1
|
Offenhäuser C, Dave KA, Beckett KJ, Smith FM, Jayakody BA, Cooper LT, Agyei-Yeboah H, McCarron JK, Li Y, Bastick K, Al-Ejeh F, Cullen JK, Coulthard MG, Gorman JJ, Boyd AW, Day BW. EphA2 regulates vascular permeability and prostate cancer metastasis via modulation of cell junction protein phosphorylation. Oncogene 2025; 44:208-227. [PMID: 39511410 PMCID: PMC11753358 DOI: 10.1038/s41388-024-03206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Prostate cancer morbidity and mortality demonstrate a need for more effective targeted therapies. One potential target is EphA2, although paradoxically, pro- and anti-oncogenic effects have been shown to be mediated by EphA2. We demonstrate that unique activating and blocking EphA2-targeting monoclonal antibodies display opposing tumor-suppressive and oncogenic properties in vivo. To further explore this complexity, we performed detailed phosphoproteomic analysis following ligand-induced EphA2 activation. Our analysis identified altered phosphorylation of 73 downstream proteins related to the PI3K/AKT/mTOR and ERK/MAPK pathways, with the majority implicated in cell junction and cytoskeletal organization, cell motility, and tumor metastasis. We demonstrate that the adapter protein SHB is an essential component in mediating the inhibition of the ERK/MAPK pathway in response to EphA2 receptor activation. Furthermore, we identify the adherence junction protein afadin as an EphA2-regulated phosphoprotein which is involved in prostate cancer migration and invasion.
Collapse
Affiliation(s)
- Carolin Offenhäuser
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Keyur A Dave
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Kirrilee J Beckett
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Fiona M Smith
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Buddhika A Jayakody
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Leanne T Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helen Agyei-Yeboah
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jennifer K McCarron
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Yuchen Li
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kate Bastick
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Fares Al-Ejeh
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jason K Cullen
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark G Coulthard
- Mayne Academy of Paediatrics, Faculty of Medicine, The University of Queensland, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, 4101, Australia
| | - Jeffrey J Gorman
- Protein Discovery Center, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Andrew W Boyd
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bryan W Day
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
2
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zou J, Zhang K, Zhu J, Tu C, Guo J. Identification of therapeutic targets and prognostic biomarkers of the ephrin receptor subfamily in pancreatic adenocarcinoma. J Int Med Res 2024; 52:3000605231218559. [PMID: 38180878 PMCID: PMC10771058 DOI: 10.1177/03000605231218559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024] Open
Abstract
OBJECTIVES We aimed to examine the significance of ephrin receptor A2 (EphA2) expression in pancreatic adenocarcinoma (PAAD) and its associated mechanism. METHODS EphA2 mRNA expression patterns were compared in pancreatic cancer and normal tissues using GEPIA. Kaplan-Meier analysis was used to examine the correlation between EphA2 expression and PAAD patient prognosis. EphA2 gene methylation and associations with tumor immune cell infiltration were analyzed with UALCAN and TIMER, respectively. EphA2-interacting proteins were investigated with GeneMANIA, while STRING helped predict potentially relevant signaling pathways. EphA2 protein expression was examined with immunohistochemistry (IHC) in PAAD patient tissues. RESULTS EphA2 was highly expressed in pancreatic cancer tissues and associated with pathological stage. PAAD patients with high EphA2 expression had shorter overall survival and disease-free survival times. EphA2 expression levels were significantly and positively associated with CD4+ T cell infiltration. EphA2 can interact with ENFNA1, ACP1, and CDC42. High EphA2 mRNA expression was enriched for regulation of cell size and cell proliferation. IHC assays suggested that pancreatic cancer tissues had higher EphA2 protein levels than normal pancreatic tissues. CONCLUSIONS EphA2 is highly expressed in PAAD and closely related to poor patient prognosis, and is therefore a potential biomarker and target for PAAD diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjng Zou
- Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Kun Zhang
- Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Jinde Zhu
- Lishui Municipal Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | | | - Jingqiang Guo
- Jingqiang Guo, Master of Medicine, 289 Kuocang Road, Lishui City, Zhejiang Province 32300, China.
| |
Collapse
|
4
|
Sunaga N, Kaira K, Shimizu K, Tanaka I, Miura Y, Nakazawa S, Ohtaki Y, Kawabata‐Iwakawa R, Sato M, Girard L, Minna JD, Hisada T. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac Cancer 2024; 15:131-141. [PMID: 38014454 PMCID: PMC10788478 DOI: 10.1111/1759-7714.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Molecular abnormalities in the Wnt/β-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon β-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Ichidai Tanaka
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yosuke Miura
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Pharmacology, University of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Takeshi Hisada
- Gunma University Graduate School of Health SciencesMaebashiJapan
| |
Collapse
|
5
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
6
|
Vail ME, Farnsworth RH, Hii L, Allen S, Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, Scott AM, Janes PW. Inhibition of EphA3 Expression in Tumour Stromal Cells Suppresses Tumour Growth and Progression. Cancers (Basel) 2023; 15:4646. [PMID: 37760615 PMCID: PMC10527215 DOI: 10.3390/cancers15184646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tumour progression relies on interactions with untransformed cells in the tumour microenvironment (TME), including cancer-associated fibroblasts (CAFs), which promote blood supply, tumour progression, and immune evasion. Eph receptor tyrosine kinases are cell guidance receptors that are most active during development but re-emerge in cancer and are recognised drug targets. EphA3 is overexpressed in a wide range of tumour types, and we previously found expression particularly in stromal and vascular tissues of the TME. To investigate its role in the TME, we generated transgenic mice with inducible shRNA-mediated knockdown of EphA3 expression. EphA3 knockdown was confirmed in aortic mesenchymal stem cells (MSCs), which displayed reduced angiogenic capacity. In mice with syngeneic lung tumours, EphA3 knockdown reduced vasculature and CAF/MSC-like cells in tumours, and inhibited tumour growth, which was confirmed also in a melanoma model. Single cell RNA sequencing analysis of multiple human tumour types confirmed EphA3 expression in CAFs, including in breast cancer, where EphA3 was particularly prominent in perivascular- and myofibroblast-like CAFs. Our results thus indicate expression of the cell guidance receptor EphA3 in distinct CAF subpopulations is important in supporting tumour angiogenesis and tumour growth, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mary E. Vail
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Rae H. Farnsworth
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Linda Hii
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Stacey Allen
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Sakshi Arora
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Sunny Z. Wu
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and School of Clinical Medicine, University of NSW, Darlinghurst, NSW 2010, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Peter W. Janes
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
9
|
Cai C, Zhang M, Liu L, Zhang H, Guo Y, Lan T, Xu Y, Ma P, Li S. ADAM10-cleaved ephrin-A5 contributes to prostate cancer metastasis. Cell Death Dis 2022; 13:453. [PMID: 35551177 PMCID: PMC9098485 DOI: 10.1038/s41419-022-04893-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/27/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
A disintegrin and metalloprotease-10(ADAM10) promotes the metastasis of prostate cancer (PCa), but the specific mechanism is indistinct. Herein, DU145 cell lines with stable overexpression and knockdown of ADAM10 were constructed. We found that ectopic expression of ADAM10 not only significantly facilitated cell proliferation, migration, invasion, and inhibited apoptosis, but also could specifically hydrolyze ephrin-A5 and release the ephrin-A5 soluble ectodomain into extracellular media in vitro. These effects were reversed by ADAM10 depletion or treatment of GI254023X. Meanwhile, the co-location and physical interaction among EphA3, ephrin-A5, and ADAM10 were observed in PCa cells using immunofluorescence and immunoprecipitation techniques. Interestingly, overexpression of EphA3 exerted opposite effects in DU145 (ephrin-A5 + ) cells and PC-3 (ephrin-A5 ± ) cells. In addition, the pro-tumor function of EphA3 was reversed by the treatment with the exogenous ephrin-A5-Fc, which increased the phosphorylation level of EphA3 in PC-3 (ephrin-A5 ± ) cells. In nude mice, ADAM10 accelerated growth of the primary tumor, decreased the level of ephrin-A5 in the tumor tissue, but increased the level of ephrin-A5 in the peripheral blood, accompanied with an increase in the expression of CD31 and VEGF (vascular endothelial growth factor) in the tissue. What is more, the serum ephrin-A5 content of patients with metastatic PCa was significantly higher than that of the non-metastatic group (P < 0.05). The receiver operating characteristic curve(ROC) showed that the area under the curve(AUC) of serum ephrin-A5 as a marker of PCa metastasis was 0.843, with a sensitivity of 93.5% and a specificity of 75%. It is concluded that ADAM10-mediated ephrin-A5 shedding promotes PCa metastasis via transforming the role of EphA3 from ligand-dependent tumor suppressor to ligand-independent promoter, and ephrin-A5 in the blood can be used as a new biomarker for PCa metastasis.
Collapse
Affiliation(s)
- Chenchen Cai
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.452207.60000 0004 1758 0558Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, 221009 China
| | - Miaomiao Zhang
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Lei Liu
- grid.417303.20000 0000 9927 0537Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 PR China
| | - Haoliang Zhang
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Yi Guo
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Ting Lan
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China
| | - Yinhai Xu
- grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Ping Ma
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| | - Shibao Li
- grid.417303.20000 0000 9927 0537Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 China ,grid.413389.40000 0004 1758 1622Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002 PR China
| |
Collapse
|
10
|
Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, Luo HY, Zeng ZL, Qiu MZ, Xu RH. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med 2022; 14:45. [PMID: 35488273 PMCID: PMC9052621 DOI: 10.1186/s13073-022-01050-w] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking. METHODS Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets. RESULTS Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets. CONCLUSIONS We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Ling Yin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Qi Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
11
|
Bouzari B, Mohammadi S, Bokov DO, Krasnyuk II, Hosseini-Fard SR, Hajibaba M, Mirzaei R, Karampoor S. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis. Biomed Pharmacother 2022; 148:112760. [PMID: 35228062 DOI: 10.1016/j.biopha.2022.112760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GB) is a highly aggressive cancer of the central nervous system, occurring in the brain or spinal cord. Many factors such as angiogenesis are associated with GB development. Angiogenesis is a procedure by which the pre-existing blood vessels create new vessels that play an essential role in health and disease, including tumors. Also, angiogenesis is one of the significant factors thought to be responsible for treatment resistance in many tumors, including GB. Hence, an improved understanding of the molecular processes underlying GB angiogenesis will pave the way for developing potential new treatments. Recently, it has been found that microRNAs (miRNAs) and exosomal miRNAs have a crucial role in inducing or inhibiting the angiogenesis process in GB development. A better knowledge of the miRNA's regulation pathway in the angiogenesis process in cancer offers unique mechanistic insight into the mechanism of tumor-associated neovascularization. Because of advancements in miRNA characterization and delivery methods, miRNAs can also be employed in clinical settings as potential biomarkers for anti-angiogenic treatment response as well as therapies targeting tumor angiogenesis. The recent finding and insights about miRNAs' angioregulatory role and exosomal miRNAs in GB are provided throughout the review. Also, we discuss the new concept of miRNAs-based therapies for GB in the future.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shabahang Mohammadi
- ENT and Head and Neck Research Center and Department, Firoozgar General Hospital, The Five Senses Health Institute, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Ivan Ivanovich Krasnyuk
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
13
|
Wang GH, Ni K, Gu C, Huang J, Chen J, Wang XD, Ni Q. EphA8 inhibits cell apoptosis via AKT signaling and is associated with poor prognosis in breast cancer. Oncol Rep 2021; 46:183. [PMID: 34278497 DOI: 10.3892/or.2021.8134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/11/2021] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin‑producing hepatocellular receptors (Ephs) comprise the largest subfamily of receptor tyrosine kinases and have been reported to be involved in a variety of biological cellular processes, including tumorigenesis and cancer progression. The present study aimed to determine the expression levels and clinicopathological significance of EphA8 in breast cancer (BC) using immunohistochemistry analysis of tissue microarrays. The results of the present study revealed that EphA8 expression levels were upregulated in BC tissue and were associated with tumor size and TNM stage. In addition, upregulated expression levels of EphA8 were identified to be a poor prognostic biomarker for patients with BC. The knockdown of EphA8 expression using short hairpin RNA resulted in increased levels of apoptosis as well as decreased proliferation, migration and invasion of BC cells both in vivo and in vitro. The knockdown of EphA8 also decreased the phosphorylation of AKT, which was accompanied by downregulation of Bcl‑2 expression levels and upregulation of p53, Caspase‑3 and Bax expression levels. Moreover, knockdown of EphA8 expression increased the chemosensitivity of BC cells to paclitaxel. In conclusion, the results of the present study indicated that EphA8 may be a useful prognostic marker in BC and that knockdown of EphA8 may represent a novel strategy in adjuvant chemotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Gui-Hua Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Kan Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Changjiang Gu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jing Chen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xu-Dong Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Janes PW, Vail ME, Ernst M, Scott AM. Eph Receptors in the Immunosuppressive Tumor Microenvironment. Cancer Res 2020; 81:801-805. [PMID: 33177063 DOI: 10.1158/0008-5472.can-20-3047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) promotes tumor development via complex intercellular signaling, aiding tumor growth and suppressing immunity. Eph receptors (Eph) and their ephrin ligands control cell interactions during normal development, and reemerge in tumors and the TME, where they are implicated in invasion, metastasis, and angiogenesis. Recent studies also indicate roles for Ephs in suppressing immune responses by controlling tumor interactions with innate and adaptive immune cells within the TME. Accordingly, inhibiting these functions can promote immune response and efficacy of immune checkpoint inhibition. This research highlights Ephs as potential targets to enhance efficacy of immune-based therapies in patients with cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia.
| | - Mary E Vail
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| | - Andrew M Scott
- Tumour Targeting Program, Olivia Newton-John Cancer Institute/La Trobe University School of Cancer Medicine, Victoria, Melbourne, Australia
| |
Collapse
|
16
|
London M, Gallo E. The EphA2 and cancer connection: potential for immune-based interventions. Mol Biol Rep 2020; 47:8037-8048. [PMID: 32990903 DOI: 10.1007/s11033-020-05767-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
The Eph (erythropoietin-producing human hepatocellular) receptors form the largest known subfamily of receptor tyrosine kinases. These receptors interact with membrane-bound ephrin ligands via direct cell-cell interactions resulting in bi-directional activation of signal pathways. Importantly, the Eph receptors play critical roles in embryonic tissue organization and homeostasis, and in the maintenance of adult processes such as long-term potentiation, angiogenesis, and stem cell differentiation. The Eph receptors also display properties of both tumor promoters and suppressors depending on the cellular context. Characterization of EphA2 receptor in regard to EphA2 dysregulation has revealed associations with various pathological processes, especially cancer. The analysis of various tumor types generally identify EphA2 receptor as overexpressed and/or mutated, and for certain types of cancers EphA2 is linked with poor prognosis and decreased patient survival. Thus, here we highlight the role of EphA2 in malignant tissues that are specific to cancer; these include glioblastoma multiforme, prostate cancer, ovarian and uterine cancers, gastric carcinoma, melanoma, and breast cancer. Due to its large extracellular domain, therapeutic targeting of EphA2 with monoclonal antibodies (mAbs), which may function as inhibitors of ligand activation or as molecular agonists, has been an oft-attempted strategy. Therefore, we review the most current mAb-based therapies against EphA2 expressing cancers currently in pre-clinical and/or clinical stages. Finally, we discuss the latest peptides and cyclical-peptides that function as selective agonists for EphA2 receptor.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, University of Toronto, Donnelly Centre, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
17
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Abstract
The Epidermal Growth Factor Receptor (EGFR) is frequently expressed at elevated levels in different forms of cancer and expression often correlates positively with cancer progression and poor prognosis. Different mutant forms of this protein also contribute to cancer heterogeneity. A constitutively active form of EGFR, EGFRvIII is one of the most important variants. EGFR is responsible for the maintenance and functions of cancer stem cells (CSCs), including stemness, metabolism, immunomodulatory-activity, dormancy and therapy-resistance. EGFR regulates these pathways through several signaling cascades, and often cooperates with other RTKs to exert further control. Inhibitors of EGFR have been extensively studied and display some anticancer efficacy. However, CSCs can also acquire resistance to EGFR inhibitors making effective therapy even more difficult. To ameliorate this limitation of EGFR inhibitors when used as single agents, it may be of value to simultaneously combine multiple EGFR inhibitors or use EGFR inhibitors with regulators of other important cancer phenotype regulating molecules, such as STAT3, or involved in important processes such as DNA repair. These combinatorial approaches require further experimental confirmation, but if successful would expand and improve therapeutic outcomes employing EGFR inhibitors as one arm of the therapy.
Collapse
|
19
|
Janes PW, Vail ME, Gan HK, Scott AM. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13050088. [PMID: 32397088 PMCID: PMC7281212 DOI: 10.3390/ph13050088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.
Collapse
|
20
|
Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I, Minic Z, Pallini R, Berezovski MV, de Francisis V, Condorelli G. Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:176-185. [PMID: 32169805 PMCID: PMC7068199 DOI: 10.1016/j.omtn.2020.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022]
Abstract
Despite the benefits associated with radiotherapy and chemotherapy for glioblastoma (GBM) treatment, most patients experience a relapse following initial therapy. Recurrent or progressive GBM usually does not respond anymore to standard therapy, and this is associated with poor patient outcome. GBM stem cells (GSCs) are a subset of cells resistant to radiotherapy and chemotherapy and play a role in tumor recurrence. The targeting of GSCs and the identification of novel markers are crucial issues in the development of innovative strategies for GBM eradication. By differential cell SELEX (systematic evolution of ligands by exponential enrichment), we have recently described two RNA aptamers, that is, the 40L sequence and its truncated form A40s, able to bind the cell surface of human GSCs. Both aptamers were selective for stem-like growing GBM cells and are rapidly internalized into target cells. In this study, we demonstrate that their binding to cells is mediated by direct recognition of the ephrin type-A receptor 2 (EphA2). Functionally, the two aptamers were able to inhibit cell growth, stemness, and migration of GSCs. Furthermore, A40s was able to cross the blood-brain barrier (BBB) and was stable in serum in in vitro experiments. These results suggest that 40L and A40s represent innovative potential therapeutic tools for GBM.
Collapse
Affiliation(s)
- Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; Percuros B.V., Enschede, the Netherlands
| | - Cristina Quintavalle
- Percuros B.V., Enschede, the Netherlands; IEOS, CNR, Via Tommaso de Amicis 95, 80131 Naples, Italy.
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Catello Giordano
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | | | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | - Roberto Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; John L. Holmes Mass Spectrometry Facility, Ottawa, ON K1N 6N5, Canada
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Via Tommaso de Amicis 95, 80131 Naples, Italy; IRCCS Neuromed-Istituto Neurologico Mediterraneo Pozzilli, Pozzilli, Italy.
| |
Collapse
|
21
|
Ishigaki H, Minami T, Morimura O, Kitai H, Horio D, Koda Y, Fujimoto E, Negi Y, Nakajima Y, Niki M, Kanemura S, Shibata E, Mikami K, Takahashi R, Yokoi T, Kuribayashi K, Kijima T. EphA2 inhibition suppresses proliferation of small-cell lung cancer cells through inducing cell cycle arrest. Biochem Biophys Res Commun 2019; 519:846-853. [PMID: 31558317 DOI: 10.1016/j.bbrc.2019.09.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 02/04/2023]
Abstract
Small-cell lung cancer (SCLC) is characterized by one of neuroendocrine tumors, and is a clinically aggressive cancer due to its rapid growth, early dissemination, and rapid acquisition of multidrug resistance to chemotherapy. Moreover, the standard chemotherapeutic regimen in SCLC has not changed for three decades despite of the dramatic therapeutic improvement in non-SCLC. The development of a novel therapeutic strategy for SCLC has become a pressing issue. We found that expression of Eph receptor A2 (EphA2) is upregulated in three of 13 SCLC cell lines and five of 76 SCLC tumor samples. Genetic inhibition using siRNA of EphA2 significantly suppressed the cellular proliferation via induction of cell cycle arrest in SBC-5 cells. Furthermore, small molecule inhibitors of EphA2 (ALW-II-41-27 and dasatinib) also exclusively inhibited proliferation of EphA2-positive SCLC cells by the same mechanism. Collectively, EphA2 could be a promising candidate as a therapeutic target for SCLC.
Collapse
Affiliation(s)
- Hirotoshi Ishigaki
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Toshiyuki Minami
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan.
| | - Osamu Morimura
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidemi Kitai
- Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Daisuke Horio
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Yuichi Koda
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Eriko Fujimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Yoshiki Negi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Yasuhiro Nakajima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Maiko Niki
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Shingo Kanemura
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Eisuke Shibata
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Koji Mikami
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Ryo Takahashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Yokoi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Hyogo, Japan; Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Emerging Applications of Nanotechnology for Controlling Cell‐Surface Receptor Clustering. Angew Chem Int Ed Engl 2019; 58:4790-4799. [DOI: 10.1002/anie.201809006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Indexed: 12/21/2022]
|
23
|
The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers (Basel) 2019; 11:cancers11030359. [PMID: 30871240 PMCID: PMC6468443 DOI: 10.3390/cancers11030359] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023] Open
Abstract
Therapies against glioblastoma (GBM) show a high percentage of failure associated with the survival of glioma stem cells (GSCs) that repopulate treated tumours. Forced differentiation of GSCs is a promising new approach in cancer treatment. Erythropoietin-producing hepatocellular (Eph) receptors drive tumourigenicity and stemness in GBM. We tested GLPG1790, a first small molecule with inhibition activity versus inhibitor of various Eph receptor kinases, in preclinical GBM models using in vitro and in vivo assays. GLPG1790 rapidly and persistently inhibited Ephrin-A1-mediated phosphorylation of Tyr588 and Ser897, completely blocking EphA2 receptor signalling. Similarly, this compound blocks the ephrin B2-mediated EphA3 and EphB4 tyrosine phosphorylation. This resulted in anti-glioma effects. GLPG1790 down-modulated the expression of mesenchymal markers CD44, Sox2, nestin, octamer-binding transcription factor 3/4 (Oct3/4), Nanog, CD90, and CD105, and up-regulated that of glial fibrillary acidic protein (GFAP) and pro-neural/neuronal markers, βIII tubulin, and neurofilaments. GLPG1790 reduced tumour growth in vivo. These effects were larger compared to radiation therapy (RT; U251 and T98G xenografts) and smaller than those of temozolomide (TMZ; U251 and U87MG cell models). By contrast, GLPG1790 showed effects that were higher than Radiotherapy (RT) and similar to Temozolomide (TMZ) in orthotopic U87MG and CSCs-5 models in terms of disease-free survival (DFS) and overall survival (OS). Further experiments were necessary to study possible interactions with radio- and chemotherapy. GLPG1790 demonstrated anti-tumor effects regulating both the differentiative status of Glioma Initiating Cells (GICs) and the quality of tumor microenvironment, translating into efficacy in aggressive GBM mouse models. Significant common molecular targets to radio and chemo therapy supported the combination use of GLPG1790 in ameliorative antiglioma therapy.
Collapse
|
24
|
Zhang K, Gao H, Deng R, Li J. Emerging Applications of Nanotechnology for Controlling Cell‐Surface Receptor Clustering. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201809006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kaixiang Zhang
- Department of ChemistryKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 China
| | - Hua Gao
- Department of ParasitologyMedical CollegeZhengzhou University Zhengzhou 450001 China
| | - Ruijie Deng
- Department of ChemistryKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
- College of Light Industry, Textile and Food EngineeringSichuan University Chengdu 610065 China
| | - Jinghong Li
- Department of ChemistryKey Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua University Beijing 100084 China
| |
Collapse
|
25
|
Viewing the Eph receptors with a focus on breast cancer heterogeneity. Cancer Lett 2018; 434:160-171. [PMID: 30055288 DOI: 10.1016/j.canlet.2018.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Aberrant expression of different family members of the Eph/ephrin system, which comprises the Eph receptors (Ephs) and their ligands (ephrins), has been implicated in various malignancies including breast cancer. The latter presents as a heterogeneous disease with diverse molecular, morphologic and clinical behavior signatures. This review reflects the existing Eph/ephrin literature while focusing on breast cancer heterogeneity. Hormone positive, HER2 positive and triple negative breast cancer (TNBC) cell lines, xenografts/mutant animal models and patient samples are examined separately as, in humans, they represent entities with differences in prognosis and treatment. EphA2, EphB4 and EphB6 are the members most extensively studied in breast cancer. Existing research points to the potential use of various Eph/ephrin members as biomarkers for assessing prognosis and selecting the most suitable therapeutic strategies in variable clinical scenarios, also for overcoming drug resistance, in the era of breast cancer heterogeneity.
Collapse
|
26
|
Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A, Delle Monache S, Maturo MG, Sferra R, Chiodelli P, Rusnati M, Cantoni A, Castelli R, Vacondio F, Lodola A, Tognolini M. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 2018; 9:24347-24363. [PMID: 29849945 PMCID: PMC5966254 DOI: 10.18632/oncotarget.25272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/07/2018] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor, showing high resistance to standard therapeutic approaches that combine surgery, radiotherapy, and chemotherapy. As opposed to healthy tissues, EphA2 has been found highly expressed in specimens of glioblastoma, and increased expression of EphA2 has been shown to correlate with poor survival rates. Accordingly, agents blocking Eph receptor activity could represent a new therapeutic approach. Herein, we demonstrate that UniPR1331, a pan Eph receptor antagonist, possesses significant in vivo anti-angiogenic and anti-vasculogenic properties which lead to a significant anti-tumor activity in xenograft and orthotopic models of GBM. UniPR1331 halved the final volume of tumors when tested in xenografts (p<0.01) and enhanced the disease-free survival of treated animals in the orthotopic models of GBM both by using U87MG cells (40 vs 24 days of control, p<0.05) or TPC8 cells (52 vs 16 days, p<0.01). Further, the association of UniPR1331 with the anti-VEGF antibody Bevacizumab significantly increased the efficacy of both monotherapies in all tested models. Overall, our data promote UniPR1331 as a novel tool for tackling GBM.
Collapse
Affiliation(s)
- Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Cristina Pellegrini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Maria Giovanna Maturo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Annamaria Cantoni
- Department of Veterinary Sciences, University of Parma, 43100, Parma, Italy
| | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | |
Collapse
|
27
|
Toosi BM, El Zawily A, Truitt L, Shannon M, Allonby O, Babu M, DeCoteau J, Mousseau D, Ali M, Freywald T, Gall A, Vizeacoumar FS, Kirzinger MW, Geyer CR, Anderson DH, Kim T, Welm AL, Siegel P, Vizeacoumar FJ, Kusalik A, Freywald A. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours. Oncogene 2018; 37:4073-4093. [PMID: 29700392 PMCID: PMC6062499 DOI: 10.1038/s41388-018-0228-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 01/30/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022]
Abstract
Triple-negative breast cancer (TNBC) tumours that lack expression of oestrogen, and progesterone receptors, and do not overexpress the HER2 receptor represent the most aggressive breast cancer subtype, which is characterised by the resistance to therapy in frequently relapsing tumours and a high rate of patient mortality. This is likely due to the resistance of slowly proliferating tumour-initiating cells (TICs), and understanding molecular mechanisms that control TICs behaviour is crucial for the development of effective therapeutic approaches. Here, we present our novel findings, indicating that an intrinsically catalytically inactive member of the Eph group of receptor tyrosine kinases, EPHB6, partially suppresses the epithelial–mesenchymal transition in TNBC cells, while also promoting expansion of TICs. Our work reveals that EPHB6 interacts with the GRB2 adapter protein and that its effect on enhancing cell proliferation is mediated by the activation of the RAS-ERK pathway, which allows it to elevate the expression of the TIC-related transcription factor, OCT4. Consistent with this, suppression of either ERK or OCT4 activities blocks EPHB6-induced pro-proliferative responses. In line with its ability to trigger propagation of TICs, EPHB6 accelerates tumour growth, potentiates tumour initiation and increases TIC populations in xenograft models of TNBC. Remarkably, EPHB6 also suppresses tumour drug resistance to DNA-damaging therapy, probably by forcing TICs into a more proliferative, drug-sensitive state. In agreement, patients with higher EPHB6 expression in their tumours have a better chance for recurrence-free survival. These observations describe an entirely new mechanism that governs TNBC and suggest that it may be beneficial to enhance EPHB6 action concurrent with applying a conventional DNA-damaging treatment, as it would decrease drug resistance and improve tumour elimination.
Collapse
Affiliation(s)
- Behzad M Toosi
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Amr El Zawily
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada.,Faculty of Science, Damanhour University, Damanhour, 22516, Egypt
| | - Luke Truitt
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Matthew Shannon
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldsen Bldg., 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Odette Allonby
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Mohan Babu
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Room 232, Research and Innovation Centre, Regina, SK, S4S 0A2, Canada
| | - John DeCoteau
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Darrell Mousseau
- Cell Signaling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, GB41 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Mohsin Ali
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Tanya Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Amanda Gall
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Room 2D01 Health Science Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Morgan W Kirzinger
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldsen Bldg., 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada
| | - Deborah H Anderson
- Saskatchewan Cancer Agency, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - TaeHyung Kim
- Donnelly Centre for Cellular and Biomolecular Research and Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT, 84112, USA
| | - Peter Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Franco J Vizeacoumar
- Saskatchewan Cancer Agency, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldsen Bldg., 110 Science Place, Saskatoon, SK, S7N 5C9, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Room 2841, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8, Canada.
| |
Collapse
|
28
|
Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Molecular pathway network of EFNA1 in cancer and mesenchymal stem cells. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.2.58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Megiorni F, Gravina GL, Camero S, Ceccarelli S, Del Fattore A, Desiderio V, Papaccio F, McDowell HP, Shukla R, Pizzuti A, Beirinckx F, Pujuguet P, Saniere L, der Aar EV, Maggio R, De Felice F, Marchese C, Dominici C, Tombolini V, Festuccia C, Marampon F. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells. J Hematol Oncol 2017; 10:161. [PMID: 28985758 PMCID: PMC6389084 DOI: 10.1186/s13045-017-0530-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Background EPH (erythropoietin-producing hepatocellular) receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS) cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM). GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg) in vivo activity alone or in combination with irradiation (2 Gy) was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that its pharmacological inhibition might represent a potential therapeutic strategy to impair stemness and to rescue myogenic program in ERMS cells.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Del Fattore
- Multi-Factorial Disease and Complex Phenotype Research Area, Bambino Gesu Children's Hospital, IRCCS, Rome, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embriology, Second University of Naples, Naples, Italy
| | - Federica Papaccio
- Division of Medical Oncology, Department of Clinical and Experimental Medicine and Surgery "F. Magrassi A. Lanzara", Second University of Naples, Naples, Italy
| | - Heather P McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy.,Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Antonio Pizzuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Filip Beirinckx
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Philippe Pujuguet
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Laurent Saniere
- Galapagos France, 102 avenue Gaston Roussel, 93230, Romainville, France
| | - Ellen Van der Aar
- Galapagos NV, Industriepark Mechelen Noord, General De Wittelaan L11 A3, 2880, Mechelen, Belgium
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, Division of Pharmacology, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
30
|
Zarei O, Hamzeh-Mivehroud M, Benvenuti S, Ustun-Alkan F, Dastmalchi S. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation. Adv Pharm Bull 2017; 7:141-150. [PMID: 28507948 PMCID: PMC5426727 DOI: 10.15171/apb.2017.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose: Implication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ). Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Guo W, Shang DM, Cao JH, Feng K, He YC, Jiang Y, Wang S, Gao YF. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6132436. [PMID: 28255556 PMCID: PMC5309434 DOI: 10.1155/2017/6132436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients' personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR) algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Wei Guo
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dong-Mei Shang
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jing-Hui Cao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yi-Chun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Fei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
32
|
Shiuan E, Chen J. Eph Receptor Tyrosine Kinases in Tumor Immunity. Cancer Res 2016; 76:6452-6457. [PMID: 27811149 DOI: 10.1158/0008-5472.can-16-1521] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022]
Abstract
The family of Eph receptor tyrosine kinases and their ephrin ligands regulate a diverse array of physiologic processes, such as axonal guidance, bone remodeling, and immune cell development and trafficking. Eph/ephrin interactions have also been implicated in various pathologic processes, including inflammation, cancer, and tumor angiogenesis. Because Eph receptors play prominent roles in both the immune system and cancer, they likely impact the tumor immune microenvironment, an area in which Eph receptors remain understudied. Here, we provide the first comprehensive review of Eph receptors in the context of tumor immunity. With the recent rise of cancer immunotherapies as promising therapeutic interventions, further elucidation of the roles of Eph receptors in the tumor immune microenvironment will be critical for understanding and developing novel targets against tumor immune evasion. Cancer Res; 76(22); 6452-7. ©2016 AACR.
Collapse
Affiliation(s)
- Eileen Shiuan
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee. .,Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee.,Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee.,Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
33
|
Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun 2016; 7:12799. [PMID: 27619642 PMCID: PMC5027278 DOI: 10.1038/ncomms12799] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023] Open
Abstract
ErbB2 signalling, which is amplified by EphA2 binding, is an important therapeutic target for breast cancer. Despite the importance of the EphA2/ErbB2 complex in promoting breast tumorigenesis, the mechanism by which these receptor tyrosine kinases (RTKs) are exported from the endoplasmic reticulum (ER) remains poorly understood. Here we report that the PTB adaptor Anks1a is specifically localized to the ER on its own serine phosphorylation. Once there, Anks1a acts as an important regulator of COPII-mediated EphA2 ER export. The Anks1a ankyrin repeat domain binds EphA2 and causes it to accumulate at sites of ER exit. Simultaneously, the Anks1a PTB domain binds Sec23. This induces internalization of EphA2 via COPII vesicles, while Anks1a remains behind on the ER membrane. EphA2 also binds ErbB2 in the ER and seems to load ErbB2 into growing COPII carriers. Together, our study reveals a novel mechanism that regulates the loading of RTKs into COPII vesicles. EphA2/ErbB2 complex is important in promoting breast cancer but the mechanism by which these receptor tyrosine kinases are exported from the endoplasmic reticulum is unknown. Here the authors show that Anks1a acts as a cargo adaptor in sorting EphA2 into COPII vesicles, thus modulating the surface level of EphA2.
Collapse
Affiliation(s)
- Haeryung Lee
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Hyuna Noh
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| | - Jiyoung Mun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam-Si, Gyeonggi-Do 13135, Korea
| | - Changkyu Gu
- Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Sanja Sever
- Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Soochul Park
- Department of Biological Science, Sookmyung Women's University, Chungpa-ro 47gil 100, Yongsan-gu, Seoul 140-742, Korea
| |
Collapse
|
34
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
35
|
Wang J, Galvao J, Beach KM, Luo W, Urrutia RA, Goldberg JL, Otteson DC. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells. J Biol Chem 2016; 291:18084-95. [PMID: 27402841 DOI: 10.1074/jbc.m116.732339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/06/2022] Open
Abstract
Regenerative medicine holds great promise for the treatment of degenerative retinal disorders. Krüppel-like factors (KLFs) are transcription factors that have recently emerged as key tools in regenerative medicine because some of them can function as epigenetic reprogrammers in stem cell biology. Here, we show that KLF16, one of the least understood members of this family, is a POU4F2 independent transcription factor in retinal ganglion cells (RGCs) as early as embryonic day 15. When overexpressed, KLF16 inhibits RGC neurite outgrowth and enhances RGC growth cone collapse in response to exogenous ephrinA5 ligands. Ephrin/EPH signaling regulates RGC connectivity. The EphA5 promoter contains multiple GC- and GT-rich KLF-binding sites, which, as shown by ChIP-assays, bind KLF16 in vivo In electrophoretic mobility shift assays, KLF16 binds specifically to a single KLF site near the EphA5 transcription start site that is required for KLF16 transactivation. Interestingly, methylation of only six of 98 CpG dinucleotides within the EphA5 promoter blocks its transactivation by KLF16 but enables transactivation by KLF2 and KLF15. These data demonstrate a role for KLF16 in regulation of RGC neurite outgrowth and as a methylation-sensitive transcriptional regulator of EphA5 expression. Together, these data identify differential low level methylation as a novel mechanism for regulating KLF16-mediated EphA5 expression across the retina. Because of the critical role of ephrin/EPH signaling in patterning RGC connectivity, understanding the role of KLFs in regulating neurite outgrowth and Eph receptor expression will be vital for successful restoration of functional vision through optic nerve regenerative therapies.
Collapse
Affiliation(s)
- Jianbo Wang
- From the Departments of Physiological Optics and Vision Science and
| | - Joana Galvao
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Krista M Beach
- From the Departments of Physiological Optics and Vision Science and
| | - Weijia Luo
- Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Raul A Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Gastroenterology Research Unit, Epigenomics Translational Program, Center for Individualized Medicine, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Jeffrey L Goldberg
- the Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, California 94303, the Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, and
| | - Deborah C Otteson
- From the Departments of Physiological Optics and Vision Science and Biology and Biochemistry, University of Houston, Houston, Texas 77204,
| |
Collapse
|
36
|
Dong J, Zhao H, Zhou T, Spiliotopoulos D, Rajendran C, Li XD, Huang D, Caflisch A. Structural Analysis of the Binding of Type I, I1/2, and II Inhibitors to Eph Tyrosine Kinases. ACS Med Chem Lett 2015; 6:79-83. [PMID: 25589935 DOI: 10.1021/ml500355x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022] Open
Abstract
We have solved the crystal structures of the EphA3 tyrosine kinase in complex with nine small-molecule inhibitors, which represent five different chemotypes and three main binding modes, i.e., types I and I1/2 (DFG in) and type II (DFG out). The three structures with type I1/2 inhibitors show that the higher affinity with respect to type I is due to an additional polar group (hydroxyl or pyrazole ring of indazole) which is fully buried and is involved in the same hydrogen bonds as the (urea or amide) linker of the type II inhibitors. Overall, the type I and type II binding modes belong to the lock-and-key and induced fit mechanism, respectively. In the type II binding, the scaffold in contact with the hinge region influences the position of the Phe765 side chain of the DFG motif and the orientation of the Gly-rich loop. The binding mode of Birb796 in the EphA3 kinase does not involve any hydrogen bond with the hinge region, which is different from the Birb796/p38 MAP kinase complex. Our structural analysis emphasizes the importance of accounting for structural plasticity of the ATP binding site in the design of type II inhibitors of tyrosine kinases.
Collapse
Affiliation(s)
- Jing Dong
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hongtao Zhao
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ting Zhou
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chitra Rajendran
- Laboratory
of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Xiao-Dan Li
- Laboratory
of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Danzhi Huang
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
37
|
Abstract
Eph receptor tyrosine kinases and the corresponding ephrin ligands play a pivotal role in the glioma development and progression. Aberrant protein expression levels of the Eph receptors and ephrins are often associated with higher tumor grade and poor prognosis. Their function in tumorigenesis is complex due to the intricate network of possible co-occurring interactions between neighboring tumor cells and tumor microenvironment. Both Ephs and ephrins localize on the surface of tumor cells, tumor vasculature, glioma stem cells, tumor cells infiltrating brain, and immune cells infiltrating tumors. They can both promote and inhibit tumorigenicity depending on the downstream forward and reverse signalling generated. All the above-mentioned features make the Ephs/ephrins system an intriguing candidate for the development of new therapeutic strategies in glioma treatment. This review will give a general overview on the structure and the function of Ephs and ephrins, with a particular emphasis on the state of the knowledge of their role in malignant gliomas.
Collapse
Affiliation(s)
- Sara Ferluga
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Waldemar Debinski
- Department of Neurosurgery, Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- To whom correspondence should be addressed: Waldemar Debinski, M.D., Ph.D., Director of Brain Tumor Center of Excellence, Thomas K. Hearn Jr. Brain Tumor Research Center, Professor of Neurosurgery, Radiation Oncology, and Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157, Phone: (336) 716-9712, Fax: (336) 713-7639,
| |
Collapse
|