1
|
Polese B, Ernst M, Henket M, Ernst B, Winandy M, Njock MS, Blockx C, Kovacs S, Watar F, Peired AJ, Tomassetti S, Nardi C, Gofflot S, Rahmouni S, Schofield JP, Penrice-Randal R, Skipp PJ, Strazzeri F, Parkinson E, Darcis G, Misset B, Moutschen M, Louis R, Cavalier E, Guiot J. Circulating inflammatory cytokines predict severity disease in hospitalized COVID-19 patients: A prospective multicenter study of the European DRAGON consortium. J Infect Public Health 2024; 17:102589. [PMID: 39547108 DOI: 10.1016/j.jiph.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND COVID-19 has put a huge strain on the healthcare systems worldwide, requiring unprecedented intensive care resources. There is still an unmet clinical need for easily available biomarkers capable of predicting the risk for severe disease. The main goal of this prospective multicenter study was to identify biomarkers that could predict ICU admission and in-hospital mortality. METHODS We prospectively recruited COVID-19 PCR positive patients in two hospitals, in Belgium and Italy. Blood samples were collected at hospital admission and 20 potential biomarkers were measured with the Luminex technology. Logistic regression models were performed to identify the biomarkers that, alone or together, were associated with patient disease severity. RESULTS Our study demonstrates that elevated levels of circulating inflammatory cytokines were associated with disease severity in COVID-19 hospitalized patients. CXCL10, IL-4, IL-6 and MCP-1 values were predictive of ICU admission. Elevated levels of IL-6 and MCP-1 were also associated with in hospital death in COVID-19 hospitalized patients. CONCLUSION Altogether, elevated and correlated inflammatory cytokines in the blood of COVID-19 patients at hospital admission are predictive of disease severity and suggest a dysregulated inflammation induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Barbara Polese
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU Liège, Liège, Belgium
| | - Monique Henket
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Benoit Ernst
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Marie Winandy
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Makon-Sébastien Njock
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Céline Blockx
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Stéphanie Kovacs
- Department of Clinical Chemistry, University Hospital of Liège, Liège, Belgium
| | - Florence Watar
- Department of Clinical Chemistry, University Hospital of Liège, Liège, Belgium
| | - Anna Julie Peired
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sara Tomassetti
- Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; Interventional Pulmonology Unit, Careggi University Hospital, Florence, Italy
| | - Cosimo Nardi
- Department of Clinical and Experimental Biomedical Sciences, Radiodiagnostic Unit, University of Florence, Florence, Italy
| | - Stéphanie Gofflot
- Biothèque Hospitalo-Universtaire, University Hospital of Liège, Liège, Belgium
| | - Souad Rahmouni
- GIGA Medical Genomics - Unit of Animal Genomics, University of Liège, Liège, Belgium
| | | | | | | | | | | | - Gilles Darcis
- Department of Infectious Diseases, University Hospital of Liège, Liège, Belgium
| | - Benoit Misset
- Department of Intensive Care, University Hospital of Liège, Liège, Belgium
| | - Michel Moutschen
- Immunology and General Internal Medecin, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Renaud Louis
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University Hospital of Liège, Liège, Belgium
| | - Julien Guiot
- Pneumology Department, University Hospital of Liège and University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
3
|
Zhang X, Wang J, Tan Y, Chen C, Tang S, Zhao S, Qin Q, Huang H, Duan S. Nanobodies in cytokine‑mediated immunotherapy and immunoimaging (Review). Int J Mol Med 2024; 53:12. [PMID: 38063273 DOI: 10.3892/ijmm.2023.5336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokines are the main regulators of innate and adaptive immunity, mediating communications between the cells of the immune system and regulating biological functions, including cell motility, differentiation, growth and apoptosis. Cytokines and cytokine receptors have been used in the treatment of tumors and autoimmune diseases, and to intervene in cytokine storms. Indeed, the use of monoclonal antibodies to block cytokine‑receptor interactions, as well as antibody‑cytokine fusion proteins has exhibited immense potential for the treatment of tumors and autoimmune diseases. Compared with these traditional types of antibodies, nanobodies not only maintain a high affinity and specificity, but also have the advantages of high thermal stability, a high capacity for chemical manipulation, low immunogenicity, good tissue permeability, rapid clearance and economic production. Thus, nanobodies have extensive potential for use in the diagnosis and treatment of cytokine‑related diseases. The present review summarizes the application of nanobodies in cytokine‑mediated immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ying Tan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Chaoting Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shuang Tang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Qiuhong Qin
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hansheng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
4
|
Lücke J, Böttcher M, Nawrocki M, Meins N, Schnell J, Heinrich F, Bertram F, Sabihi M, Seeger P, Pfaff M, Notz S, Blankenburg T, Zhang T, Kempski J, Reeh M, Wolter S, Mann O, Lütgehetmann M, Hackert T, Izbicki JR, Duprée A, Huber S, Ondruschka B, Giannou AD. Obesity and diabetes mellitus are associated with SARS-CoV-2 outcomes without influencing signature genes of extrapulmonary immune compartments at the RNA level. Heliyon 2024; 10:e24508. [PMID: 38298642 PMCID: PMC10828091 DOI: 10.1016/j.heliyon.2024.e24508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is responsible for eliciting Coronavirus disease 2019 (COVID-19) still challenges healthcare services worldwide. While many patients only suffer from mild symptoms, patients with some pre-existing medical conditions are at a higher risk for a detrimental course of disease. However, the underlying mechanisms determining disease course are only partially understood. One key factor influencing disease severity is described to be immune-mediated. In this report, we describe a post-mortem analysis of 45 individuals who died from SARS-CoV-2 infection. We could show that although sociodemographic factors and premedical conditions such as obesity and diabetes mellitus reduced survival time in our cohort, they were not associated with changes in the expression of immune-related signature genes at the RNA level in the blood, the gut, or the liver between these different groups. Our data indicate that obesity and diabetes mellitus influence SARS-CoV-2-related mortality, without influencing the extrapulmonary gene expression of immunity-related signature genes at the RNA level.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marius Böttcher
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Nicholas Meins
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Josa Schnell
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Fabian Heinrich
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Bertram
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marie Pfaff
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Sara Notz
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Tom Blankenburg
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Tao Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jan Kempski
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Matthias Reeh
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Anna Duprée
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
5
|
Wang L, Guzman M, Muñoz-Santos D, Honrubia JM, Ripoll-Gomez J, Delgado R, Sola I, Enjuanes L, Zuñiga S. Cell type dependent stability and virulence of a recombinant SARS-CoV-2, and engineering of a propagation deficient RNA replicon to analyze virus RNA synthesis. Front Cell Infect Microbiol 2023; 13:1268227. [PMID: 37942479 PMCID: PMC10628495 DOI: 10.3389/fcimb.2023.1268227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
Engineering of reverse genetics systems for newly emerged viruses allows viral genome manipulation, being an essential tool for the study of virus life cycle, virus-host interactions and pathogenesis, as well as for the development of effective antiviral strategies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent human coronavirus that has caused the coronavirus disease (COVID-19) pandemic. The engineering of a full-length infectious cDNA clone and a fluorescent replicon of SARS-CoV-2 Wuhan-Hu-1, using a bacterial artificial chromosome, is reported. Viral growth and genetic stability in eleven cell lines were analyzed, showing that both VeroE6 cells overexpressing transmembrane serin protease 2 (TMPRSS2) and human lung derived cells resulted in the optimization of a cell system to preserve SARS-CoV-2 genetic stability. The recombinant SARS-CoV-2 virus and a point mutant expressing the D614G spike protein variant were virulent in a mouse model. The RNA replicon was propagation-defective, allowing its use in BSL-2 conditions to analyze viral RNA synthesis. The SARS-CoV-2 reverse genetics systems developed constitute a useful tool for studying the molecular biology of the virus, the development of genetically defined vaccines and to establish systems for antiviral compounds screening.
Collapse
Affiliation(s)
- Li Wang
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - María Guzman
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jose Manuel Honrubia
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Jorge Ripoll-Gomez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Rafael Delgado
- Laboratory of Molecular Microbiology, Instituto de Investigación Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Verdiguel-Fernández L, Arredondo-Hernández R, Mejía-Estrada JA, Ortiz A, Verdugo-Rodríguez A, Orduña P, Ponce de León-Rosales S, Calva JJ, López-Vidal Y. Differential expression of biomarkers in saliva related to SARS-CoV-2 infection in patients with mild, moderate and severe COVID-19. BMC Infect Dis 2023; 23:602. [PMID: 37715121 PMCID: PMC10502992 DOI: 10.1186/s12879-023-08573-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Severe COVID-19 is a disease characterized by profound dysregulation of the innate immune system. There is a need to identify highly reliable prognostic biomarkers that can be rapidly assessed in body fluids for early identification of patients at higher risk for hospitalization and/or death. This study aimed to assess whether differential gene expression of immune response molecules and cellular enzymes, detected in saliva samples of COVID-19 patients, occurs according to disease severity staging. METHODS In this cross-sectional study, subjects with a COVID-19 diagnosis were classified as having mild, moderate, or severe disease based on clinical features. Transcripts of genes encoding 6 biomarkers, IL-1β, IL-6, IL-10, C-reactive protein, IDO1 and ACE2, were measured by RT‒qPCR in saliva samples of patients and COVID-19-free individuals. RESULTS The gene expression levels of all 6 biomarkers in saliva were significantly increased in severe disease patients compared to mild/moderate disease patients and healthy controls. A significant strong inverse relationship between oxemia and the level of expression of the 6 biomarkers (Spearman's correlation coefficient between -0.692 and -0.757; p < 0.001) was found. CONCLUSIONS Biomarker gene expression determined in saliva samples still needs to be validated as a potentially valuable predictor of severe clinical outcomes early at the onset of COVID-19 symptoms.
Collapse
Affiliation(s)
- Lázaro Verdiguel-Fernández
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | | | - Jesús Andrés Mejía-Estrada
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México
| | - Adolfo Ortiz
- Departamento de Microbiología E Inmunología, Unidad de Bioseguridad de Brucella, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Antonio Verdugo-Rodríguez
- Departamento de Microbiología E Inmunología, Laboratorio de Microbiología Molecular, Facultad de Medicina Veterinaria Y Zootecnia, Universidad Nacional Autónoma de México, CDMX, México
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, UNAM, CDMX, México
| | | | - Juan José Calva
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", CDMX, México.
| | - Yolanda López-Vidal
- Departamento de Microbiología Y Parasitología, Programa de Inmunología Molecular Microbiana, Facultad de Medicina, UNAM, CDMX, México.
| |
Collapse
|
7
|
Pratedrat P, Intharasongkroh D, Chansaenroj J, Vichaiwattana P, Srimuan D, Thatsanatorn T, Klinfueng S, Nilyanimit P, Chirathaworn C, Kupatawintu P, Chaiwanichsiri D, Wanlapakorn N, Poovorawan Y. Dynamics of Cytokine, SARS-CoV-2-Specific IgG, and Neutralizing Antibody Levels in COVID-19 Patients Treated with Convalescent Plasma. Diseases 2023; 11:112. [PMID: 37754308 PMCID: PMC10527804 DOI: 10.3390/diseases11030112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a contagious illness worldwide. While guidelines for the treatment of COVID-19 have been established, the understanding of the relationship among neutralizing antibodies, cytokines, and the combined use of antiviral medications, steroid drugs, and convalescent plasma therapy remains limited. Here, we investigated the connection between the immunological response and the efficacy of convalescent plasma therapy in COVID-19 patients with moderate-to-severe pneumonia. The study included a retrospective analysis of 49 patients aged 35 to 57. We conducted clinical assessments to determine antibody levels, biochemical markers, and cytokine levels. Among the patients, 48 (98%) were discharged, while one died. We observed significantly higher levels of anti-nucleocapsid, anti-spike, and neutralizing antibodies on days 3, 7, and 14 after the transfusion compared to before treatment. Serum CRP and D-dimer levels varied significantly across these four time points. Moreover, convalescent plasma therapy demonstrated an immunoregulatory effect on cytokine parameters, with significant differences in IFN-β, IL-6, IL-10, and IFN-α levels observed at different sampling times. Evaluating the cytokine signature, along with standard clinical and laboratory parameters, may help to identify the onset of a cytokine storm in COVID-19 patients and determine the appropriate indication for anti-cytokine treatment.
Collapse
Affiliation(s)
- Pornpitra Pratedrat
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | | | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Preeyaporn Vichaiwattana
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Donchida Srimuan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Thaksaporn Thatsanatorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pawinee Kupatawintu
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Dootchai Chaiwanichsiri
- National Blood Centre, Thai Red Cross Society, Bangkok 10330, Thailand; (D.I.); (P.K.); (D.C.)
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (J.C.); (P.V.); (D.S.); (T.T.); (S.K.); (P.N.); (N.W.)
- Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
9
|
Shafiee A, Rezaian S, Aliyu M, Shayeghpour A, Mokhames Z, Mohammadi H, Yaslianifard S, Soleimani A, Soleimanifar F, Tojari T, Qorbani M, Mozhgani SH. Immunologic Profile of Severe COVID-19 Patients in Alborz Province, Iran. Jundishapur J Microbiol 2023. [DOI: 10.5812/jjm-134264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) pandemic has prompted researchers to look for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenicity in depth. Immune system dysregulation was one of the major mechanisms in its pathogenesis. The evidence regarding the levels of interferons (IFNs) and pro- and anti-inflammatory cytokines in COVID-19 patients is not well-established. Objectives: Therefore, this study evaluated the expression level of type-I, II, III IFNs, along with interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-10 (IL-10), and FOXP3 genes in patients with severe COVID-19 to provide additional insights regarding the regulation of these cytokines during COVID-19 infection. Methods: Peripheral blood mononuclear cells were isolated from two groups, including severe COVID-19 patients and healthy controls. Ribonucleic acid was extracted to evaluate the expression level of IFN-a, IFN-b, IFN-g, IFN-la, IL-1, IL-6, IL-10, and FOXP3 genes using real-time polymerase chain reaction. The correlations between the expression levels of these genes were also assessed. Results: A total of 40 samples were divided into two groups, with each group consisting of 20 samples. When comparing the severe COVID-19 group to the controls, the expression levels of IFN-g, tumor necrosis factor-alpha (TNF-α), IL-6, and IL-10 genes were significantly higher in the severe COVID-19 group. The two groups had no significant differences in IFN-a, IFN-b, IFN-la, IL-1, and FOXP3 expression. The correlation analysis revealed a negative correlation between type I and type III IFNs (i.e., IFN-a and IFN-la) and pro-inflammatory cytokines (i.e., IL-1 and IL-10). Conclusions: This study suggests the possible upregulation of IFN-g, IL-6, IL-10, and TNF-α during SARS-CoV-2 pathogenicity. The preliminary findings of this study and those reported previously show that the levels of IFNs and pro- and anti-inflammatory cytokines are not uniformly expressed among all COVID-19 patients and might differ as the disease progresses to the severe stage.
Collapse
|
10
|
Th-1, Th-2, Th-9, Th-17, Th-22 type cytokine concentrations of critical COVID-19 patients after treatment with Remdesivir. Immunobiology 2023; 228:152378. [PMID: 37058846 PMCID: PMC10036294 DOI: 10.1016/j.imbio.2023.152378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly spread around the world causing a pandemic known as coronavirus disease 2019 (COVID-19). Cytokine storm was directly correlated with severity of COVID-19 syndromes. We evaluated the levels of 13 cytokines in ICU hospitalized COVID-19 patients (n=29) before, and after treatment with Remdesivir as well as in healthy controls (n=29). Blood samples were obtained from ICU patients during ICU admission (before treatment) and 5 days after treatment with Remdesivir. A group of 29 age- and gender-matched healthy controls was also studied. Cytokine levels were evaluated by multiplex immunoassay method using a fluorescence labeled cytokine panel. In comparison to cytokine levels measured at ICU admission, serum levels were reduced of IL-6 (134.75 pg/mL vs. 20.73 pg/mL, P< 0.0001), TNF-α (121.67 pg/mL vs. 10.15 pg/mL, P< 0.0001) and IFN-γ (29.69 pg/mL vs. 22.27 pg/mL, P= 0.005), whereas serum level was increased of IL-4 (8.47 pg/mL vs. 12.44 pg/mL, P= 0.002) within 5 days after Remdesivir treatment. Comparing with before treatment, Remdesivir significantly reduced the levels of inflammatory (258.98 pg/mL vs. 37.43 pg/mL, P< 0.0001), Th1-type (31.24 pg/mL vs. 24.46 pg/mL, P= 0.007), and Th17-type (36.79 pg/mL vs. 26.22 pg/mL, P< 0.0001) cytokines in critical COVID-19 patients. However, after Remdesivir treatment, the concentrations of Th2-type cytokines were significantly higher than before treatment (52.69 pg/mL vs. 37.09 pg/mL, P< 0.0001). In conclusion, Remdesivir led to decrease levels of Th1-type and Th17-type cytokines and increase Th2-type cytokines in critical COVID-19 patients 5 days after treatment.
Collapse
|
11
|
Cytokine Levels and Severity of Illness Scoring Systems to Predict Mortality in COVID-19 Infection. Healthcare (Basel) 2023; 11:healthcare11030387. [PMID: 36766961 PMCID: PMC9914724 DOI: 10.3390/healthcare11030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Various scoring systems and cytokines have been cited as predicting disease severity in COVID-19 infection. This study analyzed the link between mortality rate, levels of cytokines, and scoring systems such as the Glasgow Coma Scale (GCS), Acute Physiologic Assessment and Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Charlson Comorbidity Index in patients infected with COVID-19. Adult patients infected with COVID-19 were followed up in the intensive care unit (ICU) and analyzed prospectively. We measured serum cytokine levels (Interleukin-10 (IL-10), Interleukin-8 (IL-8), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and High mobility group box 1 (HMGB-1)) and recorded GCS, APACHE II, SOFA, and Charlson comorbidity index scores on admission to the ICU. Receiver operating curve (ROC) analysis was performed to predict mortality from IL-1β, IL-6 IL-10, IL-8, TNF-α, and HMGB-1 values. Study participants were grouped as follows: Group A, survivors, and Group B, deceased, during the 28-day follow-up. The mean age was 65.69 (±13.56) in Group A (n = 36) and 70.85 (±10.06) in Group B (n = 27). The female/male ratio was 23/40. Age, sex, body mass index (BMI), comorbid illnesses, GCS, APACHE II, SOFA, and Charlson scores, duration of hospitalization or ICU admission, therapeutic choices, and lymphocyte, PMNL, NLR, platelet, D-dimer, fibrinogen, GGT, CRP, procalcitonin, and lactate levels were similar between the groups. The frequency of acute kidney injury (AKI) was higher in Group B (p = 0.005). Serum IL-10, IL-8, IL-6, IL-1β, TNF-α, HMGB-1, ferritin, and LDH values were higher, and PaO2/FiO2 was lower in Group B than in Group A. ROC analysis showed that there was an association between serum IL-1β (>1015.7), serum IL-6 (>116.7), serum IL-8 (>258.4), serum IL-10 (>247.5), serum TNF-α (>280.7), and serum HMGB-1 (>23.5) and mortality. AKI gave rise to a greater risk of mortality (odds ratio: 7.081, p = 0.014). Mortality was associated with serum IL-10, IL-8, IL-6, IL-1β, TNF-α, and HMGB-1 but not with GCS, APACHE II, SOFA, or Charlson comorbidity index scores. AKI increased the risk of mortality by seven times. Our findings suggest that cytokine levels (serum IL-10, IL-8, IL-6, IL-1β, TNF-α, and HMGB-1) were predictors of mortality in COVID-19 infection. In addition, our results might give an opinion about the course of COVID-19 infection.
Collapse
|
12
|
Singh M, Pushpakumar S, Bard N, Zheng Y, Homme RP, Mokshagundam SPL, Tyagi SC. Simulation of COVID-19 symptoms in a genetically engineered mouse model: implications for the long haulers. Mol Cell Biochem 2023; 478:103-119. [PMID: 35731343 PMCID: PMC9214689 DOI: 10.1007/s11010-022-04487-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The ongoing pandemic (also known as coronavirus disease-19; COVID-19) by a constantly emerging viral agent commonly referred as the severe acute respiratory syndrome corona virus 2 or SARS-CoV-2 has revealed unique pathological findings from infected human beings, and the postmortem observations. The list of disease symptoms, and postmortem observations is too long to mention; however, SARS-CoV-2 has brought with it a whole new clinical syndrome in "long haulers" including dyspnea, chest pain, tachycardia, brain fog, exercise intolerance, and extreme fatigue. We opine that further improvement in delivering effective treatment, and preventive strategies would be benefited from validated animal disease models. In this context, we designed a study, and show that a genetically engineered mouse expressing the human angiotensin converting enzyme 2; ACE-2 (the receptor used by SARS-CoV-2 agent to enter host cells) represents an excellent investigative resource in simulating important clinical features of the COVID-19. The ACE-2 mouse model (which is susceptible to SARS-CoV-2) when administered with a recombinant SARS-CoV-2 spike protein (SP) intranasally exhibited a profound cytokine storm capable of altering the physiological parameters including significant changes in cardiac function along with multi-organ damage that was further confirmed via histological findings. More importantly, visceral organs from SP treated mice revealed thrombotic blood clots as seen during postmortem examination. Thus, the ACE-2 engineered mouse appears to be a suitable model for studying intimate viral pathogenesis thus paving the way for identification, and characterization of appropriate prophylactics as well as therapeutics for COVID-19 management.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Nia Bard
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Sri Prakash L Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
13
|
Ibáñez-Prada ED, Fish M, Fuentes YV, Bustos IG, Serrano-Mayorga CC, Lozada J, Rynne J, Jennings A, Crispin AM, Santos AM, Londoño J, Shankar-Hari M, Reyes LF. Comparison of systemic inflammatory profiles in COVID-19 and community-acquired pneumonia patients: a prospective cohort study. Respir Res 2023; 24:60. [PMID: 36814234 PMCID: PMC9944840 DOI: 10.1186/s12931-023-02352-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 01/28/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Inflammatory responses contribute to tissue damage in COVID-19 and community-acquired pneumonia (CAP). Although predictive values of different inflammatory biomarkers have been reported in both, similarities and differences of inflammatory profiles between these conditions remain uncertain. Therefore, we aimed to determine the similarities and differences of the inflammatory profiles between COVID-19 and CAP, and their association with clinical outcomes. METHODS We report a prospective observational cohort study; conducted in a reference hospital in Latin America. Patients with confirmed COVID-19 pneumonia and CAP were included. Multiplex (Luminex) cytokine assays were used to measure the plasma concentration of 14 cytokines at hospital admission. After comparing similarities and differences in the inflammatory profile between COVID-19 and CAP patients, an unsupervised classification method (i.e., hierarchical clustering) was used to identify subpopulations within COVID-19 and CAP patients. RESULTS A total of 160 patients were included, 62.5% were diagnosed with COVID-19 (100/160), and 37.5% with CAP (60/160). Using the hierarchical clustering, COVID-19 and CAP patients were divided based on its inflammatory profile: pauci, moderate, and hyper-inflammatory immune response. COVID-19 hyper-inflammatory subpopulation had the highest mortality. COVID-19 hyper-inflammatory subpopulation, compared to pauci-inflammatory, had higher levels of IL-10 (median [IQR] 61.4 [42.0-109.4] vs 13.0 [5.0-24.9], P: < 0.001), IL-6 (48.1 [22.3-82.6] vs 9.1 [0.1-30.4], P: < 0.001), among others. Hyper-inflammatory vs pauci-inflammatory CAP patients were characterized by elevation of IFN2 (48.8 [29.7-110.5] vs 3.0 [1.7-10.3], P: < 0.001), TNFα (36.3 [24.8-53.4] vs 13.1 [11.3-16.9], P: < 0.001), among others. Hyper-inflammatory subpopulations in COVID-19 and CAP compared to the corresponding pauci-inflammatory subpopulations had higher MCP-1. CONCLUSIONS Our data highlights three distinct subpopulations in COVID-19 and CAP, with differences in inflammatory marker profiles and risks of adverse clinical outcomes. TRIAL REGISTRATION This is a prospective study, therefore no health care intervention were applied to participants and trial registration is not applicable.
Collapse
Affiliation(s)
- Elsa D. Ibáñez-Prada
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
| | - Matthew Fish
- grid.4305.20000 0004 1936 7988Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Yuli V. Fuentes
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia ,grid.412166.60000 0001 2111 4451Clínica Universidad de La Sabana, Chía, Colombia
| | - Ingrid G. Bustos
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
| | - Cristian C. Serrano-Mayorga
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia ,grid.412166.60000 0001 2111 4451Clínica Universidad de La Sabana, Chía, Colombia
| | - Julian Lozada
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
| | - Jennifer Rynne
- grid.4305.20000 0004 1936 7988Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Aislinn Jennings
- grid.4305.20000 0004 1936 7988Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Ana M. Crispin
- grid.412166.60000 0001 2111 4451Clínica Universidad de La Sabana, Chía, Colombia
| | - Ana Maria Santos
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
| | - John Londoño
- grid.412166.60000 0001 2111 4451Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia
| | - Manu Shankar-Hari
- grid.4305.20000 0004 1936 7988Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Luis Felipe Reyes
- Universidad de La Sabana, Campus Puente del Común, KM 7.5 Autopista Norte de Bogotá, Chia, Colombia. .,Clínica Universidad de La Sabana, Chía, Colombia. .,Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Forte D, Pellegrino RM, Trabanelli S, Tonetti T, Ricci F, Cenerenti M, Comai G, Tazzari P, Lazzarotto T, Buratta S, Urbanelli L, Narimanfar G, Alabed HBR, Mecucci C, La Manna G, Emiliani C, Jandus C, Ranieri VM, Cavo M, Catani L, Palandri F. Circulating extracellular particles from severe COVID-19 patients show altered profiling and innate lymphoid cell-modulating ability. Front Immunol 2023; 14:1085610. [PMID: 37207201 PMCID: PMC10189636 DOI: 10.3389/fimmu.2023.1085610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score. Methods Peripheral blood (PB) was collected from COVID-19 patients (n=10) and HC (n=10). EPs were purified from platelet-poor plasma by size exclusion chromatography (SEC) and ultrafiltration. Plasma cytokines and EPs were characterized by multiplex bead-based assay. Quantitative lipidomic profiling of EPs was performed by liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF). Innate lymphoid cells (ILC) were characterized by flow cytometry after co-cultures with HC-EPs or Co-19-EPs. Results We observed that EPs from severe COVID-19 patients: 1) display an altered surface signature as assessed by multiplex protein analysis; 2) are characterized by distinct lipidomic profiling; 3) show correlations between lipidomic profiling and disease aggressiveness scores; 4) fail to dampen type 2 innate lymphoid cells (ILC2) cytokine secretion. As a consequence, ILC2 from severe COVID-19 patients show a more activated phenotype due to the presence of Co-19-EPs. Discussion In summary, these data highlight that abnormal circulating EPs promote ILC2-driven inflammatory signals in severe COVID-19 patients and support further exploration to unravel the role of EPs (and EVs) in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Dorian Forte
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospealiero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ricci
- Immunohematology and blood bank, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Tazzari
- Immunohematology and blood bank, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Ghazal Narimanfar
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Vito Marco Ranieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospealiero-Universitaria di Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Lucia Catani,
| | - Francesca Palandri
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Zhang H, Wu H, Pan D, Shen W. D-dimer levels and characteristics of lymphocyte subsets, cytokine profiles in peripheral blood of patients with severe COVID-19: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:988666. [PMID: 36275800 PMCID: PMC9579342 DOI: 10.3389/fmed.2022.988666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose A series of complications caused by severe COVID-19 can significantly affect short-term results. Therefore, early diagnosis is essential for critically COVID-19 patients. we aimed to investigate the correlation among D-dimer levels, lymphocyte subsets, cytokines, and disease severity in COVID-19 patients. Methods Systematic review and meta- analysis of PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials, Embase, clinical trials, and China National Knowledge Infrastructure (CNKI) until 1 August 2022. We considered case-control, and cohort studies that compared laboratory parameters between patients with severe or non-serious diseases or between survivors and non-survivors. Pooled data was assessed by use of a random-effects model and used I 2 to test heterogeneity. We assessed the risk of bias using the Newcastle- Ottawa Scale. Results Of the 5,561 identified studies, 32 were eligible and included in our analysis (N = 3,337 participants). Random-effect results indicated that patients with COVID-19 in severe group had higher levels for D-dimer (WMD = 1.217 mg/L, 95%CI=[0.788, 1.646], P < 0.001), neutrophil-to-lymphocyte ratio (NLR) (WMD = 6.939, 95%CI = [4.581, 9.297], P < 0.001), IL-2 (WMD = 0.371 pg/ml, 95%CI = [-0.190, 0.932], P = 0.004), IL-4 (WMD = 0.139 pg/ml, 95%CI = [0.060, 0.219], P = 0.717), IL-6 (WMD = 44.251 pg/ml, 95%CI = [27.010, 61.493], P < 0.001), IL-10 (WMD = 3.718 pg/ml, 95%CI = [2.648, 4.788], P < 0.001) as well as lower levels of lymphocytes (WMD = -0.468( × 109/L), 95%CI = [-0.543, -0.394], P < 0.001), T cells (WMD = -446.746(/μL), 95%CI = [-619.607, -273.885], P < 0.001), B cells (WMD = -60.616(/μL), 95%CI = [-96.452, -24.780], P < 0.001), NK cells (WMD = -68.297(/μL), 95%CI = [-90.600, -45.994], P < 0.001), CD3+T cells (WMD = -487.870(/μL), 95%CI = [-627.248, -348.492], P < 0.001), CD4+T cells (WMD = -290.134(/μL), 95%CI = [-370.834, -209.435], P < 0.001), CD8+T cells (WMD = -188.781(/μL), 95%CI = [-227.806, -149.757], P < 0.001). Conclusions There is a correlation among higher levels of D-dimer, cytokines, lower levels of lymphocyte subsets, and disease severity in COVID-19 patients. These effective biomarkers may help clinicians to evaluate the severity and prognosis of COVID-19. This study is registered with PROSPERO, number CRD42020196659. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=196659; PROSPERO registration number: CRD42020196659.
Collapse
Affiliation(s)
| | | | | | - Weifeng Shen
- Department of Clinical Laboratory, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
16
|
Molina FJ, Botero LE, Isaza JP, Cano LE, López L, Hoyos LM, Correa E, Torres A. Cytokine levels as predictors of mortality in critically ill patients with severe COVID-19 pneumonia: Case-control study nested within a cohort in Colombia. Front Med (Lausanne) 2022; 9:1005636. [PMID: 36250102 PMCID: PMC9556732 DOI: 10.3389/fmed.2022.1005636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background High levels of different cytokines have been associated in COVID-19 as predictors of mortality; however, not all studies have found this association and its role to cause multi-organ failure and death has not been fully defined. This study aimed to investigate the association of the levels of 10 cytokines with mortality in patients with COVID-19 admitted to the intensive care unit (ICU). Materials and methods This is a case-control study nested within a cohort of patients with COVID-19 who were on mechanical ventilation and were not hospitalized for more than 48 h across nine ICUs in Medellín, Colombia. Serum samples were collected upon admission to the ICU and 7 days later and used to measure cytokine levels. Results Upon admission, no differences in mortality between the cytokine levels were observed when comparisons were made quantitatively. However, in the multivariate analysis, patients with median IL-1β levels <1.365 pg/ml showed an increase in mortality (OR = 3.1; 1.24<7.71; p = 0.015). On day 7 in the ICU, IL-1β median levels were lower (0.34 vs. 2.41 pg/ml, p = 0.042) and IL-10 higher (2.08 vs. 1.05 pg/ml, p = 0.009) in patients who died. However, in the multivariate analysis, only IL-12p70 was associated with mortality (OR = 0.23; 0.07<0.73; p = 0.012). The mean difference in the levels between day 1 and day 7 decreased in both IFN-γ (3.939 pg/ml, p < 0.039) and in IL-18 (16.312 pg/ml, p < 0.014) in the patients who died. A low IL-1β/IL-10 ratio was associated with mortality on both day 1 and day 7, while an IL-1β/IL-10 ratio below the cut-off on day 7 was associated with decreased survival. The lowest TNFα/IL-10 ratio was associated with mortality only on day 7. Conclusion At the time of admission, patients with median IL-1β levels lower than 1.365 pg/ml had increased mortality. An IL-1β/IL-10 ratio <2 at day 7 and IL-12p70 levels >1.666 pg/ml was associated with decreased survival.
Collapse
Affiliation(s)
- Francisco José Molina
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
- Intensive Care Unit, Clínica Universitaria Bolivariana, Universidad Pontificia Bolivariana, Medellín, Colombia
- *Correspondence: Francisco José Molina,
| | - Luz Elena Botero
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Juan Pablo Isaza
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luz Elena Cano
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
- Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Lucelly López
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Lina Marcela Hoyos
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Elizabeth Correa
- Facultad de Medicina, Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellín, Colombia
- Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Antoni Torres
- Department of Pulmonology, University of Barcelona, Barcelona, Spain
- Respiratory and Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Marashian SM, Hashemian M, Pourabdollah M, Nasseri M, Mahmoudian S, Reinhart F, Eslaminejad A. Photobiomodulation Improves Serum Cytokine Response in Mild to Moderate COVID-19: The First Randomized, Double-Blind, Placebo Controlled, Pilot Study. Front Immunol 2022; 13:929837. [PMID: 35874678 PMCID: PMC9304695 DOI: 10.3389/fimmu.2022.929837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023] Open
Abstract
BackgroundBecause the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction.MethodsThis study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined.ResultsDuring the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study.ConclusionThe major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.
Collapse
Affiliation(s)
- Seyed Mehran Marashian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansour Nasseri
- Department of Immunology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | - Saeed Mahmoudian
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Florian Reinhart
- Medical Research & Innovation Department, Medical and Biomedical Consultancy Office “Innolys”, Illkirch-Graffenstaden, France
- *Correspondence: Florian Reinhart,
| | - Alireza Eslaminejad
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Hydroxypropyl-beta-cyclodextrin (HP-BCD) inhibits SARS-CoV-2 replication and virus-induced inflammatory cytokines. Antiviral Res 2022; 205:105373. [PMID: 35798224 PMCID: PMC9250893 DOI: 10.1016/j.antiviral.2022.105373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
COVID-19 is marked by extensive damage to the respiratory system, often accompanied by systemic manifestations, due to both viral cytopathic effects and hyperinflammatory syndrome. Therefore, the development of new therapeutic strategies or drug repurposing aiming to control virus replication and inflammation are required to mitigate the impact of the disease. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent with antiviral activity that has been demonstrated against enveloped viruses in in vitro and in vivo experimental models. We also demonstrated that HP-BCD has an immunomodulatory effect, inhibiting the production of selected proinflammatory cytokines induced by microbial products. Importantly, this drug has been used in humans for decades as an excipient in drug delivery systems and as a therapeutic agent in the treatment of Niemann pick C disease. The safety profile for this compound is well established. Here, we investigated whether HP-BCD would affect SARS-CoV-2 replication and virus-induced inflammatory response, using established cell lines and primary human cells. Treating virus or cells with HP-BCD significantly inhibited SARS-CoV-2 replication with a high selective index. A broad activity against distinct SARS-CoV-2 variants was evidenced by a remarkable reduction in the release of infectious particles. The drug did not alter ACE2 surface expression, but affected cholesterol accumulation into intracellular replication complexes, lowering virus RNA and protein levels, and reducing virus-induced cytopathic effects. Virus replication was also impaired by HP-BCD in Calu-3 pulmonary cell line and human primary monocytes, in which not only the virus, but also the production of proinflammatory cytokines were significantly inhibited. Given the pathophysiology of COVID-19 disease, these data indicate that the use HP-BCD, which inhibits both SARS-CoV2 replication and production of proinflammatory cytokines, as a potential COVID-19 therapeutic warrants further investigation.
Collapse
|
19
|
Olivieri F, Sabbatinelli J, Bonfigli AR, Sarzani R, Giordano P, Cherubini A, Antonicelli R, Rosati Y, Del Prete S, Di Rosa M, Corsonello A, Galeazzi R, Procopio AD, Lattanzio F. Routine laboratory parameters, including complete blood count, predict COVID-19 in-hospital mortality in geriatric patients. Mech Ageing Dev 2022; 204:111674. [PMID: 35421418 PMCID: PMC8996472 DOI: 10.1016/j.mad.2022.111674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
To reduce the mortality of COVID-19 older patients, clear criteria to predict in-hospital mortality are urgently needed. Here, we aimed to evaluate the performance of selected routine laboratory biomarkers in improving the prediction of in-hospital mortality in 641 consecutive COVID-19 geriatric patients (mean age 86.6 ± 6.8) who were hospitalized at the INRCA hospital (Ancona, Italy). Thirty-four percent of the enrolled patients were deceased during the in-hospital stay. The percentage of severely frail patients, assessed with the Clinical Frailty Scale, was significantly increased in deceased patients compared to the survived ones. The age-adjusted Charlson comorbidity index (CCI) score was not significantly associated with an increased risk of death. Among the routine parameters, neutrophilia, eosinopenia, lymphopenia, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein, procalcitonin, IL-6, and NT-proBNP showed the highest predictive values. The fully adjusted Cox regressions models confirmed that high neutrophil %, NLR, derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), and low lymphocyte count, eosinophil %, and lymphocyte-to-monocyte ratio (LMR) were the best predictors of in-hospital mortality, independently from age, gender, and other potential confounders. Overall, our results strongly support the use of routine parameters, including complete blood count, in geriatric patients to predict COVID-19 in-hospital mortality, independent from baseline comorbidities and frailty.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine Unit, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Riccardo Sarzani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, Ancona, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca Per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Mirko Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy; Geriatric Medicine, IRCCS INRCA, 87100 Cosenza, Italy
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | | |
Collapse
|
20
|
Azaiz MB, Jemaa AB, Sellami W, Romdhani C, Ouslati R, Gharsallah H, Ghazouani E, Ferjani M. Deciphering the balance of IL-6/IL-10 cytokines in severe to critical COVID-19 patients. Immunobiology 2022; 227:152236. [PMID: 35691133 PMCID: PMC9173832 DOI: 10.1016/j.imbio.2022.152236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
The severity of COVID-19 is largely determined by the inflammatory response, a “Cytokine storm,” that involves both pro- and anti-inflammatory cytokines. In the current study we investigated the balance of pro- and anti-inflammatory status as represented by the levels of IL-6/IL-10 in severe to critical COVID-19 patients. 66 confirmed COVID-19 patients admitted to the ICU were categorized into groups according to the mortality and respiratory failure. Data were collected retrospectively in ICU, including a peripheral immune cells and infection-related biomarker CRP. The measurements of cytokine levels were performed by Immulite analyzer for IL-6 and ELISA sandwich for IL-10. In addition, longitudinal measurement of IL-6 was performed during 5 days post admission. Longitudinal assays showed that IL-6 was sustained at a medium level within 5 days post admission in severe cases who survived or not requiring mechanical ventilation, whereas it was sustained at high levels throughout the disease course in either deceased cases or who developed respiratory failure. The ratio of IL-6/lymphocytes was positively correlated with the risk of mortality, while IL-10/lymphocytes ratio could predict respiratory failure in ICU. IL-6/IL-10 profiling revealed that deceased patients have different magnitudes of both IL-6 and IL-10 cytokine release. Notably, excessive levels of IL-6 concomitant with high levels of IL-10 were more common in diseased COVID-19 patients. Taking into account the IL-6/IL-10 profiling may help clinicians to identify the right time of anti-inflammation treatment and select patients who will respond to anti-cytokine therapies and maintain an adequate inflammatory response for SARS-CoV-2 clearance.
Collapse
Affiliation(s)
- Mouna Ben Azaiz
- Department of Immunology, Military Hospital of Tunis, Montfleury - 1008, Tunis, Tunisia; Unit IMEC-Immunology Microbiology Environmental and Carcinogenesis, Faculty of Science of Bizerte, Tunisia; Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia.
| | - Awatef Ben Jemaa
- Unit IMEC-Immunology Microbiology Environmental and Carcinogenesis, Faculty of Science of Bizerte, Tunisia; Department of Biology, Faculty of Science of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Walid Sellami
- Department of Intensive Care, Military Hospital of Tunis, Mont fleury - 1008, Tunis, Tunisia; Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Chihebeddine Romdhani
- Department of Intensive Care, Military Hospital of Tunis, Mont fleury - 1008, Tunis, Tunisia; Research Unit 17 DN05, Military Hospital of Tunis, Montfleury - 1008, Tunis, Tunisia
| | - Ridha Ouslati
- Unit IMEC-Immunology Microbiology Environmental and Carcinogenesis, Faculty of Science of Bizerte, Tunisia
| | - Hedi Gharsallah
- Department of Intensive Care, Military Hospital of Tunis, Mont fleury - 1008, Tunis, Tunisia; Research Unit 17 DN05, Military Hospital of Tunis, Montfleury - 1008, Tunis, Tunisia; Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Ezzedine Ghazouani
- Department of Immunology, Military Hospital of Tunis, Montfleury - 1008, Tunis, Tunisia
| | - Mustapha Ferjani
- Department of Intensive Care, Military Hospital of Tunis, Mont fleury - 1008, Tunis, Tunisia; Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Guest PC, Rahmoune H. Antibody-Based Affinity Capture Combined with LC-MS Analysis for Identification of COVID-19 Disease Serum Biomarkers. Methods Mol Biol 2022; 2511:183-200. [PMID: 35838961 DOI: 10.1007/978-1-0716-2395-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Blood serum or plasma proteins are potentially useful in COVID-19 research as biomarkers for risk prediction, diagnosis, stratification, and treatment monitoring. However, serum protein-based biomarker identification and validation is complicated due to the wide concentration range of these proteins, which spans more than ten orders of magnitude. Here we present a combined affinity purification-liquid chromatography mass spectrometry approach which allows identification and quantitation of the most abundant serum proteins along with the nonspecifically bound and interaction proteins. This led to the reproducible identification of more than 100 proteins that were not specifically targeted by the affinity column. Many of these have already been implicated in COVID-19 disease.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Hassan Rahmoune
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|
23
|
Machluf Y, Rosenfeld S, Ben Shlomo I, Chaiter Y, Dekel Y. The Misattributed and Silent Causes of Poor COVID-19 Outcomes Among Pregnant Women. Front Med (Lausanne) 2021; 8:745797. [PMID: 34765620 PMCID: PMC8575767 DOI: 10.3389/fmed.2021.745797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Abundant evidence strongly suggests that the condition of pregnancy makes women and their fetuses highly vulnerable to severe Corona-virus 2019 (COVID-19) complications. Here, two novel hypoxia-related conditions are proposed to play a pivotal role in better understanding the relationship between COVID-19, pregnancy and poor health outcomes. The first condition, "misattributed dyspnea (shortness of breath)" refers to respiratory symptoms common to both advanced pregnancy and COVID-19, which are mistakenly perceived as related to the former rather than to the latter; as a result, pregnant women with this condition receive no medical attention until the disease is in an advanced stage. The second condition, "silent hypoxia", refers to abnormally low blood oxygen saturation levels in COVID-19 patients, which occur in the absence of typical respiratory distress symptoms, such as dyspnea, thereby also leading to delayed diagnosis and treatment. The delay in diagnosis and referral to treatment, due to either "misattributed dypsnea" or "silent hypoxia", may lead to rapid deterioration and poor health outcome to both the mothers and their fetuses. This is particularly valid among women during advanced stages of pregnancy as the altered respiratory features make the consequences of the disease more challenging to cope with. Studies have demonstrated the importance of monitoring blood oxygen saturation by pulse oximetry as a reliable predictor of disease severity and outcome among COVID-19 patients. We propose the use of home pulse oximetry during pregnancy as a diagnostic measure that, together with proper medical guidance, may allow early diagnosis of hypoxia and better health outcomes.
Collapse
Affiliation(s)
- Yossy Machluf
- Unit of Agrigenomics, Shamir Research Institute, Haifa University, Kazerin, Israel
| | - Sherman Rosenfeld
- The Department of Science Teaching, Weizmann Institute of Science, Rehovot, Israel
| | - Izhar Ben Shlomo
- Emergency Medicine Program, Zefat Academic College, Safed, Israel
| | - Yoram Chaiter
- The Israeli Center for Emerging Technologies in Hospitals and Hospital-Based Health Technology Assessment, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Yaron Dekel
- Unit of Agrigenomics, Shamir Research Institute, Haifa University, Kazerin, Israel
- Department of Medical Laboratory Sciences, Zefat Academic College, Safed, Israel
| |
Collapse
|
24
|
Li H, Chen J, Hu Y, Cai X, Tang D, Zhang P. Serum C1q Levels Have Prognostic Value for Sepsis and are Related to the Severity of Sepsis and Organ Damage. J Inflamm Res 2021; 14:4589-4600. [PMID: 34531674 PMCID: PMC8439974 DOI: 10.2147/jir.s322391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To explore the clinical application value of serum complement component C1q levels in sepsis. Methods The clinical data and laboratory examination data of 320 research subjects (including 132 cases as sepsis group, 93 cases as nonsepsis group and 95 cases as control group) who were diagnosed and treated in Renmin Hospital of Wuhan University from July 2020 to March 2021 were collected. We compared the levels of each index among the three groups and further analyzed the C1q levels of different severity subgroups and different outcome subgroups of sepsis. Afterwards, we explored the correlation between C1q levels and SOFA score, organ damage indexes and coagulation indexes. Finally, the receiver operating characteristic curve (ROC) was used to analyze the prognostic value of C1q in patients with sepsis. Results C1q levels were significantly reduced in the serum of patients with sepsis; the level of C1q in the death group was lower than that in the survival group (127.1 mg/L vs 153.2 mg/L, P < 0.05), and the mortality in the C1q decreased group was higher when compared with C1q normal group; in addition, serum C1q levels were correlated with SOFA score, organ damage indexes and coagulation indexes; C1q had a high area under the curve (AUC) for the prognosis of sepsis, and the combination of other indexes can further improve the prognostic value. Conclusion Serum C1q levels have potential clinical value for the condition and prognosis of sepsis.
Collapse
Affiliation(s)
- Huan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Juanjuan Chen
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuanhui Hu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xin Cai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Dongling Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Pingan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|