pulpitis. Moreover, long non-coding RNA (lncRNA) chr22-38_28785274-29006793.1 might function as a ceRNA to regulate the expression of the chromatin remodeling gene STAT3 by sponging miR-125b-5p in pulpitis.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Stomatology, Sunshine Union Hospital, Weifang 261000, China
| | - Yujiao Sun
- Department of Stomatology, Sunshine Union Hospital, Weifang 261000, China.
| |
Collapse
|
6
|
Fuchen-Ramos DM, Leija-Montoya AG, González-Ramírez J, Isiordia-Espinoza M, García-Arévalo F, Pitones-Rubio V, Olvera-Sandoval C, Mateos-Corral I, Serafín-Higuera N. Current Insights into the Roles of LncRNAs and CircRNAs in Pulpitis: A Narrative Review. Int J Mol Sci 2024; 25:13603. [PMID: 39769365 PMCID: PMC11677139 DOI: 10.3390/ijms252413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Pulpitis, an inflammation of the dental pulp, is generated by bacterial invasion through different ways as caries. In the establishment and development of this disease, different biological processes are involved. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are transcripts with regulatory capacity participating in different biological functions and have been implicated in different diseases. The aim of this narrative review is to critically analyze available evidence on the biological role of lncRNAs and circRNAs in pulpitis and discuss possible new research prospects. LncRNAs and circRNAs involved in pulpitis were explored, addressing their expression, molecular mechanisms, targets and biological effects studied in animal and in vitro models, as well as in studies in human patients. LncRNAs and circRNAs are emerging as key regulators of diverse biological functions in pulpitis including apoptosis, proliferation, differentiation, oxidative stress, autophagy, ferroptosis, inflammation and immune response. The molecular mechanisms performed by these non-coding RNAs (ncRNAs) involved interactions with miRNAs and the formation of regulatory networks in the context of pulpitis. Further studies more deeply analyzing the participation of lncRNAs and circRNAs in pulpitis will reveal the potential applications of these ncRNAs as biomarkers or their use in therapeutic strategies in pulp inflammation.
Collapse
Affiliation(s)
- Dulce Martha Fuchen-Ramos
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico;
| | - Mario Isiordia-Espinoza
- Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, JAL, Mexico;
| | - Fernando García-Arévalo
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Viviana Pitones-Rubio
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Carlos Olvera-Sandoval
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico; (A.G.L.-M.); (C.O.-S.)
| | - Isis Mateos-Corral
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Centro de Ciencias de la Salud Mexicali, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico; (D.M.F.-R.); (F.G.-A.); (V.P.-R.); (I.M.-C.)
| |
Collapse
|
7
|
Alrshedan A, Elsafadi M, Muthurangan M, Al-Hadlaq S. Tumor Necrosis Factor Superfamily 14 Regulates the Inflammatory Response of Human Dental Pulp Stem Cells. Curr Issues Mol Biol 2024; 46:13979-13990. [PMID: 39727964 PMCID: PMC11727631 DOI: 10.3390/cimb46120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Dental caries is a highly prevalent chronic disease that leads to dental pulp inflammation. It is treated by removing the damaged tooth structure and applying a material that promotes resolution of pulpal inflammation. Tumor necrosis factor superfamily 14 (TNFSF14) is an immunomodulatory cytokine and a member of the TNF superfamily. This study aimed to evaluate the effect of TNFSF14 on the levels of inflammatory cytokines involved in pulpal inflammation using lipoteichoic acid (LTA)-induced human dental pulp stem cells (hDPSCs). hDPSCs were cultured and induced with LTA, followed by treatment with TNFSF14 at 25 and 50 ng/mL. Cellular viability was evaluated using the Alamar Blue assay. The levels of inflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were quantified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). TNFSF14 at 25 and 50 ng/mL significantly reduced the mRNA and protein levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-8, and increased the anti-inflammatory cytokine IL-10. In addition, TNFSF14-treated groups enhanced cell viability. Adding TNFSF14 to LTA-induced hDPSCs regulated the production of inflammatory cytokines by lowering the levels of IL-6, IL-8, and TNF-α and elevating IL-10 levels.
Collapse
Affiliation(s)
- Abdulelah Alrshedan
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (M.E.); (M.M.)
| | - Manikandan Muthurangan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (M.E.); (M.M.)
| | - Solaiman Al-Hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| |
Collapse
|
8
|
Hu P, Long P, Li R, Lan X, He Y, Li G, Li S. Blockade of connexin43-containing hemichannel attenuates the LPS-induced inflammatory response in human dental pulp cells by inhibiting the extracellular flux of ATP and HMGB1. FRONTIERS IN ORAL HEALTH 2024; 5:1496819. [PMID: 39687479 PMCID: PMC11646852 DOI: 10.3389/froh.2024.1496819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Tissue repair can be promoted by moderate inflammation but suppressed by excessive levels. Therefore, control of excessive inflammation following removal of infection plays a critical role in promotion of pulpal repair. Connexin 43 (Cx43) forms hemichannels (HCs) or gap channels (GJs) to facilitate the delivery of small molecules between cells to regulate both inflammation and repair. Understanding the role of Cx43 in dental pulp may help develop a potential strategy to attenuate the inflammation and promote the formation of reparative dentin in deep caries. Methods We firstly investigated the expression profile of Cx43 in infected human third molars by histological analysis; then, we detected channel activity of Cx43 and the effect of mediating release of small molecules in lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (hDPCs) by molecular biology methods. Results were analyzed by one-way ANOVA and the unpaired t-test. The level of significance was set at α = 0.05. Results Analysis showed that the expression of Cx43 was upregulated in human third molars as the degree of infection increased, and Cx43 was not only expressed in odontoblast layer, but also detected in cell-rich zone and pulp proper. LPS activated Cx43 HCs in hDPCs while inhibiting GJs; blockade of Cx43 HCs attenuated LPS-induced inflammation. Furthermore, LPS promoted the extracellular release of adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1) within hDPCs, thus exacerbating LPS-induced inflammation. The blockade of Cx43 HCs inhibited the extracellular release of ATP and HMGB1 within hDPCs. Conclusion Collectively, our finding suggested that Cx43 plays a key role in infection and inflammation in dental pulp. LPS activates Cx43 HCs to mediate the extracellular release of ATP and HMGB1 to exacerbate LPS-induced inflammation of hDPCs.
Collapse
Affiliation(s)
- Peiling Hu
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Ping Long
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Ruotong Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Xiaorong Lan
- School of Stomatology, Southwest Medical University, Lu Zhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Yuanpei He
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| | - Guangwen Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Shiting Li
- School of Stomatology, Southwest Medical University, Lu Zhou, China
| |
Collapse
|
9
|
Louzada LM, Arruda-Vasconcelos R, Kearney M, Yamauchi Y, Gomes BPFA, Duncan HF. Teeth with vital pulps and stage III periodontitis unresponsive to therapy exhibit a pulpal inflammatory profile similar to symptomatic irreversible pulpitis. Int Endod J 2024; 57:1769-1782. [PMID: 39189896 DOI: 10.1111/iej.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
AIM The aim of this study is to investigate the expression of inflammatory biomarkers (TNF-α, IL-10, IL-1β) and the pulpitis-associated miRNA (miR-30a-5p and miR-128-3p) in pulp tissue samples from unrestored teeth with a vital normal pulp (NP), teeth with symptomatic irreversible pulpitis (IP) and in unrestored teeth with periodontal disease, unresponsive to periodontal therapy, and a vital pulp (EP). METHODOLOGY Thirty patients were included in this observational study (10 teeth with NP, 10 teeth with IP, 10 teeth with EP). Dental pulp tissues samples were collected from patients during root canal treatment (RCT). RNA was extracted and qRT-PCR of target genes (tumour necrosis factor [TNF]-α, interleukin [IL]-1β, IL-10) and miRNAs (has-miR-30a-5p, has-miR-128-3p) performed to assess the expression profile. Fold-change in expression was calculated using the formula 2-(ΔCt(Exp)-ΔCt(Ctrl)). One-way anova with post-hoc Tukey's was used to determine significant differences between groups. The significance level was set at 5% (p < .05). All teeth were also followed up clinically for 1 year and evaluated for a range of endodontic and periodontal-related outcomes. RESULTS All investigated genes significantly increased in expression and miRNAs significantly decreased in expression in the IP and EP groups compared with the NP group (p < .05). With regards to TNF-α and IL-1β there were no significant differences in expression between the IP and EP groups (p > .05), whereas IL-10 expression levels were significantly reduced in the EP compared with the IP group (p < .05). Both miR-30a-5p and miR-128-3p showed significantly reduced expression in both IP and EP lesions, compared with NP (p < .05); however, no significant differences in miRNA expression were observed between IP and EP groups (p > .05). One year after root canal treatment and periodontal maintenance, tooth mobility and probing depth were significantly reduced in the EP group (p < .05). CONCLUSION Pulp tissues from teeth with IP and EP presented similar levels of altered inflammatory markers compared with NP. TNF-α, IL-10, IL-1β cytokines and miRNAs (miR-30a-5p and miR-128-3p) are potential objective biomarkers to indicate pulpal inflammatory status, aiding diagnosis and directing clinical decision-making. RCT may be beneficial to improve stage III periodontitis unresponsive to non-surgical periodontal treatment, but further research is required.
Collapse
Affiliation(s)
- Lidiane Mendes Louzada
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Rodrigo Arruda-Vasconcelos
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Michaela Kearney
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Yukako Yamauchi
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, São Paulo, Brazil
| | - Henry F Duncan
- Division of Restorative Dentistry and Periodontology, Trinity College Dublin, Dublin Dental University Hospital, Dublin, Ireland
| |
Collapse
|
10
|
Zhao Y, Chen J, Kong L, Zhang Q, Zhu Q. The Immune Regulatory Mechanism of Adrenomedullin on Promoting the Proliferation and Differentiation of Dental Pulp Stem Cells. Int Dent J 2024; 74:1386-1396. [PMID: 38806333 PMCID: PMC11551551 DOI: 10.1016/j.identj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE This research seeks to analyse the immunomodulatory impacts of adrenomedullin (ADM) on macrophages induced by bacterial lipopolysaccharide and to investigate the influence of macrophage-conditioned media from various stimulating factors on the biological activity of dental pulp stem cells (DPSCs) in vitro. METHODS The polarisation effect of ADM on macrophages was analysed through cell immunofluorescence staining and flow cytometry. Potential mechanisms were explored through transcriptomics and metabolomics. The impact of different macrophage-conditioned media on the biological activity of DPSCs was evaluated through western blotting, Realtime fluorescence quantitative, alkaline phosphatase activity assay, and eosin red staining. Each experiment was performed with 3 biological and 3 technical duplicate measurements. Statistical analysis was performed with t test and one-way ANOVA, and mathematical significance defined as P < .05. RESULTS ADM can reverse polarisation of macrophages towards M2 phenotype by Lipopolysaccharide and the conditioned media of ADM-induced M2 polarised macrophages significantly enhances the proliferation and differentiation of DPSCs. The mechanism may involve the metabolic reprogramming of macrophages by ADM, specifically promoting the metabolic shift from glycolysis to mitochondrial oxidative phosphorylation in Lipopolysaccharide-induced macrophages. CONCLUSION These results indicate that ADM is involved in suppressing inflammation and enhancing the proliferation and differentiation of DPSCs by reprogramming macrophage metabolism.
Collapse
Affiliation(s)
- Yangpeng Zhao
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qian Zhang
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University, Changhai Hospital, Shanghai, China.
| |
Collapse
|
11
|
Nawal RR, Yadav S, Duncan HF, Talwar S, Kaushik A, Singh VK, Koner BC. Discriminatory performance of the pulpal inflammatory biomarkers; Interleukin-8 and TNF-α in patients with symptoms indicative of reversible and irreversible pulpitis: A diagnostic accuracy study. Int Endod J 2024; 57:1200-1211. [PMID: 38703070 DOI: 10.1111/iej.14078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
AIM The success of vital pulp treatment (VPT) procedures is dependent on an accurate diagnosis of the pulpal inflammatory condition. Compared with current subjective pulpal diagnostic tests, inflammatory molecular biomarkers involved in the pathogenesis of pulpitis represent potential objective indicators of the degree of pulpal inflammation. Therefore, the aim of this study was to quantify level of inflammatory biomarkers - Interleukin 8 (IL-8) and TNF-α in patients diagnosed with reversible pulpitis (RP), irreversible pulpitis (IR) and normal pulp (NP) and investigate their diagnostic accuracy in differentiating between healthy and inflamed conditions. METHODOLOGY This prospective, cross-sectional study enrolled 72 patients aged 14-53 years with extremely deep carious lesions after establishing a clinical diagnosis of RP (n = 42), symptomatic IR (n = 22) and NP (n = 8). 50 μL of pulpal blood sample was collected from all the patients using a micropipette after pulpal exposure. The level of IL-8 and TNF-α was assessed in pg/mL using enzyme-linked immunosorbent assays. Mann-Whitney U test was applied to establish the association between IL-8/TNF-α level and degree of pulp inflammation. Receiver operating curve (ROC) analysis was carried out to calculate area under the curve (AUC) for RP versus IR. Cut-off values were established using Youden's index. RESULTS IL-8 and TNF-α levels differed significantly between RP and IR groups (p ≤ .001). The median value of IL-8 in RP and IP groups was 259.8 pg/mL [187.5-310.0] and 1357.8 pg/mL [1036.7-2177.6] respectively. The AUC-ROC curve for RP versus IR was 0.997 with 95.5% sensitivity and 99.76% specificity. The median value of TNF-α in RP and IR groups was 75.4 pg/mL [62.7-95.8] and 157.6 pg/mL [94.1-347.3]. The AUC-ROC curve for TNF-α was 0.812 with a sensitivity and specificity of 59.1% and 92.1%, respectively. IL-8 and TNF-α levels were below detection levels for all NP samples. CONCLUSION This study showed that pulpal blood could provide an excellent medium for establishing pulpal diagnosis under extremely deep carious lesions. The selected cytokines, IL-8 and TNF-α, demonstrated excellent discriminatory performance for reversible and irreversible pulpitis. Future studies should correlate the IL-8/TNF-α levels with VPT treatment outcomes.
Collapse
Affiliation(s)
- Ruchika Roongta Nawal
- Department of Conservative Dentistry & Endodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Sudha Yadav
- Department of Conservative Dentistry & Endodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Henry Fergus Duncan
- Division of Restorative Dentistry, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sangeeta Talwar
- Department of Conservative Dentistry & Endodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Aishvarya Kaushik
- Department of Conservative Dentistry & Endodontics, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Vijay K Singh
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Bidhan C Koner
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
12
|
Sarfi S, Azaryan E, Naseri M. Immune System of Dental Pulp in Inflamed and Normal Tissue. DNA Cell Biol 2024; 43:369-386. [PMID: 38959180 DOI: 10.1089/dna.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Teeth are vulnerable to structural compromise, primarily attributed to carious lesions, in which microorganisms originating from the oral cavity deteriorate the mineralized structures of enamel and dentin, subsequently infiltrating the underlying soft connective tissue, known as the dental pulp. Nonetheless, dental pulp possesses the necessary capabilities to detect and defend against bacteria and their by-products, using a variety of intricate defense mechanisms. The pulp houses specialized cells known as odontoblasts, which encounter harmful substances produced by oral bacteria. These cells identify pathogens at an early stage and commence the immune system response. As bacteria approach the pulp, various cell types within the pulp, such as different immune cells, stem cells, fibroblasts, as well as neuronal and vascular networks, contribute a range of defense mechanisms. Therefore, the immune system is present in the healthy pulp to restrain the initial spread of pathogens, and then in the inflamed pulp, it prepares the conditions for necrosis or regeneration, so inflammatory response mechanisms play a critical role in maintaining tissue homeostasis. This review aims to consolidate the existing literature on the immune system in dental pulp, encompassing current knowledge on this topic that explains the diverse mechanisms of recognition and defense against pathogens exhibited by dental pulp cells, elucidates the mechanisms of innate and adaptive immunity in inflamed pulp, and highlights the difference between inflamed and normal pulp tissue.
Collapse
Affiliation(s)
- Sepideh Sarfi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsaneh Azaryan
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular, and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
13
|
Xiao WX, Yang X, Wang M. Drug sensitivity testing during dental pulp-dentin complex repair: its effect on treatment outcome and prognosis. Am J Transl Res 2024; 16:2814-2827. [PMID: 39114684 PMCID: PMC11301483 DOI: 10.62347/icyr9713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To assess the efficacy of targeted therapy based on drug sensitivity testing (DST) results in patients with acute pulpitis (AP). METHODS A total of 80 cases of AP were included retrospectively and divided into two groups: control (Ctrl) group (conventional drug palliative therapy, n=40) and experimental (Exp) group (DST + non-resistant drugs, n=40). The clinical data and laboratory examination data of patients, including bacterial culture data, drug sensitivity test results, Ca and P contents in dental pulp, visual analogue scale (AVS), treatment satisfaction, and dental pulp incidence, were collected and analyzed. RESULTS Prevotella melaninogenica, Fusobacterium nucleatum, and Porphyromonas gingivalis exhibited higher resistance rates (RS) to penicillin and amoxicillin but no resistance to imipenem and metronidazole. The content of Ca and P in the dental pulp of the Exp group patients was significantly higher than that of the Ctrl group (P=0.006). The total response rate (95% vs. 77.5%, P=0.018) and overall patient satisfaction (92.5% vs. 80%, P=0.021) were also significantly higher in the Exp group than in the Ctrl group. Additionally, when the follow-up duration exceeded 1 year, the incidence of dental pulp reactions in the Exp group was significantly lower than that of the Ctrl group (P=0.026). CONCLUSIONS These findings suggest that Gram-negative anaerobes are the predominant oral pathogens in patients with AP. Imipenem and metronidazole demonstrate the most effective anti-infective properties against these anaerobes. Utilizing DST to select non-resistant drugs for treatment prior to therapy effectively enhances clinical outcomes for patients with AP.
Collapse
Affiliation(s)
- Wei-Xiong Xiao
- Department of Stomatology, Wangjiang Hospital, Sichuan UniversityChengdu 610065, Sichuan, China
| | - Xi Yang
- Department of Stomatology, Stomatological Hospital of Chongqing Medical UniversityChongqing 400015, China
| | - Min Wang
- Department of Stomatology, Wangjiang Hospital, Sichuan UniversityChengdu 610065, Sichuan, China
| |
Collapse
|
14
|
Barbero-Navarro I, Irigoyen-Camacho ME, Zepeda-Zepeda MA, Ribas-Perez D, Castaño-Seiquer A, Sofian-Pauliuc I. Understanding the Dynamics of Inflammatory Cytokines in Endodontic Diagnosis: A Systematic Review. Diagnostics (Basel) 2024; 14:1099. [PMID: 38893626 PMCID: PMC11171959 DOI: 10.3390/diagnostics14111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The primary aim of this literature review is to delineate the key inflammatory cytokines involved in the pathophysiology of pulp inflammation. By elucidating the roles of these cytokines, a deeper comprehension of the distinct stages of inflamed pulp can be attained, thereby facilitating more accurate diagnostic strategies in endodontics. The PRISMA statement and Cochrane handbook were used for the search strategy. The keywords were created based on the review question using the PICO framework. The relevant studies were meticulously assessed according to predefined inclusion and exclusion criteria for this systematic review. A rigorous quality checklist was implemented to evaluate each included study, ensuring scrutiny for both quality and risk-of-bias assessments. The initial pilot search conducted on PubMed, Scopus, Cochrane, and WoS databases yielded 9 pertinent articles. Within these articles, multiple cytokines were identified and discussed as potential candidates for use in endodontic diagnosis, notably including IL-8, IL-6, TNF-α, and IL-2. These cytokines have been highlighted due to their significant roles in the inflammatory processes associated with pulp pathology. The identification of specific inflammatory cytokines holds promise for enhancing endodontic diagnostic procedures and exploring diverse treatment modalities. However, the current body of research in this area remains limited. Further comprehensive studies are warranted to fully elucidate the potential of cytokines in refining diagnostic techniques in endodontics.
Collapse
Affiliation(s)
| | | | | | - David Ribas-Perez
- Dental School, University of Seville, 41009 Seville, Spain; (I.B.-N.)
| | | | | |
Collapse
|
15
|
Chen L, Zhu M, Zhang C, Wang Z, Lyu X, Xu W, Wu B. Osteopontin interacts with dendritic cells and macrophages in pulp inflammation: Comprehensive transcriptomic analysis and laboratory investigations. Int Endod J 2024; 57:464-476. [PMID: 38279773 DOI: 10.1111/iej.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
AIM To investigate novel diagnostic markers for pulpitis and validate by clinical samples from normal and inflamed pulp. To explore the relationship between diagnostic markers and immune cells or their phenotypes during pulp inflammation. METHODOLOGY Two microarray datasets, GSE77459 and GSE92681, and identified differential expression genes were integrated. To understand immune features, gene functions, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO) and ImmuneSigDB Gene Set Enrichment Analysis (GSEA) were analysed. For predictive purposes, machine learning techniques were applied to detect diagnostic markers. Immune infiltration in inflamed pulp was studied using CIBERSORT. The relationship between diagnostic markers and immune cells was investigated and validated their gene expression in clinical samples from the normal or inflamed pulp by qRT-PCR. Finally, the correlation between one marker, secreted phosphoprotein 1 (SPP1), encoding osteopontin (OPN), and dendritic cells (DCs)/macrophages was identified via HE staining and multiplex immunohistochemistry. An in vitro inflammatory dental pulp microenvironment model of THP-1 macrophages cocultured with dental pulp cells derived conditioned media (DPCs-CM) to investigate OPN production and macrophage phenotypes was established. RESULTS Analysis revealed unique immunologic features in inflamed pulp. Three diagnostic markers for pulpitis: endothelin-1 (EDN1), SPP1, and purine nucleoside phosphorylase (PNP), and validated them using qRT-PCR were predicted. Multiplex immunohistochemistry demonstrated OPN co-localized with activated DCs and M2 macrophages during pulp inflammation. In vitro experiments showed that THP-1 macrophages produced the highest levels of OPN when stimulated with DPCs-CM derived from the 20 μg/mL LPS pre-conditioned group, suggesting an M2b-like phenotype by increasing surface marker CD86 and expression of IL6, TNFα, IL10, and CCL1 but not CCL17 and MerTK. Levels of CCL1 and IL10 elevated significantly in the macrophages' supernatant from the 20 μg/mL LPS pre-conditioned CM group. OPN was proven co-localizing with CD86 in the inflamed pulp by immunofluorescence. CONCLUSIONS The current findings suggest that OPN can serve as a promising biomarker for pulpitis, correlated with DCs and macrophages. OPN+ macrophages in the inflamed pulp are associated with M2b-like phenotypes. These insights offer the potential for improved diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Leyi Chen
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqi Zhu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuhan Zhang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Ziting Wang
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaolin Lyu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Wenan Xu
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Dentistry, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
| | - Buling Wu
- Department of Endodontics, Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Guo X, Li J, Wu Y, Xu L. Recent advancements in hydrogels as novel tissue engineering scaffolds for dental pulp regeneration. Int J Biol Macromol 2024; 264:130708. [PMID: 38460622 DOI: 10.1016/j.ijbiomac.2024.130708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Although conventional root canal treatment offers an effective therapeutic solution, it negatively affects the viability of the affected tooth. In recent years, pulp regeneration technology has emerged as a novel method for treating irreversible pulpitis due to its ability to maintain tooth vitality. The successful implementation of this technique depends on scaffolds and transplantation of exogenous stem cells or recruitment of endogenous stem cells. Accordingly, the three-dimensional structure and viscoelastic characteristics of hydrogel scaffolds, which parallel those of the extracellular matrix, have generated considerable interest. Furthermore, hydrogels support the controlled release of regenerative drugs and to load a wide variety of bioactive molecules. By integrating antibacterial agents into the hydrogel matrix and stimulating an immune response, root canal disinfection can be significantly improved and the rate of pulp regeneration can be accelerated. This review aims to provide an overview of the clinical applications of hydrogels that have been reported in the last 5 years, and offer a comprehensive summary of the different approaches that have been utilized for the optimization of hydrogel scaffolds for pulp regeneration. Advancements and challenges in pulp regeneration using hydrogels treating aged teeth are discussed.
Collapse
Affiliation(s)
- Xiaofei Guo
- Xiangya Shool of Stomatology, Central South University, Changsha, Hunan, China
| | - Jiaxuan Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Yong Wu
- Department of Nephrology, The Second Xiangya Hospital, Key Laboratory of Kidney Disease and Blood Purification, Central South University, Changsha, Hunan, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China; School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
17
|
Chandwani ND, Gedam UD, Deshmukh R, Dakshindas DM, Shrigiriwar M. Mines of cytokine: A treasure trove in pulpal and periapical diseases. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:227-232. [PMID: 38634023 PMCID: PMC11019815 DOI: 10.4103/jcde.jcde_289_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 04/19/2024]
Abstract
Pulpitis is a special disease of dental pulp. It causes localized inflammation, due to various inflammatory mediators such as cytokines and chemokines. These inflammatory mediators are responsible for various reparative and resorptive processes in the dental pulp. The balance between these processes ultimately determines the viability of the tooth. Due to the important properties of various inflammatory markers, the correlation of cytokinin gene expression in various stages of inflammation becomes necessary to focus on. Several studies in the past have focused on the importance of such correlation to help in diagnostic applications. The nature of these inflammatory mediators can help us in diagnostic evaluation. Several attempts have been made to focus on these associations so that it can assist in making clinical decisions effectively. The data available are vast but are the most neglected topic. This review article briefly outlines and summarizes the importance of various inflammatory mediators such as cytokinin and chemokines in various pathways of pulpal and periapical inflammation in explanatory and diagrammatic forms. Knowledge gained about pulpal inflammatory response may aid in understanding the molecular level of inflammatory pulpal and periapical diseases, which shall modify our future diagnostic modalities. Several medicaments are used in the treatment of minimal to advanced dental caries which leads to periapical infections. Thorough understanding of these medicaments can resolve secondary infection and can improve the prognosis of the treated tooth.
Collapse
Affiliation(s)
- Neelam D Chandwani
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Unnati Devanand Gedam
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Ranjana Deshmukh
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Darshan M Dakshindas
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Nagpur, Maharashtra, India
| | - Manish Shrigiriwar
- Department of FMT, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| |
Collapse
|
18
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
19
|
Wang H, Chen X, Zhang L, Han Z, Zheng J, Qi Y, Zhao W, Xu X, Li T, Zhou Y, Bao P, Xue X. Dual-Fuel Propelled Nanomotors with Two-Stage Permeation for Deep Bacterial Infection in the Treatment of Pulpitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305063. [PMID: 38044274 PMCID: PMC10837366 DOI: 10.1002/advs.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/05/2023] [Indexed: 12/05/2023]
Abstract
Bacterial infection-induced inflammatory response could cause irreversible death of pulp tissue in the absence of timely and effective therapy. Given that, the narrow structure of root canal limits the therapeutic effects of passive diffusion-drugs, considerable attention has been drawn to the development of nanomotors, which have high tissue penetration abilities but generally face the problem of insufficient fuel concentration. To address this drawback, dual-fuel propelled nanomotors (DPNMs) by encapsulating L-arginine (L-Arg), calcium peroxide (CaO2 ) in metal-organic framework is developed. Under pathological environment, L-Arg could release nitric oxide (NO) by reacting with reactive oxygen species (ROS) to provide the driving force for movement. Remarkably, the depleted ROS could be supplemented through the reaction between CaO2 with acids abundant in the inflammatory microenvironment. Owing to high diffusivity, NO achieves further tissue penetration based on the first-stage propulsion of nanomotors, thereby removing deep-seated bacterial infection. Results indicate that the nanomotors effectively eliminate bacterial infection based on antibacterial activity of NO, thereby blocking inflammatory response and oxidative damage, forming reparative dentine layer to avoid further exposure and infection. Thus, this work provides a propagable strategy to overcome fuel shortage and facilitates the therapy of deep lesions.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
- Present address:
Key Laboratory of Radiopharmacokinetics for Innovative DrugsChinese Academy of Medical SciencesTianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Lulu Zhang
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
- School of MedicineNankai UniversityTianjin300071P. R. China
| | - Ziwei Han
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Jinxin Zheng
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Weitao Zhao
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Xihan Xu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Tianqi Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Yutong Zhou
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| | - Pingping Bao
- Tianjin Key Laboratory of Oral and Maxillofacial Function ReconstructionTianjin Stomatological HospitalThe Affiliated Stomatological Hospital of Nankai UniversityTianjin300041P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityHaihe Education Park, 38 Tongyan RoadTianjin300353P. R. China
| |
Collapse
|
20
|
Park JY, Kim HD, Abekura F, Cho SH, Kim CH. A novel Mycobacterium Tuberculosis antigen, MTB48 enhances inflammatory response in LPS-induced RAW264.7 macrophage immune cells. Mol Immunol 2024; 166:50-57. [PMID: 38237322 DOI: 10.1016/j.molimm.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 12/26/2023] [Indexed: 02/12/2024]
Abstract
Mtb (Mycobacterium tuberculosis) is a pathogenic bacterium that causes tuberculosis infection (TB). Mtb-secreted proteins have recently been investigated as virulence factors, as well as therapeutic and vaccine possibilities. The early-secreted antigen target MTB48 is one of these proteins that has been explored as a cocktail antigen in the serodiagnosis of active tuberculosis. However, there exists no information about the function or control of MTB48's inflammatory activity in macrophages at the site of inflammation. As a result, the goal of this research was to figure out what processes are involved in MTB48's function. MTB48 stimulated inflammation in LPS induced macrophages at both the protein and mRNA levels, which was interesting. MTB48 aided LPS induced IB phosphorylation and NF-κB translocation. MTB48 also led to the phosphorylation of MAPK signaling protein. These findings imply that MTB48 can enhance inflammatory activity via NF-κB and MAPK signaling by upregulating COX-2, iNOS, NO and PGE2. Many tuberculosis antigens have been tested for the development of rapid serological diagnosis. The results of this study suggest that MTB48 is a very high conservative antigen and is a major factor causing inflammatory reactions, suggesting that it can help control and diagnose tuberculosis.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Biological Science, SungKyunkwan University, Suwon 16419, Republic of Korea; Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hee-Do Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Fukushi Abekura
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seung-Hak Cho
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Cheorl-Ho Kim
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon 16419, Republic of Korea.
| |
Collapse
|
21
|
Liu G, Bae KB, Yang Y, Lee BN, Hwang YC. Icariin negatively regulated lipopolysaccharide-induced inflammation and ameliorated the odontogenic activity of human dental pulp cells in vitro. Heliyon 2023; 9:e23282. [PMID: 38144358 PMCID: PMC10746513 DOI: 10.1016/j.heliyon.2023.e23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1β (IL-1β), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.
Collapse
Affiliation(s)
- Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Ying Yang
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
22
|
Xiao Z, Zhang Y, She Y, Yuan G, Yang G. IPO7 promotes lipopolysaccharide-induced inflammatory responses in human dental pulp cells via p38 MAPK and NF-κB signaling pathways. Mol Immunol 2023; 163:116-126. [PMID: 37769576 DOI: 10.1016/j.molimm.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Pulpitis is a chronic inflammatory process that greatly affects the physical, mental health and life quality of patients. Human dental pulp cells (hDPCs) are essential components of dental pulp tissue and play a significant role in pulpitis. Lipopolysaccharide (LPS) is an initiator of pulpitis and can induce the production of inflammatory cytokines in hDPCs by activating p38 MAPK and NF-κB signaling pathways. Importin7 (IPO7), a member of the importin-β family, is widely expressed in many tissues. Previous studies have shown that IPO7 mediated nuclear translocation of p-p38 after stimulation, and IPO7 homologous protein IPO8 participated in human dental pulp inflammation. This research aims to investigate whether IPO7 is involved in pulpitis and explore its underlying mechanisms. In the current study, we found the expression of IPO7 was increased in pulpitis tissue. In vitro, hDPCs treated with LPS to mimic the inflammatory environment, the expression of IPO7 was increased. Knockdown of IPO7 significantly inhibited the production of inflammatory cytokines and suppressed the p38 MAPK and NF-κB signaling pathways. Activating the p38 MAPK and NF-κB signaling pathways by the p38 activator and p65 activator reversed the inflammatory responses. IPO7 interacted with p-p38 under LPS stimulation in hDPCs. In addition, the increased binding between IPO7 and p-p38 is associated with the decreased binding ability of IPO7 to Sirt2. In conclusion, we found that IPO7 was highly expressed in pulpitis and played a vital role in modulating human dental pulp inflammation.
Collapse
Affiliation(s)
- Ziqiu Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yawei She
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
| |
Collapse
|
23
|
Takimoto K, Widbiller M, Diogenes A. Expression of Toll-like Receptors in Stem Cells of the Apical Papilla and Its Implication for Regenerative Endodontics. Cells 2023; 12:2502. [PMID: 37887345 PMCID: PMC10605481 DOI: 10.3390/cells12202502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regenerative therapies to replace cells and tissues damaged due to trauma and dental infections require temporal and spatial controlled recruitment and the differentiation of progenitor/stem cells. However, increasing evidence shows microbial antigens can interfere with this process. Toll-like receptors (TLRs) are crucial in recognizing pathogen-associated molecular patterns. Stem cells of the apical papilla (SCAP) are required for normal dental development and are intimately involved in the reparative and regenerative capacity of developing teeth. We hypothesized that TLRs are expressed in SCAP and that the activation of TLR2/TLR4 or TLR3 by different ligands results in differential cellular fate, impacting their differentiation into a mineralizing phenotype. We found that most TLRs are expressed as detected by PCR except TLR7 and TLR8; exposure to heat-killed E. coli results in upregulating TLR2 and TLR4 and reducing mineralization capacity. In addition, bacterial exposure resulted in the upregulation of 11 genes, of which 9 were chemokines whose proteins were also upregulated and released, promoting in vitro macrophage migration. On the other hand, TLR3 activation resulted in increased proliferation and a dramatic inhibition of osteogenic and odontoblastic differentiation, which was reversed by inhibition or the knockdown of TLR3 expression. The profound effects of TLR activation resulting in different cell fates that are ligand and receptor-specific warrants further evaluation and represents an important therapeutic target to make regenerative approaches more predictable following dental infections.
Collapse
Affiliation(s)
- Koyo Takimoto
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (K.T.); (M.W.)
| | - Matthias Widbiller
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (K.T.); (M.W.)
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; (K.T.); (M.W.)
| |
Collapse
|
24
|
Dai Y, Xuan G, Yin M. DUXAP8 Promotes LPS-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. Int Dent J 2023; 73:636-644. [PMID: 36522211 PMCID: PMC10509439 DOI: 10.1016/j.identj.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dysregulated long noncoding RNAs (lncRNAs) are implicated in progression of various diseases, including pulpitis. Double homeobox A pseudogene 8 (DUXAP8) has been found to be upregulated in pulpitis. Herein, the functional mechanism of DUXAP8 in lipopolysaccharide (LPS)-induced pulpitis was explored. MATERIAL AND METHODS DUXAP8, microRNA-18b-5p (miR-18b-5p), or hypoxia-inducible factor 3A (HIF3A) levels were examined through reverse transcription-quantitative polymerase chain reaction assay. Cell behaviours were determined by Cell Counting Kit-8 assay for cell viability, Ethynyl-2'-deoxyuridine (EdU) assay for cell proliferation, and flow cytometry for cell apoptosis. Protein levels were measured using western blot. Inflammatory reaction was analysed via enzyme-linked immunosorbent assay. Oxidative stress was assessed by commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and pull-down assay were used for validation of interaction between targets. RESULTS Cell apoptosis, inflammatory reaction, and oxidative stress were induced by LPS in human dental pulp cells (HDPCs). DUXAP8 upregulation and miR-18b-5p downregulation were found in pulpitis. LPS-induced cell injury was relieved after downregulation of DUXAP8. DUXAP8 interacted with miR-18b-5p. The regulation of DUXAP8 was related to miR-18b-5p sponging function in LPS-treated HDPCs. HIF3A served as a target of miR-18b-5p. MiR-18b-5p protected against LPS-induced cell injury through targeting HIF3A. DUXAP8 targeted miR-18b-5p to regulate HIF3A level. CONCLUSIONS Results demonstrated that LPS-induced cell injury in pulpitis was promoted by DUXAP8 through mediating miR-18b-5p/HIF3A axis.
Collapse
Affiliation(s)
- Ying Dai
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Guihong Xuan
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Min Yin
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
25
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Safari E, Hassanshahi G, Khoshmirsafa M, Karimi M, Mohammadi M, Darehkordi A, Falak R. Antitumor activities of a novel fluorinated small molecule (A1) in CT26 colorectal cancer cells: molecular docking and in vitro studies. J Biomol Struct Dyn 2023; 42:10175-10188. [PMID: 37705281 DOI: 10.1080/07391102.2023.2256406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 μg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 μg/mL dose. The obtained results show that A1 (at a concentration of 40 μg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 μg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ali Darehkordi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Abbasifard M, Fakhrabadi AH, Bahremand F, Khorramdelazad H. Evaluation of the interaction between tumor growth factor-β and interferon type I pathways in patients with COVID-19: focusing on ages 1 to 90 years. BMC Infect Dis 2023; 23:248. [PMID: 37072722 PMCID: PMC10112317 DOI: 10.1186/s12879-023-08225-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Evidence revealed that age could affect immune responses in patients with the acute respiratory syndrome of coronavirus 2 (SARS-CoV-2) infection. This study investigated the impact of age on immune responses, especially on the interaction between the tumor growth factor-β (TGF-β) and interferon type-I (IFN-I) axes in the pathogenesis of novel coronavirus disease 2019 (COVID-19). METHODS This age-matched case-control investigation enrolled 41 COVID-19 patients and 40 healthy controls categorized into four groups, including group 1 (up to 20 years), group 2 (20-40 years), group 3 (40-60 years), and group 4 (over 60 years). Blood samples were collected at the time of admission. The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, interferon regulatory factor 9 (IRF9), and SMAD family member 3 (SMAD3) was measured using the real-time PCR technique. In addition, serum levels of TGF-β, IFN-α, and SERPINE1 were measured by the enzyme-linked immunosorbent assay (ELISA) technique. All biomarkers were measured and analyzed in the four age studies groups. RESULTS The expression of TGF-βRI, TGF-βRII, IFNARI, IFNARII, IRF9, and SMAD3 was markedly upregulated in all age groups of patients compared with the matched control groups. Serum levels of IFN-α and SERPINE1 were significantly higher in patient groups than in control groups. While TGF-β serum levels were only significantly elevated in the 20 to 40 and over 60 years patient group than in matched control groups. CONCLUSIONS These data showed that the age of patients, at least at the time of admission, may not significantly affect TGF-β- and IFN-I-associated immune responses. However, it is possible that the severity of the disease affects these pathway-mediated responses, and more studies with a larger sample size are needed to verify it.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hasani Fakhrabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Bahremand
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn-Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Ha YE, Ju So Y, Im J, Yun CH, Park JC, Hyun Han S. TLR3 recognition of viral double-stranded RNA in human dental pulp cells is important for the innate immunity. Int Immunopharmacol 2023; 119:110161. [PMID: 37060811 DOI: 10.1016/j.intimp.2023.110161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
Dental caries or trauma can expose human dental pulp cells (DPCs) to various oral microorganisms, which play an important role in the development of an innate immune response. In the present study, we examined the expression of Toll-like receptors (TLRs) for sensing microbe-associated molecular patterns in human DPCs. Interestingly, real-time PCR analysis demonstrated that TLR3 is the most highly expressed among 10 different TLRs in human DPCs. Poly(I:C), a representative TLR3 ligand mimicking viral double-stranded RNA, potently induced IL-8 expression in a time- and dose-dependent manner. Concordantly, poly(I:C) treatment substantially increased the expression of pro-inflammatory cytokines and chemokines such as IL-6, CCL2, and CXCL10. Human DPCs transfected with TLR3 siRNA exhibited decreased IL-8 production compared with non-targeting siRNA-transfected cells, suggesting that the expression of poly(I:C)-induced inflammatory cytokines is dependent on TLR3. IL-8 secretion induced by poly(I:C) was down-regulated by MAP kinase inhibitors, indicating that the MAP kinase pathway contributes to IL-8 production. Furthermore, C/EBPβ and NF-κB were essential transcriptional factors for poly(I:C)-induced IL-8 expression, as demonstrated by the transient transfection and reporter gene assay. Since lipoproteins are known as major immunostimulatory components of bacteria, human DPCs were treated with poly(I:C) together with Pam2CSK4, a synthetic lipopeptide mimicking bacterial lipoproteins. Pam2CSK4 and poly(I:C) co-treatment synergistically increased IL-8 production in comparison to Pam2CSK4 or poly(I:C) alone, implying that co-infection of viruses and bacteria can synergistically induce inflammatory responses in the dental pulp. Taken together, these results suggest that human DPCs potentially sense and respond to viral double-stranded RNAs, leading to effective induction of innate immune responses.
Collapse
Affiliation(s)
- Ye-Eun Ha
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ju So
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo-Cheol Park
- Department of Oral Histology and Developmental Biology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
29
|
Azaryan E, Karbasi S, Saharkhiz M, Hanafi-Bojd MY, Zarban A, Emadian Razavi F, Naseri M. Effect of HM-Exos on the migration and inflammatory response of LPS-exposed dental pulp stem cells. BMC Oral Health 2023; 23:95. [PMID: 36788505 PMCID: PMC9926843 DOI: 10.1186/s12903-023-02796-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
AIM The purpose of this study was to investigate the effects of human milk exosomes (HM-Exos) on the viability, migration, and inflammatory responses of lipopolysaccharide (LPS)-exposed human dental pulp stem cells (HDPSCs) in vitro. METHODS HM-Exos were isolated, and dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to analyze their physical properties (size and shape). To construct an in vitro inflammation model, HDPSCs were exposed to LPS. The MTT test and migration assay were used to investigate the effect of HM-Exos on cell proliferation and migration, and the quantitative polymerase chain reaction (qPCR) was used to assess the expression of inflammatory genes in HDPSCs. Data were analyzed using a one-way analysis of variance (ANOVA) with Tukey's post-test. RESULTS DLS measurement revealed that HM-Exos were 116.8 ± 3.6 nm in diameter. The SEM and TEM images revealed spherical shapes with diameters of 97.2 ± 34.6 nm. According to the results of the cell viability assay, the nontoxic concentration of HM-Exos (200 µg/ml) was chosen for the subsequent investigations. The migration assay results showed that HM-Exos improved the potential of LPS-exposed HDPSCs to migrate. The qPCR results indicated that HM-Exos significantly reduced the expression of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in HDPSCs after LPS stimulation. CONCLUSIONS HM-Exos increased LPS-exposed HDPSCs migration and proliferation and reduced gene expression of inflammatory cytokines. They may be a viable candidate for pulpitis therapy.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Karbasi
- Department of Molecular Medicine, School of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mansoore Saharkhiz
- Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Asghar Zarban
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Biochemistry Department, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
30
|
Liang C, Wu W, He X, Xue F, Feng D. Circ_0138960 knockdown alleviates lipopolysaccharide-induced inflammatory response and injury in human dental pulp cells by targeting miR-545-5p/MYD88 axis in pulpitis. J Dent Sci 2023; 18:191-202. [PMID: 36643232 PMCID: PMC9831794 DOI: 10.1016/j.jds.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Circular RNAs (circRNAs) have been shown to play important regulatory roles in many human diseases, yet their functions in pulpitis remain to be clarified. This study was designed to investigate the function of circ_0138960 in pulpitis progression and its underlying mechanism. Material and methods Cell viability and proliferation were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Flow cytometry and enzyme-linked immunosorbent assay (ELISA) were conducted to analyze cell apoptosis rate and the release of inflammatory cytokines. The activity of superoxide dismutase (SOD) was analyzed using a SOD assay kit. Dual-luciferase reporter and RNA-pull down assays were performed to verify the interaction between microRNA-545-5p (miR-545-5p) and circ_0138960 or myeloid differentiation primary response gene 88 (MYD88). Results Lipopolysaccharide (LPS) treatment restrained the proliferation and promoted the apoptosis, inflammation, and oxidative stress of human dental pulp cells (hDPCs). LPS treatment dose-dependently up-regulated circ_0138960 expression in hDPCs. Circ_0138960 knockdown overturned LPS-induced inflammation and injury in hDPCs. Circ_0138960 could act as a molecular sponge for miR-545-5p, and circ_0138960 knockdown protected hDPCs from LPS-induced effects by up-regulating miR-545-5p. miR-545-5p directly interacted with the 3' untranslated region (3'UTR) of MYD88, and MYD88 overexpression reversed miR-545-5p-mediated effects in LPS-treated hDPCs. Circ_0138960 positively regulated MYD88 expression by sponging miR-545-5p in hDPCs. LPS could activate nuclear factor kappa-B (NF-κB) signaling by targeting circ_0138960/miR-545-5p/MYD88 axis in hDPCs. Conclusion Circ_0138960 knockdown attenuated LPS-induced inflammatory response and injury in hDPCs by targeting the miR-545-5p/MYD88/NF-κB axis.
Collapse
Affiliation(s)
| | | | | | | | - Daxing Feng
- Corresponding author. Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, No. 10, Haifu Road, Haikou 570100, China.
| |
Collapse
|
31
|
Jiang W, Sun S, Wang D, Qiu J, Song Y, Zhang Q, He W, Song B, Zhang Y, Wang S. MicroRNA-22 suppresses NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokine production by targeting the HIF-1α and NLRP3 in human dental pulp fibroblasts. Int Endod J 2022; 55:1225-1240. [PMID: 35979583 DOI: 10.1111/iej.13814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
AIM To investigate the synergetic regulatory effect of miR-22 on HIF-1α and NLRP3, subsequently regulating the production of the NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokines IL-1β and IL-18 in human dental pulp fibroblasts (HDPFs) during the progression of pulpitis. METHODOLOGY Fluorescence in situ hybridization (FISH) and immunofluorescence (IF) were performed to determine the localization of miR-22-3p, NLRP3 and HIF-1α in human dental pulp tissues (HDPTs). The miR-22 mimics and inhibitor or plasmid of NLRP3 or HIF-1α were used to upregulate or downregulate miR-22 or NLRP3 or HIF-1α in HDPFs, respectively. Computational prediction via TargetScan 5.1 and a luciferase reporter assay were conducted to confirm target association. The mRNA and protein expression of HIF-1α, NLRP3, caspase-1, IL-1β and IL-18 were determined by qRT-PCR and western blotting, respectively. The release of IL-1β and IL-18 was analysed by ELISA. The significance of the differences between the experimental and control groups was determined by one-way analysis of variance, p < .05 indicated statistical significance. RESULTS A decrease in miR-22 and an increase in HIF-1α and NLRP3 in HDPTs occurred during the transformation of reversible pulpitis into irreversible pulpitis compared with that in the healthy pulp tissues (p < .05). In the normal HDPTs, miR-22-3p was extensively expressed in dental pulp cells. HIF-1α and NLRP3 were mainly expressed in the odontoblasts and vascular endothelial cells. Whereas in the inflamed HDPTs, the odontoblast layers were disrupted. HDPFs were positive for miR-22-3p, HIF-1α and NLRP3. Computational prediction via TargetScan 5.1 and luciferase reporter assays confirmed that both NLRP3 and HIF-1α were direct targets of miR-22 in HDPFs. The miR-22 inhibitor further promoted the activation of NLRP3/CASP1 inflammasome pathway induced by ATP plus LPS and hypoxia (p < .05). In contrast, the miR-22 mimic significantly inhibited the NLRP3/CASP1 inflammasome pathway activation induced by ATP plus LPS and hypoxia (p < .05). CONCLUSION MiR-22, as a synergetic negative regulator, is involved in controlling the secretion of proinflammatory cytokines mediated by the NLRP3/CASP1 inflammasome pathway by targeting NLRP3 and HIF-1α. These results provide a novel function and mechanism of miR-22-HIF-1α-NLRP3 signalling in the control of proinflammatory cytokine secretion, thus indicating a potential therapeutic strategy for future endodontic treatment.
Collapse
Affiliation(s)
- Wenkai Jiang
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Shukai Sun
- Department of Pediatric Dentistry, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Fourth Military Medical University, Xi'an, China
| | - Diya Wang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Jun Qiu
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ya Song
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Qianxia Zhang
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wenxi He
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Bing Song
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Yaqing Zhang
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Shengchao Wang
- Department of Operative Dentistry & Endodontics, School of Stomatology, State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Lei Q, Liang Z, Lei Q, Liang F, Ma J, Wang Z, He S. Analysis of circRNAs profile in TNF-α treated DPSC. BMC Oral Health 2022; 22:269. [PMID: 35786385 PMCID: PMC9251952 DOI: 10.1186/s12903-022-02267-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background Pulpitis often are characterized as sustained inflammation and impaired pulp self-repair. Circular RNAs (circRNAs) have been reported to be involved in the development of inflammation, but their influence in pulpitis is still unidentified, which was examined in our research. Methods In this study, TNF-α (20 ng/mL) was used to treat DPSCs, then MTS identified cell proliferation. The circRNAs profile in DPSCs with or without TNF-α treatment was evaluated using RNA sequencing and subsequently by bioinformatics analysis. After that, the circular structure was assessed using agarose gel electrophoresis, followed by Sanger sequencing. And the circRNAs expression was ratified using quantitative real-time polymerase chain reaction in cell and tissues samples. Additionally, the plausible mechanism of circRNAs was envisaged, and the circRNA-miRNA-mRNA linkage was plotted using Cytoscape. Results The treatment of TNF-α inhibited cell proliferation capabilities in DPSCs, which also made 1195 circRNA expressions undergo significant alterations. Among these changes, 11 circRNAs associated with inflammation were chosen for circular structure verification, and only seven circRNAs (hsa_circ_0001658, hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, hsa_circ_0035915, and hsa_circ_0002545) had circular structure. Additionally, five circRNAs expressions (hsa_circ_0001978, hsa_circ_0003910, hsa_circ_0004314, hsa_circ_0004417, and hsa_circ_0035915) had significantly altered between with or without TNF-α treated DPSCs. Furthermore, hsa_circ_0001978 and hsa_circ_0004417 were increased in patients suffering from pulpitis. Furthermore, their ceRNA linkage and Kyoto Encyclopedia of Genes and Genomes analysis suggested that these two circRNAs may participate in the inflammation development of pulpitis via mitogen-activated protein kinase and the Wnt signaling pathway. Conclusion This study revealed that the circRNAs profile was altered in TNF-α treated DPSCs. Also, hsa_circ_0001978 and hsa_circ_0004417 may be involved in the inflammation progress of pulpitis. These outcomes provided the latest information for additional research on pulpitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02267-2.
Collapse
Affiliation(s)
- Qiyin Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zezi Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Qiaoling Lei
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Fuying Liang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jing Ma
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Zhongdong Wang
- Stomatology and Cosmetic Dentistry Center, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Shoudi He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Technology Union Shenzhen Hospital, No.89 Taoyuan Road, Nanshan District, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
33
|
An S, Chen Y, Yang T, Huang Y, Liu Y. A role for the calcium-sensing receptor in the expression of inflammatory mediators in LPS-treated human dental pulp cells. Mol Cell Biochem 2022; 477:2871-2881. [PMID: 35699827 DOI: 10.1007/s11010-022-04486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
The aim of this study is to investigate the role of calcium-sensing receptor (CaSR) in the expression of inflammatory mediators of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). The expression profile of CaSR in LPS-simulated hDPCs was detected using immunofluorescence, real time quantitative PCR (RT-qPCR), and Western blot analyses. Then, its regulatory effects on the expression of specific inflammatory mediators such as interleukin (IL)-1β, IL-6, cyclooxygenase 2 (COX2)-derived prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, and IL-10 were determined by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). LPS significantly downregulated the gene expression of CaSR, but upregulated its protein expression level in hDPCs. Treatments by CaSR agonist R568 or its antagonist Calhex231, and their combinations with protein kinase B (AKT) inhibitor LY294002 showed obvious effects on the expression of selected inflammatory mediators in a time-dependent manner. Meanwhile, an opposite direction was found between the action of R568 and Calhex231, as well as the expression of the pro- (IL-1β, IL-6, COX2-derived PGE2, and TNF-α) and anti-inflammatory (IL-10) mediators. The results provide the first evidence that CaSR-phosphatidylinositol-3 kinase (PI3K)-AKT-signaling pathway is involved in the release of inflammatory mediators in LPS-treated hDPCs, suggesting that the activation or blockade of CaSR may provide a novel therapeutic strategy for the treatment of pulp inflammatory diseases.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China.
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Yanhuo Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Ting Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yiwei Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, No. 56 Lingyuan Xi Road, Guangzhou, 510055, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, No. 74 Zhongshan Er Road, Guangzhou, 510080, Guangdong, People's Republic of China
| |
Collapse
|
34
|
Identification of Immune-Related lncRNA Regulatory Network in Pulpitis. DISEASE MARKERS 2022; 2022:7222092. [PMID: 35711564 PMCID: PMC9194960 DOI: 10.1155/2022/7222092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023]
Abstract
Background. Long noncoding RNAs (lncRNAs) are emerging as critical regulators of various biological processes, including immune regulation. Methods. Due to the critical significance of immunological responses in the development and progression of pulpitis, we used an integrated algorithm to identify immune-related lncRNAs and then examined the lncRNA-immunity regulation network in pulpitis. Before identifying immune-related lncRNAs, the data from GEO datasets were precleaned. ConsensusClusterPlus was used to differentiate immune-related pulpitis subgroups. Enrichment analysis using GO and MSigDB databases was employed to determine the differences in molecular function, cellular component, and biological process between the two pulpitis subtypes. Results. An integrated algorithm was designed to filtrate immune-related lncRNAs accurately. 790 immune-related lncRNAs were found in 17 immunological categories, with 38 of them perturbated in pulpitis. The Cytoscape software was used to visualize the relationship between representative immune regulatory pathways and immune-related lncRNAs. Two immune-related pulpitis subtypes were discovered using differentially expressed immune-related lncRNAs. Subtype 2 has a stronger association with immune-related pathways than subtype 1 does. Conclusions. Our study identified many immune-related lncRNAs and investigated potential lncRNA regulation networks; meanwhile, the molecular subtypes of pulpitis were identified, all of which will be relevant for further research into inflammatory and immunological processes in pulpitis.
Collapse
|
35
|
Li J, Wang Z. A novel NUTM2A-AS1/miR-769–5p axis regulates LPS-evoked damage in human dental pulp cells via the TLR4/MYD88/NF-κB signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Comparative evaluation of serum high sensitivity C-reactive protein and complete hemogram indices in subjects with and without apical periodontitis: A prospective interventional study. J Endod 2022; 48:1020-1028. [DOI: 10.1016/j.joen.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 01/08/2023]
|
37
|
Xu HM, Cai MQ. A new 3D supramolecular Zn(II) compound: Crystal structure and important role in treatment of pulpitis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
39
|
Antibiofilm and immunomodulatory resorbable nanofibrous filing for dental pulp regenerative procedures. Bioact Mater 2022; 16:173-186. [PMID: 35386316 PMCID: PMC8965695 DOI: 10.1016/j.bioactmat.2022.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
|
40
|
Arruda-Vasconcelos R, Barbosa-Ribeiro M, Louzada LM, Lemos BIN, de-Jesus-Soares A, Ferraz CCR, Almeida JFA, Marciano MA, Gomes BPFA. Efficacy of 6% Sodium Hypochlorite on Infectious Content of Teeth with Symptomatic Irreversible Pulpitis. J Endod 2021; 48:179-189. [PMID: 34921849 DOI: 10.1016/j.joen.2021.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The objective of this study was to monitor the effects of chemomechanical preparation (CMP) performed with 6% sodium hypochlorite and calcium hydroxide-based intracanal medication (ICM) on the levels and diversity of bacteria, endotoxins (LPS) and lipoteichoic acid (LTA) in root canals of teeth with symptomatic irreversible pulpitis. METHODS Samples were collected from ten teeth with symptomatic irreversible pulpitis before CMP (S1), after CMP (S2) and after ICM (S3). The levels of bacteria, LPS and LTA were assessed by using checkerboard DNA-DNA hybridisation, LAL Pyrogent 5000 and enzyme linked immunosorbent assay (ELISA), respectively. Wilcoxon's test, repeated measures ANOVA and Tukey's post-hoc test were used for statistical analysis at a significance level of 5%. RESULTS Forty species were detected at S1. Two species were eliminated after CMP and five after ICM. Resistant and pain-related species were detected in the root canals. Higher levels of culturable bacteria were detected at S1. However, CMP and ICM effectively reduced the microbial load in the root canals. Higher levels of LPS and LTA were detected at S1. CMP was effective in reducing both LPS and LTA (P < 0.05). ICM produced additional reduction in the levels of LPS (P > 0.05) and LTA (P < 0.05). CONCLUSION Chemomechanical preparation using 6% sodium hypochlorite and calcium hydroxide-based intracanal medication were effective in reducing the levels of bacteria, endotoxins and lipoteichoic acid in teeth with vital pulp and irreversibly inflamed pulp.
Collapse
Affiliation(s)
- Rodrigo Arruda-Vasconcelos
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Marlos Barbosa-Ribeiro
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil; School of Dentistry, University of Pernambuco (UPE), Arcoverde, PE, Brazil
| | - Lidiane M Louzada
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Beatriz I N Lemos
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Adriana de-Jesus-Soares
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Caio C R Ferraz
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - José F A Almeida
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Marina A Marciano
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP, Brazil.
| |
Collapse
|
41
|
Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage. Int J Oral Sci 2021; 13:39. [PMID: 34785637 PMCID: PMC8595357 DOI: 10.1038/s41368-021-00144-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Unrestrained inflammation is harmful to tissue repair and regeneration. Immune cell membrane-camouflaged nanoparticles have been proven to show promise as inflammation targets and multitargeted inflammation controls in the treatment of severe inflammation. Prevention and early intervention of inflammation can reduce the risk of irreversible tissue damage and loss of function, but no cell membrane-camouflaged nanotechnology has been reported to achieve stage-specific treatment in these conditions. In this study, we investigated the prophylactic and therapeutic efficacy of fibroblast membrane-camouflaged nanoparticles for topical treatment of early inflammation (early pulpitis as the model) with the help of in-depth bioinformatics and molecular biology investigations in vitro and in vivo. Nanoparticles have been proven to act as sentinels to detect and competitively neutralize invasive Escherichia coli lipopolysaccharide (E. coli LPS) with resident fibroblasts to effectively inhibit the activation of intricate signaling pathways. Moreover, nanoparticles can alleviate the secretion of multiple inflammatory cytokines to achieve multitargeted anti-inflammatory effects, attenuating inflammatory conditions in the early stage. Our work verified the feasibility of fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage, which widens the potential cell types for inflammation regulation.
Collapse
|
42
|
Identification of Pulpitis-Related Potential Biomarkers Using Bioinformatics Approach. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1808361. [PMID: 34630628 PMCID: PMC8495466 DOI: 10.1155/2021/1808361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Inflammatory reaction of pulp tissue plays a role in the pathogen elimination and tissue repair. The evaluation of severity of pulpitis can serve an instructive function in therapeutic scheme. However, there are many limitations in the traditional evaluation methods for the severity of pulpitis. Based on the Gene Expression Omnibus (GEO) database, our study discovered 843 differentially expressed genes (DEGs) related to pulpitis. Afterwards, we constructed a protein-protein interaction (PPI) network of DEGs and used MCODE plugin to determine the key functional subset. Meanwhile, genes in the key functional subset were subjected to GO and KEGG enrichment analyses. The result showed that genes were mainly enriched in inflammatory reaction-related functions. Next, we screened out intersections of PPI network nodes and pulpitis-related genes. Then, 20 genes were obtained as seed genes. In the PPI network, 50 genes that had the highest correlation with seed genes were screened out using random walk with restart (RWR). Furthermore, 4 pulpitis-related hub genes were obtained from the intersection of the top 50 genes and genes in the key functional subset. Finally, GeneMANIA was utilized to predict genes coexpressed with hub genes, and expression levels of the 4 hub genes in normal and pulpitis groups were analyzed based on GEO data. The result demonstrated that the 4 hub genes were mainly coexpressed with chemokine-related genes and were remarkably upregulated in the pulpitis group. In short, we eventually determined 4 potential biomarkers of pulpitis.
Collapse
|
43
|
Zhang P, Cui Z, Li S. The protective effects of S14G-humanin (HNG) against lipopolysaccharide (LPS)- induced inflammatory response in human dental pulp cells (hDPCs) mediated by the TLR4/MyD88/NF-κB pathway. Bioengineered 2021; 12:7552-7562. [PMID: 34605740 PMCID: PMC8806744 DOI: 10.1080/21655979.2021.1979914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulpitis is reported in large populations of patients and significantly impacts their normal life quality. It is reported that the lipopolysaccharide (LPS) in Gram-negative bacteria induces severe inflammation in dental pulp tissues. S14G-humanin is a derivative of humanin and has been recently confirmed to possess promising anti-inflammatory properties. The current study aims to explore the possibility of treating pulpitis with S14G-humanin. LPS-stimulated dental pulp cells (DPCs) were utilized to simulate an inflammatory state in the progression of pulpitis. We found the elevated expressions and production of interleukin- 6 (IL-6), tumor necrosis factor-α (TNF-α), macrophage chemoattractant protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9), upregulated Pentraxin 3 (PTX3) and activated oxidative stress in LPS-treated DPCs were all reversed by treatment with 50 and 100 μM S14G-humanin. In addition, the LPS-induced elevated expression levels of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (Myd88), and activation of the IκBα/NF-κB signaling pathway in hDPCs were significantly repressed by treatment with S14G-humanin. Conclusively, we found that S14G-humanin protected LPS-treated hDPCs by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Cui
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Shuai Li
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
44
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
45
|
Ran R, Yang H, Cao Y, Yan W, Jin L, Zheng Y. Depletion of EREG enhances the osteo/dentinogenic differentiation ability of dental pulp stem cells via the p38 MAPK and Erk pathways in an inflammatory microenvironment. BMC Oral Health 2021; 21:314. [PMID: 34154572 PMCID: PMC8215766 DOI: 10.1186/s12903-021-01675-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment. METHODS DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) were used to knock down EREG expression in DPSCs. Recombinant human EREG (rhEREG) protein was used in the rescue experiment. TNF-α was employed to mimic the inflammatory environment in vitro. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, and real-time RT-PCR were performed to detect osteo/dentinogenic differentiation markers and related signalling pathways under normal and inflammatory conditions. RESULTS EREG depletion promoted the ALP activity and mineralization ability of DPSCs. The expression of BSP, DMP-1, and DSPP was also enhanced. Moreover, 50 ng/mL rhEREG treatment decreased the osteo/dentinogenic differentiation potential of DPSCs, while treatment with 10 ng/mL TNF-α for 4 h increased the expression of EREG in DPSCs. Conversely, EREG knockdown rescued the impaired osteo/dentinogenic differentiation ability caused by TNF-α treatment. Further mechanistic studies showed that EREG depletion activated the p38 MAPK and Erk signalling pathways in DPSCs under normal and inflammatory conditions. CONCLUSIONS Our results demonstrated that EREG could inhibit the osteo/dentinogenic differentiation potential of DPSCs via the p38 MAPK and Erk signalling pathways. Under inflammatory environment, EREG depletion enhanced osteo/dentinogenic differentiation potential of DPSCs by improving the expression of p-p38 MAPK and p-Erk.
Collapse
Affiliation(s)
- Ran Ran
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Wanhao Yan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China.
| | - Ying Zheng
- Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China.
| |
Collapse
|
46
|
Ma Z, Zhou M, Wang L, Cheng Q, Hong J. Establishment of Pulp Damage Repair Models in Miniature Pigs Using Diode Lasers. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:369-377. [PMID: 33885356 DOI: 10.1089/photob.2020.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To establish a controlled pulp damage repair model in miniature pigs by using a diode laser. Background: Laser is a novel kind of controllable energy, and it is widely used in dentistry. Methods: The premolars of four 24- to 28-month-old miniature pigs were divided into three laser groups, according to the output powers of a diode laser, and the nonirradiated first molars acted as controls. The teeth in laser groups were irradiated under three parameters (output powers 1.5, 2.5, 4 W, continuous wave, frequency 50 Hz for 60 sec). The dental and gingival morphology was observed at 0, 7, 14, and 21 days after laser irradiation. The animals were sacrificed for qualitative and quantitative pulp histopathological analysis. Results: The three laser groups present no seriously irreversible dental and gingival damage. In the 1.5-W group, dental pulp exhibited angiectasis and hyperemia with no inflammation, and did not significantly differ with the control groups at 21 days (p > 0.05). In the 2.5-W group, pulpal inflammation was highest at 7 days and then decreased significantly at 21 days, and the tissue repair appeared at 14 days (p < 0.05). In the 4-W group, pulpal inflammation was significantly highest at 7 days, with an increase in the degree of tissue repair (p < 0.05). Conclusions: The output power of 1.5 W developed a reversible pulpitis model; the output powers of 2.5 and 4 W within 7 days led to the development of irreversible pulpitis models, which proceeded as chronic pulpitis with obvious tissue repair.
Collapse
Affiliation(s)
- Zhifei Ma
- Stomatology Special Consultation Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengqi Zhou
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Second Dental Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhen Wang
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Oral Pathology, and Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cheng
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Hong
- Stomatology Special Consultation Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
47
|
Li M, Tian J, Xu Z, Zeng Q, Chen W, Lei S, Wei X. Histology-based profile of inflammatory mediators in experimentally induced pulpitis in a rat model: screening for possible biomarkers. Int Endod J 2021; 54:1328-1341. [PMID: 33715185 PMCID: PMC8360108 DOI: 10.1111/iej.13514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Aim To profile molecular changes in lipopolysaccharide (LPS)‐induced experimental pulpitis in a rat model and explore the feasibility of a molecular‐based diagnostic strategy for pulpitis. Methodology Seventy‐three maxillary incisors of Sprague‐Dawley rats were used to establish pulpitis models with LPS. Inflammatory grading was performed in four equal sections of the pulp divided from the injured site to the root apex. An antibody array was used to compare the expression of 67 molecules between control pulp and inflamed pulp 12 and 72 h after LPS application. The levels of differentially expressed molecules in the control and inflamed pulp (collected at 3, 6, 9, 12, 24 and 72 h after LPS treatment) were examined via ELISA, and correlations between inflammatory scores and molecule expression were assessed. The molecule distributions in the pulp were investigated by immunofluorescence staining. Data were analysed with paired t‐test, one‐way anova, Kruskal–Wallis tests, and Spearman’s and Pearson’s correlations with significance set at P < 0.05. Results Polymorphonuclear neutrophils were observed in the injured site 3 h after LPS stimulation. Inflammatory infiltration peaked at 12 h and was limited to the injured site with osteodentine deposition at 72 h. Thirteen molecules were significantly differentially expressed between the control and LPS‐injured pulp. ELISA validated that tissue inhibitor of metalloproteinase‐1 (TIMP‐1) expression dramatically peaked at 12 h (compared with other time points, P < 0.05) and returned to baseline at 72 h. The TIMP‐1 concentration was strongly correlated with inflammation severity in the apical three‐quarters of the pulp, and the strongest correlation was found in the lower‐middle quarter (r = 0.786, P < 0.001). Immunofluorescence staining revealed that in the apical three‐quarters of the pulp, TIMP‐1 expression was significantly higher in the 12 h group than in the control and 3, 6, 24 and 72 h groups (P < 0.01). Conclusion This study provides a molecular profile of LPS‐induced pulpitis in a rat model. TIMP‐1 had a strong positive correlation with the severity of dental pulp inflammation, verifying the feasibility of applying biomarkers to identify specific pathological conditions in pulpitis.
Collapse
Affiliation(s)
- M Li
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - J Tian
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Z Xu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Q Zeng
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - W Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - S Lei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - X Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
48
|
Wang D, Sun S, Xue Y, Qiu J, Ye T, Zhang R, Song B, He W, Zhang Y, Jiang W. MicroRNA-223 negatively regulates LPS-induced inflammatory responses by targeting NLRP3 in human dental pulp fibroblasts. Int Endod J 2020; 54:241-254. [PMID: 32966618 DOI: 10.1111/iej.13413] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
AIM To investigate the effect of miR-223 on NLRP3, subsequently regulating the production of the NLRP3/CASP1 inflammasome pathway-mediated proinflammatory cytokines IL-1β and IL-18 in human dental pulp fibroblasts (HDPFs). METHODOLOGY Human dental pulp tissue (HDPT) and HDPFs were obtained from impacted third molars. The miR-223 mimics and inhibitor or NLRP3 plasmid were used to upregulate or downregulate miR-223 or NLRP3 in HDPFs, respectively. Computational prediction via TargetScan 5.1 and a luciferase reporter assay was conducted to confirm target association. The mRNA and protein expression of NLRP3, caspase-1, IL-1β and IL-18 was determined by qRT-PCR and Western blotting, respectively. The release of IL-1β and IL-18 was analysed by ELISA. The significance of the differences between the experimental and the control groups was determined using one-way analysis of variance; P < 0.05 indicated statistical significance. RESULTS A decrease in miR-223 and an increase in NLRP3 in HDPT occurred during the transformation of reversible pulpitis into irreversible pulpitis compared to that in healthy pulp tissue (P < 0.05). The computational prediction and luciferase reporter assay confirmed that NLRP3 was a direct target of miR-223 in HDPFs. The miR-223 inhibitor further promoted ATP plus LPS-induced NLRP3/CASP1 inflammasome pathway activation compared to the ATP plus LPS-induced group (P < 0.05). In contrast, the miR-223 mimic significantly inhibited the NLRP3/CASP1 inflammasome pathway activation induced by ATP plus LPS compared to the ATP plus LPS-induced group (P < 0.05). CONCLUSION MiR-223 served as a negative regulator involved in the control of the production and secretion of proinflammatory cytokines mediated by the NLRP3/CASP1 inflammasome pathway by targeting NLRP3. These data provide insight into the potential regulatory effects of miRNAs on the NLRP3 inflammasome, thus opening up novel potential therapeutic avenues for future endodontic treatment.
Collapse
Affiliation(s)
- D Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - S Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Y Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - J Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - T Ye
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - R Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - B Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - W He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Y Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - W Jiang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
49
|
Chen M, Zeng J, Yang Y, Wu B. Diagnostic biomarker candidates for pulpitis revealed by bioinformatics analysis of merged microarray gene expression datasets. BMC Oral Health 2020; 20:279. [PMID: 33046027 PMCID: PMC7552454 DOI: 10.1186/s12903-020-01266-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Pulpitis is an inflammatory disease, the grade of which is classified according to the level of inflammation. Traditional methods of evaluating the status of dental pulp tissue in clinical practice have limitations. The rapid and accurate diagnosis of pulpitis is essential for determining the appropriate treatment. By integrating different datasets from the Gene Expression Omnibus (GEO) database, we analysed a merged expression matrix of pulpitis, aiming to identify biological pathways and diagnostic biomarkers of pulpitis. Methods By integrating two datasets (GSE77459 and GSE92681) in the GEO database using the sva and limma packages of R, differentially expressed genes (DEGs) of pulpitis were identified. Then, the DEGs were analysed to identify biological pathways of dental pulp inflammation with Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). Protein–protein interaction (PPI) networks and modules were constructed to identify hub genes with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. Results A total of 470 DEGs comprising 394 upregulated and 76 downregulated genes were found in pulpitis tissue. GO analysis revealed that the DEGs were enriched in biological processes related to inflammation, and the enriched pathways in the KEGG pathway analysis were cytokine-cytokine receptor interaction, chemokine signalling pathway and NF-κB signalling pathway. The GSEA results provided further functional annotations, including complement system, IL6/JAK/STAT3 signalling pathway and inflammatory response pathways. According to the degrees of nodes in the PPI network, 10 hub genes were identified, and 8 diagnostic biomarker candidates were screened: PTPRC, CD86, CCL2, IL6, TLR8, MMP9, CXCL8 and ICAM1. Conclusions With bioinformatics analysis of merged datasets, biomarker candidates of pulpitis were screened and the findings may be as reference to develop a new method of pulpitis diagnosis.
Collapse
Affiliation(s)
- Ming Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Junkai Zeng
- School of Stomatology, Southern Medical University, Guangzhou, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yeqing Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Guangzhou, China. .,Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, 510515, P.R. China.
| |
Collapse
|
50
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|