1
|
Yuan M, Li Q, Wang Z, Liu L, Wen C, Liu G, Yu F, Feng L, Yang L. TRPV4 Promotes Vascular Calcification by Directly Associating With and Activating β-Catenin. Arterioscler Thromb Vasc Biol 2025; 45:e101-e117. [PMID: 39973749 DOI: 10.1161/atvbaha.124.321793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Vascular calcification contributes to increased cardiovascular morbidity and mortality in patients with chronic kidney disease, diabetes, and atherosclerosis. Currently, there are no effective therapeutic strategies to prevent or reverse vascular calcification. TRPV4 (transient receptor potential channel V4), a key Ca2+-permeable channel, plays an important role in various diseases. However, the role and mechanism of TRPV4 in vascular calcification have not yet been elucidated. METHODS The effects of TRPV4 on vascular calcification were explored in vitro and in vivo. TRPV4 interactome assessment and molecular docking were performed to investigate the mechanism and specific therapeutic strategy for vascular calcification. RESULTS TRPV4 was substantially upregulated in high inorganic phosphate-induced calcified vascular smooth muscle cells (SMCs) and calcified aortas from cholecalciferol (vitamin D3)-overloaded mice. TRPV4 overexpression increased the expression of the osteochondrogenic markers Runx2 (runt-related transcription factor 2), Msx2 (Msh homeobox 2), and Sox9 (SRY-box transcription factor 9) and exacerbated high inorganic phosphate-induced vascular SMC calcification in a Ca2+ influx-dependent manner. In contrast, TRPV4 deficiency or inactivation significantly inhibited vascular SMC calcification under high inorganic phosphate conditions. Moreover, compared with that in control littermates, SMC-specific TRPV4 deficiency in mice alleviated vitamin D3-induced and 5/6 nephrectomy-induced vascular calcification. Mechanistically, TRPV4 interacted with β-catenin and activated β-catenin/TCF (T-cell factor) transcriptional activity via Ca2+/ASK1 (apoptosis signal regulating kinase 1)/p38 signaling. β-Catenin knockdown abolished the effects of TRPV4 overexpression on vascular SMC calcification. TRPV4/β-catenin interaction is pivotal for maintaining TRPV4/Ca2+-induced ASK1/p38/β-catenin activation. Hesperidin, a natural product found in citrus fruits, effectively disrupted TRPV4/β-catenin interaction, thereby inhibiting ASK1/p38/β-catenin activity and preventing vascular calcification. CONCLUSIONS Our study identified TRPV4 as a new pathogenic factor for vascular calcification that directly associates with and activates β-catenin. Blocking the TRPV4/β-catenin interaction through hesperidin suppressed the progression of vascular calcification and may be an effective precision strategy to address vascular calcification.
Collapse
MESH Headings
- Animals
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/genetics
- TRPV Cation Channels/deficiency
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/prevention & control
- Vascular Calcification/chemically induced
- beta Catenin/metabolism
- beta Catenin/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Humans
- Mice, Inbred C57BL
- Disease Models, Animal
- Male
- Cells, Cultured
- Signal Transduction
- Mice, Knockout
- Phosphates
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Cholecalciferol
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Menglu Yuan
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Qi Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Zhiwei Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Liangju Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Chengyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Guizhu Liu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Fan Yu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Lei Feng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| | - Liu Yang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, China. MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, China
| |
Collapse
|
2
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
3
|
Hua K, Wang M, Jin Y, Gao Y, Luo R, Bi D, Zhou R, Jin H. P38 MAPK pathway regulates the expression of resistin in porcine alveolar macrophages via Ets2 during Haemophilus parasuis stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104327. [PMID: 34863954 DOI: 10.1016/j.dci.2021.104327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Haemophilus parasuis is a widespread bacterial pathogen causing acute systemic inflammation and leading to the sudden death of piglets. Resistin, a multifunctional peptide hormone previously demonstrated to influence the inflammation in porcine, was extremely increased in H. parasuis-infected tissues. However, the mechanism of resistin expression regulation in porcine, especially during pathogen infection, remains unclear. In the present study, we explored for the first time the transcription factor and signaling pathway mediating the expression of pig resistin during H. parasuis stimulation. We found that H. parasuis induced the expression of pig resistin in a time- and dose-dependent manner via the transcription factor Ets2 in porcine alveolar macrophages during H. parasuis stimulation. Moreover, the expression of Ets2 was mediated by the activation of the p38 MAPK pathway induced by H. parasuis, thus promoting resistin production. These results revealed a novel view of the molecular mechanism of pig resistin production during acute inflammation induced by pathogenic bacteria.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Mingyang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yishun Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, China; College of Veterinary Medicine, Huazhong Agricultural University, China; Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, China.
| |
Collapse
|
4
|
Yang L, Dai R, Wu H, Cai Z, Xie N, Zhang X, Shen Y, Gong Z, Jia Y, Yu F, Zhao Y, Lin P, Ye C, Hu Y, Fu Y, Xu Q, Li Z, Kong W. Unspliced XBP1 Counteracts β-catenin to Inhibit Vascular Calcification. Circ Res 2021; 130:213-229. [PMID: 34870453 DOI: 10.1161/circresaha.121.319745] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Vascular calcification is a prevalent complication in chronic kidney disease and contributes to increased cardiovascular morbidity and mortality. XBP1 (X-box binding protein 1), existing as the unspliced (XBP1u) and spliced (XBP1s) forms, is a key component of the endoplasmic reticulum stress involved in vascular diseases. However, whether XBP1u participates in the development of vascular calcification remains unclear. Methods: We aim to investigate the role of XBP1u in vascular calcification.XBP1u protein levels were reduced in high phosphate (Pi)-induced calcified vascular smooth muscle cells (VSMCs), calcified aortas from mice with adenine diet-induced chronic renal failure (CRF) and calcified radial arteries from CRF patients. Results: Inhibition of XBP1u rather than XBP1s upregulated in the expression of the osteogenic markers runt-related transcription factor 2 (Runx2) and msh homeobox2 (Msx2), and exacerbated high Pi-induced VSMC calcification, as verified by calcium deposition and Alizarin red S staining. In contrast, XBP1u overexpression in high Pi-induced VSMCs significantly inhibited osteogenic differentiation and calcification. Consistently, SMC-specific XBP1 deficiency in mice markedly aggravated the adenine diet- and 5/6 nephrectomy-induced vascular calcification compared with that in the control littermates. Further interactome analysis revealed that XBP1u bound directly to β-catenin, a key regulator of vascular calcification, via aa 205-230 in its C-terminal degradation domain. XBP1u interacted with β-catenin to promote its ubiquitin-proteasomal degradation and thus inhibited β-catenin/T-cell factor (TCF)-mediated Runx2 and Msx2 transcription. Knockdown of β-catenin abolished the effect of XBP1u deficiency on VSMC calcification, suggesting a β-catenin-mediated mechanism. Moreover, the degradation of β-catenin promoted by XBP1u was independent of glycogen synthase kinase 3β (GSK-3β)-involved destruction complex. Conclusions: Our study identified XBP1u as a novel endogenous inhibitor of vascular calcification by counteracting β-catenin and promoting its ubiquitin-proteasomal degradation, which represents a new regulatory pathway of β-catenin and a promising target for vascular calcification treatment.
Collapse
Affiliation(s)
- Liu Yang
- Physiology and Pathophysiology, Peking University, CHINA
| | - Rongbo Dai
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, CHINA
| | - Hao Wu
- Physiology and Pathophysiology, Peking University, CHINA
| | - Zeyu Cai
- Physiology and Pathophysiology, Peking University, CHINA
| | - Nan Xie
- Physiology and Pathophysiology, Peking University, CHINA
| | - Xu Zhang
- Physiology and Pathophysiology, Peking University, CHINA
| | - Yicong Shen
- Physiology and Pathophysiology, Peking University, CHINA
| | - Ze Gong
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, CHINA
| | - Yiting Jia
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, CHINA
| | - Fang Yu
- School of Basic Medical Sciences, Peking University
| | - Ying Zhao
- Biochemistry and Molecular Biology, Peking University, CHINA
| | - Pinglan Lin
- Nephrology, Shanghai University of Traditional Chinese Medicine, CHINA
| | - Chaoyang Ye
- Nephrology, Shanghai University of Traditional Chinese Medicine, CHINA
| | - Yanhua Hu
- Cardiology, Zhejiang University, CHINA
| | - Yi Fu
- Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, CHINA
| | - Qingbo Xu
- Cardiology, Zhejing University, CHINA
| | - Zhiqing Li
- Physiology and Pathophysiology, Peking University, CHINA
| | - Wei Kong
- Physiology and Pathophysiology, Peking University, CHINA
| |
Collapse
|