1
|
Wunderlich F, Gerovska D, Delic D, Araúzo-Bravo MJ. Protective Vaccination of Mice Against Blood-Stage Malaria Impacts Hepatic Expression of Genes Encoding Acute-Phase Proteins and IL-6 Family Members. Int J Mol Sci 2025; 26:3173. [PMID: 40243929 PMCID: PMC11989154 DOI: 10.3390/ijms26073173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
In response to vaccination and/or infectious agents, the liver produces acute-phase proteins (APPs) driven by IL-6, which circulate in blood plasma as components of the humoral innate defense. This study investigates the liver of mice for possible effects of protective vaccination against primary blood-stage infections of Plasmodium chabaudi malaria on the expression of genes encoding APPs and IL-6 family members. Female Balb/c mice were vaccinated with a non-infectious vaccine prior to challenge with 106P. chabaudi-infected erythrocytes, resulting in about 80% survival of otherwise lethal infections. Gene expression microarrays were used to determine the relative transcript levels of genes in the livers of vaccinated and unvaccinated mice on days 0, 1, 4, 8, and 11 p.i. (post infectionem). Vaccination induced significant (p-value < 0.05) differences in the expression of malaria-responsive genes toward the end of crisis on day 11 p.i., when mice recovered from infections. These genes include Saa4, Apcs, Cp, and Crp, encoding APPs described to inhibitorily interact with parasitic blood stages; the genes F2, F7, F8, F9, F10, and F13b, and Plg, Plat, and Serpina5, encoding proteins balancing coagulation vs. fibrinolysis dysregulated by malaria, respectively; the genes Hc, C8a, C8b, C8g, and C9, encoding components of lytic complement membrane attack complex (MAC); and Cfh, Cfi, and C4bp, encoding complement-regulatory proteins. Vaccination accelerated, albeit differently, the malaria-induced activation of all three complement pathways, evidenced as higher transcript levels of C1qa, C1qb, C1qc, Fcna, Cfp, C3, Cfh, C8a, and C9 on day 4 p.i., C1ra, C1s, and C2 on day 1 p.i., and Serping1, encoding the multifunctional protease inhibitor C1INH, on day 0 p.i. Protective vaccination may also accelerate downregulation of the malaria-promoting lethality of IL-6 trans-signaling, which may contribute to an overall accelerated recovery of mice from otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain;
| | - Denis Delic
- Boehringer Ingelheim Pharma & Co., KG, 88400 Biberach, Germany
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
2
|
Huseynli Y, Kale İ, Dizdar M, Muhcu M. Investigation of Serum Cardiotrophin-1 Concentrations in Pregnant Women with Gestational Diabetes Mellitus. Z Geburtshilfe Neonatol 2024; 228:355-362. [PMID: 38122806 DOI: 10.1055/a-2210-4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
OBJECTIVE We aimed to investigate cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with gestational diabetes mellitus (GDM). MATERIALS AND METHODS This prospective non-interventional cohort study was conducted with 160 pregnant women who applied to the Umraniye Training and Research Hospital, Department of Obstetrics and Gynecology between October 2022 and May 2023. The GDM group was formed from 80 pregnant women who were diagnosed with GDM according to the 75-g OGTT. The control group consisted of 80 healthy pregnant women who were matched with the GDM group in terms of age and body mass index and had a normal 75-g OGTT result. Two groups were compared in terms of maternal serum CT-1 concentrations. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1 (p>0.05 for each). The mean maternal serum CT-1 concentration was found to be 1420.9 pg/ml in the GDM group, while it was determined as 1455 pg/ml in the control group (p=0.738). When the GDM and control groups were divided into two subgroups, normal weight and overweight according to the participants' BMI, serum CT-1 concentrations were found to be similar in these four groups (p=0.084). When the GDM group was divided into two groups of diet-only and the insulin-using group for blood glucose regulation and compared with the control group, the three groups were also similar in terms of serum CT-1 concentrations (p=0.189). CONCLUSION CT-1 is an adipokine involved in the regulation of glucose metabolism and has been suggested to be associated with the pathophysiology of diabetes mellitus. In this study, serum CT-1 concentrations were found to be similar in the group with GDM and the group with normal glucose tolerance. Whether CT-1 contributes to the development of GDM is currently unclear and requires further investigation.
Collapse
Affiliation(s)
- Yegana Huseynli
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Merve Dizdar
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Perretta‐Tejedor N, Price KL, Jafree DJ, Pomeranz G, Kolatsi‐Joannou M, Martínez‐Salgado C, Long DA, Vasilopoulou E. Cardiotrophin-1 therapy reduces disease severity in a murine model of glomerular disease. Physiol Rep 2024; 12:e16129. [PMID: 38955668 PMCID: PMC11219243 DOI: 10.14814/phy2.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Cardiotrophin-1 (CT-1), a member of the interleukin (IL)-6 cytokine family, has renoprotective effects in mouse models of acute kidney disease and tubulointerstitial fibrosis, but its role in glomerular disease is unknown. To address this, we used the mouse model of nephrotoxic nephritis to test the hypothesis that CT-1 also has a protective role in immune-mediated glomerular disease. Using immunohistochemistry and analysis of single-cell RNA-sequencing data of isolated glomeruli, we demonstrate that CT-1 is expressed in the glomerulus in male mice, predominantly in parietal epithelial cells and is downregulated in mice with nephrotoxic nephritis. Furthermore, analysis of data from patients revealed that human glomerular disease is also associated with reduced glomerular CT-1 transcript levels. In male mice with nephrotoxic nephritis and established proteinuria, administration of CT-1 resulted in reduced albuminuria, prevented podocyte loss, and sustained plasma creatinine, compared with mice administered saline. CT-1 treatment also reduced fibrosis in the kidney cortex, peri-glomerular macrophage accumulation and the kidney levels of the pro-inflammatory mediator complement component 5a. In conclusion, CT-1 intervention therapy delays the progression of glomerular disease in mice by preserving kidney function and inhibiting renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Nuria Perretta‐Tejedor
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Karen L. Price
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
| | - Daniyal J. Jafree
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
- Specialised Foundation Programme in ResearchNHS East of EnglandCambridgeUK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
| | - Maria Kolatsi‐Joannou
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
| | - Carlos Martínez‐Salgado
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD)University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - David A. Long
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
| | - Elisavet Vasilopoulou
- Developmental Biology and Cancer Research and Teaching DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthLondonUK
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| |
Collapse
|
4
|
Rafii P, Cruz PR, Ettich J, Seibel C, Padrini G, Wittich C, Lang A, Petzsch P, Köhrer K, Moll JM, Floss DM, Scheller J. Engineered interleukin-6-derived cytokines recruit artificial receptor complexes and disclose CNTF signaling via the OSMR. J Biol Chem 2024; 300:107251. [PMID: 38569939 PMCID: PMC11039321 DOI: 10.1016/j.jbc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Rodrigues Cruz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
5
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Qi P, Qi B, Gu C, Huo S, Dang X, Liu Y, Zhao B. Construction of an immune-related prognostic model and potential drugs screening for esophageal cancer based on bioinformatics analyses and network pharmacology. Immun Inflamm Dis 2024; 12:e1266. [PMID: 38804848 PMCID: PMC11131936 DOI: 10.1002/iid3.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is a highly invasive malignant tumor with poor prognosis. This study aimed to discover a generalized and high-sensitivity immune prognostic signature that could stratify ESCA patients and predict their overall survival, and to discover potential therapeutic drugs by the connectivity map. METHODS The key gene modules significantly related to clinical traits (survival time and state) of ESCA patients were selected by weighted gene coexpression network analysis (WCGNA), then the univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to construct a 15-immune-related gene prognostic signature. RESULTS The immune-related risk model was related to clinical and pathologic factors and remained an effective independent prognostic factor. Enrichment analyses revealed that the differentially expressed genes (DEGs) of the high- and low-risk groups were associated with tumor cell proliferation and immune mechanisms. Based on the gathered data, a small molecule drug named perphenazine (PPZ) was elected. The pharmacological analysis indicates that PPZ could help in adjuvant therapy of ESCA through regulation of metabolic process and cellular proliferation, enhancement of immunologic functions, and inhibition of inflammatory reactions. Furthermore, molecular docking was performed to explore and verify the PPZ-core target interactions. CONCLUSION We succeed in structuring the immune-related prognostic model, which could be used to distinguish and predict patients' survival outcome, and screening a small molecule drug named PPZ. Prospective studies also are needed to further validate its analytical accuracy for estimating prognoses and confirm the potential use of PPZ for treating ESCA.
Collapse
Affiliation(s)
- Pengju Qi
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
- Life Science Research CenterThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Bo Qi
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Chengwei Gu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Shuhua Huo
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Xinchen Dang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| | - Yuzhen Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
- Life Science Research CenterThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
| | - Baosheng Zhao
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiHenanChina
- Esophageal Cancer Institute of Xinxiang Medical UniversityWeihuiHenanChina
| |
Collapse
|
7
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
8
|
Zaporowska-Stachowiak I, Springer M, Stachowiak K, Oduah M, Sopata M, Wieczorowska-Tobis K, Bryl W. Interleukin-6 Family of Cytokines in Cancers. J Interferon Cytokine Res 2024; 44:45-59. [PMID: 38232478 DOI: 10.1089/jir.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Nine soluble ligands [interleukin-6 (IL-6), interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine, interleukin-27 (IL-27), and interleukin-31] share the ubiquitously expressed transmembrane protein-glycoprotein-130 beta-subunit (gp130) and thus form IL-6 family cytokines. Proteins that may be important for cancerogenesis, CT-1, IL-11, IL-27, LIF, OSM, and CNTF, belong to the superfamily of IL-6. Cytokines such as IL-6, IL-11, and IL-27 are better investigated in comparison with other members of the same family of cytokines, eg, CT-1. Gp130 is one of the main receptors through which these cytokines exert their effects. The clinical implication of understanding the pathways of these cytokines in oncology is that targeted therapy to inhibit or potentiate cytokine activity may lead to remission in some cases.
Collapse
Affiliation(s)
- Iwona Zaporowska-Stachowiak
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Springer
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Mary Oduah
- English Students' Research Association, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Sopata
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Wieczorowska-Tobis
- Department and Clinic of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Palliative Medicine In-Patient Unit, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Kale İ, Dizdar M. Investigation of maternal serum cardiotrophin-1 concentrations in pregnant women with preeclampsia; a prospective case-control study. J Matern Fetal Neonatal Med 2023; 36:2229931. [PMID: 37369375 DOI: 10.1080/14767058.2023.2229931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE We aimed to investigate the cardiotrophin-1 (CT-1) concentrations in the serum of pregnant women with preeclampsia. METHODS This cross-sectional study was conducted with 88 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between May 2022 and September 2022. The preeclampsia group consisted of 44 pregnant women diagnosed with preeclampsia, and the control group consisted of 44 healthy pregnant women matched with the preeclampsia group in terms of age and body mass index. Demographic characteristics, ultrasound and laboratory findings, perinatal outcomes, and maternal serum CT-1 concentrations were recorded. RESULTS Both groups were similar in terms of demographic features and the gestational week at blood sampling for CT-1. Preeclampsia and control groups were compared in terms of maternal serum CT-1 concentrations and no significant difference was found between the two groups (2061.4 pg/ml, 2168.5 pg/ml, respectively, p = .516). The preeclampsia group was divided into subgroups as mild and severe preeclampsia according to the severity of the disease and early-onset and late-onset preeclampsia according to the time of onset and compared with the control group in terms of maternal serum CT-1 concentration, no significant difference was found between the groups (p > .005, for all). CONCLUSION The serum CT-1 concentration of women whose pregnancy was complicated with preeclampsia was found to be similar to that of healthy controls. Although it has been shown in the literature that high serum CT-1 concentrations are associated with hypertensive heart diseases, its role in the pathophysiology of preeclampsia remains unclear.
Collapse
Affiliation(s)
- İbrahim Kale
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| | - Merve Dizdar
- Department of Obstetrics and Gynecology, Umraniye Training and Research Hospital, Ümraniye/İstanbul, Türkiye
| |
Collapse
|
10
|
Martínez-Fernández L, Burgos M, Sáinz N, Laiglesia LM, Arbones-Mainar JM, González-Muniesa P, Moreno-Aliaga MJ. Maresin 1 Exerts a Tissue-Specific Regulation of Adipo-Hepato-Myokines in Diet-Induced Obese Mice and Modulates Adipokine Expression in Cultured Human Adipocytes in Basal and Inflammatory Conditions. Biomolecules 2023; 13:919. [PMID: 37371501 DOI: 10.3390/biom13060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study analyses the effects of Maresin 1 (MaR1), a docosahexaenoic acid (DHA)-derived specialized proresolving lipid mediator with anti-inflammatory and insulin-sensitizing actions, on the expression of adipokines, including adiponectin, leptin, dipeptidyl peptidase 4 (DPP-4), cardiotrophin-1 (CT-1), and irisin (FNDC5), both in vitro and in in vivo models of obesity. The in vivo effects of MaR1 (50 μg/kg, 10 days, oral gavage) were evaluated in epididymal adipose tissue (eWAT), liver and muscle of diet-induced obese (DIO) mice. Moreover, two models of human differentiated primary adipocytes were incubated with MaR1 (1 and 10 nM, 24 h) or with a combination of tumor necrosis factor-α (TNF-α, 100 ng/mL) and MaR1 (1-200 nM, 24 h) and the expression and secretion of adipokines were measured in both models. MaR1-treated DIO mice exhibited an increased expression of adiponectin and Ct-1 in eWAT, increased expression of Fndc5 and Ct-1 in muscle and a decreased expression of hepatic Dpp-4. In human differentiated adipocytes, MaR1 increased the expression of ADIPONECTIN, LEPTIN, DPP4, CT-1 and FNDC5. Moreover, MaR1 counteracted the downregulation of ADIPONECTIN and the upregulation of DPP-4 and LEPTIN observed in adipocytes treated with TNF-α. Differential effects for TNF-α and MaR1 on the expression of CT-1 and FNDC5 were observed between both models of human adipocytes. In conclusion, MaR1 reverses the expression of specific adipomyokines and hepatokines altered in obese mice in a tissue-dependent manner. Moreover, MaR1 regulates the basal expression of adipokines in human adipocytes and counteracts the alterations of adipokines expression induced by TNF-α in vitro. These actions could contribute to the metabolic benefits of this lipid mediator.
Collapse
Affiliation(s)
- Leyre Martínez-Fernández
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Miguel Burgos
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - Laura M Laiglesia
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
| | - José Miguel Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Instituto de Investigación Sanitaria (IIS) Aragón, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain
- IDISNA-Navarra Institute for Health Research, 31008 Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Liao YC, Wu JS, Chou HW, Kuo HY, Lee CT, Wu HT, Li CH, Ou HY. Serum Cardiotrophin-1 Concentration Is Negatively Associated with Controlled Attenuation Parameters in Subjects with Non-Alcoholic Fatty Liver Disease. J Clin Med 2023; 12:jcm12072741. [PMID: 37048824 PMCID: PMC10095180 DOI: 10.3390/jcm12072741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Background: Since non-alcoholic fatty liver disease (NAFLD) is highly associated with obesity, cardiovascular disease, and diabetes, biomarkers for the diagnosis of NAFLD have become an important issue. Although cardiotrophin-1 (CT-1) has a protective effect on the liver in NAFLD animal models, the serum levels of CT-1 in human subjects with NAFLD were still unknown. Objective: The present study aimed to investigate the relationship between the circulating concentration of CT-1 and the severity of hepatic steatosis graded by the value of the controlled attenuation parameter (CAP) in humans. Design and Methods: The study was designed as a cross-sectional study, and a total of 182 subjects were enrolled. Hepatic steatosis measurement was carried out with a Firoscan® device and recorded by CAP. The enrolled study subjects were categorized into CAP < 238 dB/m, 238 ≤ CAP ≤ 259 dB/m, 260 ≤ CAP ≤ 290 dB/m, and CAP > 290 dB/m. Serum CT-1 concentrations were determined by enzyme-linked immunosorbent assay. The association between the serum CT-1 concentration and NAFLD was examined by multivariate linear regression analysis. Results: Body mass index, percentage of body fat, systolic and diastolic blood pressure, alanine aminotransferase (ALT), cholesterol, triglyceride, hemoglobin A1c and homeostatic model assessment for insulin resistance (HOMA-IR) were significantly increased in groups with higher CAP value, whereas high-density lipoprotein cholesterol was significantly decreased. In addition, serum CT-1 concentrations were significantly decreased in subjects with higher CAP values. In multivariate linear regression models, including age, sex, body fat percentage, CAP, high sensitivity- C reactive protein, uric acid, creatinine, ALT, total cholesterol, and HOMA-IR, only age, CAP and uric acid independently associated with CT-1 levels. Moreover, having NAFLD was independently associated with CT-1 after adjustment for sex, obesity and type 2 diabetes. Conclusions: Serum CT-1 concentrations are decreased in subjects with NAFLD and negatively associated with CAP.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Juei-Seng Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hsuan-Wen Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hsin-Yu Kuo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Chun-Te Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chung-Hao Li
- Department of Family Medicine, An Nan Hospital, China Medical University, Tainan 709, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 703, Taiwan
| |
Collapse
|
12
|
Fiedorczuk P, Olszewska E, Rogalska J, Brzóska MM. Osteoprotegerin, Chitinase 3-like Protein 1, and Cardiotrophin-1 as Potential Biomarkers of Obstructive Sleep Apnea in Adults-A Case-Control Study. Int J Mol Sci 2023; 24:ijms24032607. [PMID: 36768925 PMCID: PMC9916736 DOI: 10.3390/ijms24032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a prevalent, underdiagnosed disease and is considered a risk factor for cardiovascular diseases, depression, accidents, and stroke. Recent clinical practice guidelines for OSA expressed the need for a new clinical tool that establishes the Apnea-Hypopnea Index (AHI) to determine the disease burden. The serum and plasma concentrations of Osteoprotegerin (OPG), Chitinase 3-like protein 1 (YKL-40), and Cardiotrophin-1 (CT-1) in 80 subjects-52 OSA patients, 27 moderate (15 ≤ AHI ˂ 30) and 25 severe (AHI ≥ 30), and 28 non-OSA controls (AHI 0-5)-were determined. Moreover, the Total Oxidative Status (TOS), Total Antioxidative Status (TAS), and Oxidative Stress Index (OSI) were assessed in the serum and plasma to evaluate whether the severity of OSA and the concentrations of OPG, YKL-40, and CT-1 correlate with the oxidative/reductive status. The serum and plasma concentrations of YKL-40 and CT-1 were higher in the OSA group, whereas the serum and plasma concentrations of OPG were lower compared to the control group. The concentrations of OPG, YKL-40, and CT-1 in the serum and plasma correlated with AHI; however, a better correlation of the concentrations was obtained for the above-mentioned proteins in the plasma. The concentrations of YKL-40 and CT-1 in the serum and OPG in the plasma show better diagnostic capabilities for moderate and severe OSA than the concentrations of YKL-40 and CT-1 in the plasma and the concentrations of OPG in the serum.
Collapse
Affiliation(s)
- Piotr Fiedorczuk
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland
- Correspondence: ; Tel.: +48-663-751-516
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
13
|
Akkoc Y, Dalci K, Karakas HE, Erbil-Bilir S, Yalav O, Sakman G, Celik F, Arikan S, Zeybek U, Ergin M, Akkiz H, Dilege E, Dengjel J, Dogan-Ekici AI, Gozuacik D. Tumor-derived CTF1 (cardiotrophin 1) is a critical mediator of stroma-assisted and autophagy-dependent breast cancer cell migration, invasion and metastasis. Autophagy 2023; 19:306-323. [PMID: 35722965 PMCID: PMC9809961 DOI: 10.1080/15548627.2022.2090693] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved cellular stress response mechanism. Autophagy induction in the tumor microenvironment (stroma) has been shown to support tumor metabolism. However, cancer cell-derived secreted factors that initiate communication with surrounding cells and stimulate autophagy in the tumor microenvironment are not fully documented. We identified CTF1/CT-1 (cardiotrophin 1) as an activator of autophagy in fibroblasts and breast cancer-derived carcinoma-associated fibroblasts (CAFs). We showed that CTF1 stimulated phosphorylation and nuclear translocation of STAT3, initiating transcriptional activation of key autophagy proteins. Additionally, following CTF1 treatment, AMPK and ULK1 activation was observed. We provided evidence that autophagy was important for CTF1-dependent ACTA2/α-SMA accumulation, stress fiber formation and fibroblast activation. Moreover, promotion of breast cancer cell migration and invasion by activated fibroblasts depended on CTF1 and autophagy. Analysis of the expression levels of CTF1 in patient-derived breast cancer samples led us to establish a correlation between CTF1 expression and autophagy in the tumor stroma. In line with our in vitro data on cancer migration and invasion, higher levels of CTF1 expression in breast tumors was significantly associated with lymph node metastasis in patients. Therefore, CTF1 is an important mediator of tumor-stroma interactions, fibroblast activation and cancer metastasis, and autophagy plays a key role in all these cancer-related events.Abbreviations: ACTA2/α-SMA: actin, alpha 2, smooth muscle CAFs: cancer- or carcinoma-associated fibroblasts CNT Ab.: control antibody CNTF: ciliary neurotrophic factor CTF1: cardiotrophin 1 CTF1 Neut. Ab.: CTF1-specific neutralizing antibody GFP-LC3 MEF: GFP-fused to MAP1LC3 protein transgenic MEF LIF: leukemia inhibitory factor IL6: interleukin 6 MEFs: mouse embryonic fibroblasts MEF-WT: wild-type MEFs OSM: oncostatin M TGFB/TGFβ: transforming growth factor beta.
Collapse
Affiliation(s)
- Yunus Akkoc
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey,Department of Biotechnology, Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Kubilay Dalci
- Faculty of Medicine, Department of General Surgery, Çukurova University, Adana, Turkey
| | - Hacer Ezgi Karakas
- Department of Biotechnology, Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Secil Erbil-Bilir
- Department of Biotechnology, Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Orcun Yalav
- Faculty of Medicine, Department of General Surgery, Çukurova University, Adana, Turkey
| | - Gurhan Sakman
- Faculty of Medicine, Department of General Surgery, Çukurova University, Adana, Turkey
| | - Faruk Celik
- Department of Molecular Medicine, Istanbul University Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Soykan Arikan
- Department of General Surgery, Ministry of Health Samatya Training and Research Hospital, Istanbul, Turkey
| | - Umit Zeybek
- Department of Molecular Medicine, Istanbul University Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Melek Ergin
- Faculty of Medicine, Department of Pathology, Çukurova University, Adana, Turkey
| | - Hikmet Akkiz
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| | - Ece Dilege
- Koç University Hospital, Department of General Surgery, Koç University Medical School, Istanbul, Turkey,School of Medicine, Koç University, Istanbul, Turkey
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - A. Isin Dogan-Ekici
- School of Medicine, Department of Pathology, Acibadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey,Department of Biotechnology, Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey,School of Medicine, Koç University, Istanbul, Turkey,CONTACT Devrim Gozuacik Koç University School of Medicine, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey; Department of Biotechnology, Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey; School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
14
|
Zhu Q, Tang S, Zhu Y, Chen D, Huang J, Lin J. Exosomes Derived From CTF1-Modified Bone Marrow Stem Cells Promote Endometrial Regeneration and Restore Fertility. Front Bioeng Biotechnol 2022; 10:868734. [PMID: 35497344 PMCID: PMC9043110 DOI: 10.3389/fbioe.2022.868734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Thin endometrial tissue is a leading cause of embryo transfer failure, potentially contributing to sustained infertility and associated adverse outcomes. The application of exosomes derived from autologous or allogeneic bone marrow-derived stem cells (BMSCs) has been used to promote uterine repair following injury, and there is also prior evidence that stem cell transplantation can bolster fertility. Genetic modifications represent a primary approach to enhancing exosomal therapy strategies. The present study thus explored the effects of Cardiotrophin-1 (CTF1)-modified BMSCs-exo on fertility-related outcomes. Methods: An adenoviral vector was used to generate CTF1-overexpressing BMSCs (C-BMSCs), after which exosomes were isolated from control BMSCs (BMSC-exos) and C-BMSCs (C-BMSC-exos). The angiogenic effects of C-BMSC-exo treatment were assessed through analyses of endothelial cell proliferation and tube formation. Model rats exhibiting endometrial thinning were administered C-BMSCs-exo, after which the effects of such treatment were assessed through H&E staining, Masson’s trichrome staining, and immunofluorescence analyses. The mechanistic basis for the proangiogenic effects of CTF1 as a driver of endometrial regeneration was additionally explored. Results: C-BMSC-exo treatment of HUVECs was associated with enhanced neovascularization, as evidenced by improved in vitro proliferation, migration, and tube formation. Importantly, such treatment was also linked to tissue regeneration, neovascularization, and the suppression of localized tissue fibrosis in vivo. Regenerated endometrial tissue exhibited higher embryo receptivity and was associated with higher birth rates in treated rats. The upregulation of the JAK/PI3K/mTOR/STAT3 signaling pathways in C-BMSC-exo-treated rats may underscore the mechanistic basis whereby CTF1 can positively impact endometrial angiogenesis and regeneration. Conclusion: Our data suggest that exosomes produced by CTF1-modified BMSCs can more effectively promote the regeneration of endometrial and myometrial tissues, driving neovascularization in a manner that improves endometrial receptivity in a rat model system, highlighting the therapeutic promise of this approach for patients diagnosed with endometrial thinning.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengluan Tang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwen Zhu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang University School of Medicine, Nanchang, China
- *Correspondence: Jialyu Huang, ; Jiaying Lin,
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jialyu Huang, ; Jiaying Lin,
| |
Collapse
|
15
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
16
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
17
|
The landscape and prognostic value of immune characteristics in uterine corpus endometrial cancer. Biosci Rep 2021; 41:228178. [PMID: 33782686 PMCID: PMC8062954 DOI: 10.1042/bsr20202321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/23/2022] Open
Abstract
In the present study, we explored the clinical and immunological characteristics of 575 uterine corpus endometrial carcinoma (UCEC) samples obtained from The Cancer Genome Atlas (TCGA) using the ESTIMATE and CIBERSORT algorithms. First, Kaplan-Meier and univariate Cox regression analyses indicated that the immune cell score was a prognostic factor for overall survival (OS) and recurrence-free survival (RFS). Multivariate Cox regression analysis further revealed that the immune cell score was an independent prognostic factor for UCEC patients. Second, we investigated the correlation between the infiltration levels of 22 types of immune cells and the immune score. Survival analysis based on the 22 immune cell types showed that higher levels of regulatory T cell, activated NK cell, and follicular helper T-cell infiltration were associated with longer OS, while higher levels of CD8+ T cell and naive B-cell infiltration were associated with longer RFS. Next, we performed differential expression and prognosis analyses on 1534 immune-related genes and selected five from 14 candidate genes to construct a prognostic prediction model. The area under the receiver-operating characteristic (ROC) curve (AUC) for 3- and 5-year survival were 0.711 and 0.728, respectively. Further validation using a stage I-II subgroup showed similar results, presenting AUC values for 3- and five-year survival of 0.677 and 0.692, respectively. Taken together, the present study provides not only a deeper understanding of the relationship between UCEC and the immune landscape but also guidance for the future development of UCEC immunotherapy.
Collapse
|
18
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Carneros D, Medina-Gómez G, Giralt M, León-Camacho M, Campbell M, Moreno-Aliaga MJ, Villarroya F, Bustos M. Cardiotrophin-1 contributes to metabolic adaptations through the regulation of lipid metabolism and to the fasting-induced fatty acid mobilization. FASEB J 2020; 34:15875-15887. [PMID: 33047392 DOI: 10.1096/fj.202000109r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
It is becoming clear that several human pathologies are caused by altered metabolic adaptations. During liver development, there are physiological changes, from the predominant utilization of glucose (fetal life) to the use of lipids (postnatal life). Fasting is another physiological stress that elicits well-known metabolic adjustments. We have reported the metabolic properties of cardiotrophin-1 (CT-1), a member of the interleukin-6 family of cytokines. Here, we aimed at analyzing the role of CT-1 in response to these metabolic changes. We used different in vivo models. Furthermore, a differential study was carried out with wild-type and CT-1 null mice in fed (ad libitum) and food-restricted conditions. We demonstrated that Ct-1 is a metabolic gene induced in the liver via PPARα in response to lipids in mice (neonates- and food-restricted adults). We found that Ct-1 mRNA expression in white adipose tissue directly involved PPARα and PPARγ. Finally, the physiological role of CT-1 in fasting is confirmed by the impaired food restriction-induced adipose tissue lipid mobilization in CT-1 null mice. Our findings support a previously unrecognized physiological role of CT-1 in metabolic adaptations, through the regulation of lipid metabolism and contributes to fasting-induced free fatty acid mobilization.
Collapse
Affiliation(s)
- David Carneros
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Virgen del Rocio University Hospital, Seville, Spain
| | - Gema Medina-Gómez
- Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Rey Juan Carlos University, Madrid, Spain
| | - Marta Giralt
- Department of Biochemistry and Molecular Biomedicine, Barcelona University, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Manuel León-Camacho
- Department of Lipid Characterization and Quality, Instituto de la Grasa (CSIC), Seville, Spain
| | - Mark Campbell
- MRC MDU, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Maria J Moreno-Aliaga
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain.,Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra, Navarra's Health Research Institute (IdiSNA), Pamplona, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Barcelona University, Barcelona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Matilde Bustos
- Area of Liver, Digestive and Inflammatory Diseases, Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Virgen del Rocio University Hospital, Seville, Spain
| |
Collapse
|
20
|
Berezin AE, Berezin AA. Circulating Cardiac Biomarkers in Diabetes Mellitus: A New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther 2020; 11:1271-1291. [PMID: 32430864 PMCID: PMC7261294 DOI: 10.1007/s13300-020-00835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this narrative review is to update the current knowledge on the differential choice of circulating cardiac biomarkers in patients with prediabetes and established type 2 diabetes mellitus (T2DM). There are numerous circulating biomarkers with unconfirmed abilities to predict clinical outcomes in pre-DM and DM individuals; the prognostication ability of the cardiac biomarkers reported here has been established, and they are still being studied. The conventional cardiac biomarkers, such as natriuretic peptides (NPs), soluble suppressor tumorigenisity-2, high-sensitivity circulating cardiac troponins and galectin-3, were useful to ascertain cardiovascular (CV) risk. Each cardiac biomarker has its strengths and weaknesses that affect the price of usage, specificity, sensitivity, predictive value and superiority in face-to-face comparisons. Additionally, there have been confusing reports regarding their abilities to be predictably relevant among patients without known CV disease. The large spectrum of promising cardiac biomarkers (growth/differential factor-15, heart-type fatty acid-binding protein, cardiotrophin-1, carboxy-terminal telopeptide of collagen type 1, apelin and non-coding RNAs) is discussed in the context of predicting CV diseases and events in patients with known prediabetes and T2DM. Various reasons have been critically discussed related to the variable findings regarding biomarker-based prediction of CV risk among patients with metabolic disease. It was found that NPs and hs-cTnT are still the most important tools that have an affordable price as well as high sensitivity and specificity to predict clinical outcomes among patients with pre-DM and DM in routine clinical practice, but other circulating biomarkers need to be carefully investigated in large trials in the future.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Ministry of Health of Ukraine, State Medical University, Zaporozhye, 69035, Ukraine.
| | - Alexander A Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, 69096, Ukraine
| |
Collapse
|
21
|
Lokau J, Garbers C. Biological functions and therapeutic opportunities of soluble cytokine receptors. Cytokine Growth Factor Rev 2020; 55:94-108. [PMID: 32386776 DOI: 10.1016/j.cytogfr.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/09/2020] [Indexed: 12/28/2022]
Abstract
Cytokines control the immune system by regulating the proliferation, differentiation and function of immune cells. They activate their target cells through binding to specific receptors, which either are transmembrane proteins or attached to the cell-surface via a GPI-anchor. Different tissues and individual cell types have unique expression profiles of cytokine receptors, and consequently this expression pattern dictates to which cytokines a given cell can respond. Furthermore, soluble variants of several cytokine receptors exist, which are generated by different molecular mechanisms, namely differential mRNA splicing, proteolytic cleavage of the membrane-tethered precursors, and release on extracellular vesicles. These soluble receptors shape the function of cytokines in different ways: they can serve as antagonistic decoy receptors which compete with their membrane-bound counterparts for the ligand, or they can form functional receptor/cytokine complexes which act as agonists and can even activate cells that would usually not respond to the ligand alone. In this review, we focus on the IL-2 and IL-6 families of cytokines and the so-called Th2 cytokines. We summarize for each cytokine which soluble receptors exist, were they originate from, how they are generated, and what their biological functions are. Furthermore, we give an outlook on how these soluble receptors can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
22
|
Ibrahim WS, Ibrahim IAAEH, Mahmoud MF, Mahmoud AAA. Carvedilol Diminishes Cardiac Remodeling Induced by High-Fructose/High-Fat Diet in Mice via Enhancing Cardiac β-Arrestin2 Signaling. J Cardiovasc Pharmacol Ther 2020; 25:354-363. [PMID: 32052660 DOI: 10.1177/1074248420905683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Insulin resistance (IR) is a well-known risk factor for cardiovascular complications. This study aimed to investigate the effect of a dietary model of IR in mice on cardiac remodeling, cardiac β-arrestin2 signaling, and the protective effects of carvedilol as a β-arrestin-biased agonist. METHODS AND RESULTS Insulin resistance was induced by feeding mice high-fructose/high-fat diet (HFrHFD) for 16 weeks. Carvedilol was adiministered for 4 weeks starting at week 13. At the end of the experiment, body weight, heart weight, left and right ventricular thickness, visceral fat weight, fasting blood glucose (FBG), serum insulin, IR index, and serum endothelin-1 were measured. In addition, cardiac tissue samples were histopathologically examined. Also, cardiac levels of cardiotrophin-1, β-arrestin2, phosphatidylinositol 4,5 bisphosphate (PIP2), diacylglycerol (DAG), and phosphoserine 473 Akt (pS473 Akt) were measured. Results showed significant increases in the FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, cardiac fibrosis, and degenerated cardiac myofibrils in HFrHFD-fed mice associated with a significant reduction in cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. On the other hand, carvedilol significantly reduced the heart weight, FBG, serum insulin, IR index, serum endothelin-1, cardiac DAG, left ventricular thickness, right ventricular fibrosis, and degeneration of cardiac myofibrils. In addition, carvedilol significantly increased cardiac levels of cardiotrophin-1, β-arrestin2, PIP2, and pS473 Akt. CONCLUSION Carvedilol enhances cardiac β-arrestin2 signaling and reduces cardiac remodeling in HFrHFD-fed mice.
Collapse
Affiliation(s)
- Wael S Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, School of Pharmacy, Badr University, Cairo, Egypt
| | - Islam A A E-H Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
23
|
Ancín M, Sanz-Barrio R, Santamaría E, Fernández-San Millán A, Larraya L, Veramendi J, Farran I. Functional Improvement of Human Cardiotrophin 1 Produced in Tobacco Chloroplasts by Co-expression with Plastid Thioredoxin m. PLANTS 2020; 9:plants9020183. [PMID: 32024318 PMCID: PMC7076529 DOI: 10.3390/plants9020183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
Human cardiotrophin 1 (CT1), a cytokine with excellent therapeutic potential, was previously expressed in tobacco chloroplasts. However, the growth conditions required to reach the highest expression levels resulted in an impairment of its bioactivity. In the present study, we have examined new strategies to modulate the expression of this recombinant protein in chloroplasts so as to enhance its production and bioactivity. In particular, we assessed the effect of both the fusion and co-expression of Trx m with CT1 on the production of a functional CT1 by using plastid transformation. Our data revealed that the Trx m fusion strategy was useful to increase the expression levels of CT1 inside the chloroplasts, although CT1 bioactivity was significantly impaired, and this was likely due to steric hindrance between both proteins. By contrast, the expression of functional CT1 was increased when co-expressed with Trx m, because we demonstrated that recombinant CT1 was functionally active during an in vitro signaling assay. While Trx m/CT1 co-expression did not increase the amount of CT1 in young leaves, our results revealed an increase in CT1 protein stability as the leaves aged in this genotype, which also improved the recombinant protein's overall production. This strategy might be useful to produce other functional biopharmaceuticals in chloroplasts.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Ruth Sanz-Barrio
- National Centre for Biotechnology, Plant Molecular Genetics Department, CSIC, 28049 Madrid, Spain
| | - Eva Santamaría
- Hepatology Program, University of Navarra, CIMA, E-31008 Pamplona, Spain;
- CIBERehd, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (A.F.-S.M.); (L.L.); (J.V.)
- Correspondence: ; Tel.: +34-948-168034
| |
Collapse
|
24
|
Lang C, Shu X, Peng L, Yu X. The ERK signaling pathway is involved in cardiotrophin-1-induced neural differentiation of human umbilical cord blood mesenchymal stem cells in vitro. Cytotechnology 2019; 71:977-988. [PMID: 31489528 DOI: 10.1007/s10616-019-00339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/20/2019] [Indexed: 11/29/2022] Open
Abstract
Central nervous system diseases remain the most challenging pathologies, with limited or even no therapeutic possibilities and a poor prognosis. This study aimed to investigate the differentiation properties of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transfected with recombinant adenovirus expressing enhanced green fluorescence protein cardiotrophin-1 (Adv-EGFP-CT-1) and the possible mechanisms involved. Cells were isolated, and MSC immunophenotypes were confirmed. The resulting differentiated cells treated with Adv-EGFP-CT-1 and cultured in neural induction medium (NIM) expressed higher levels of Nestin, neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) markers than cells in other treatments. Expression of glycoprotein 130/leukemia inhibitory factor receptor β (gp130/LiFRβ), Raf-1, phosphorylated Raf-1 (p-Raf-1), extracellular signal-regulated kinase 1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) increased gradually within 72 h after transfection with Adv-EGFP-CT-1 and NIM culture. Additionally, inhibition of extracellular signal-regulated kinase kinase (MEK) abrogated expression of p-ERK1/2, Nestin, GFAP and NeuN. Thus, the ERK1/2 pathway may contribute to CT1-stimulated neural differentiation of hUCB-MSCs.
Collapse
Affiliation(s)
- Changhui Lang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China.
| | - Longying Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| | - Xiaohua Yu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China
| |
Collapse
|
25
|
Perretta‐Tejedor N, Muñoz‐Félix JM, Düwel A, Quiros‐Luis Y, Fernández‐Martín JL, Morales AI, López‐Hernández FJ, López‐Novoa JM, Martínez‐Salgado C. Cardiotrophin-1 opposes renal fibrosis in mice: Potential prevention of chronic kidney disease. Acta Physiol (Oxf) 2019; 226:e13247. [PMID: 30589223 DOI: 10.1111/apha.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
AIM Chronic kidney disease is characterized by tubulointerstitial fibrosis involving inflammation, tubular apoptosis, fibroblast proliferation and extracellular matrix accumulation. Cardiotrophin-1, a member of the interleukin-6 family of cytokines, protects several organs from damage by promoting survival and anti-inflammatory effects. However, whether cardiotrophin-1 participates in the response to chronic kidney injury leading to renal fibrosis is unknown. METHODS We hypothesized and assessed the potential role of cardiotrophin-1 in a mice model of tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO). RESULTS Three days after UUO, obstructed kidneys from cardiotrophin-1-/- mice show higher expression of inflammatory markers IL-1β, Cd68, ICAM-1, COX-2 and iNOs, higher activation of NF-κB, higher amount of myofibroblasts and higher severity of tubular damage and apoptosis, compared with obstructed kidneys from wild-type littermates. In a later stage, obstructed kidneys from cardiotrophin-1-/- mice show higher fibrosis than obstructed kidneys from wild-type mice. Interestingly, administration of exogenous cardiotrophin-1 prevents the increased fibrosis resulting from the genetic knockout of cardiotrophin-1 upon UUO, and supplementation of wild-type mice with exogenous cardiotrophin-1 further reduces the renal fibrosis induced by UUO. In vitro, renal myofibroblasts from cardiotrophin-1-/- mice have higher collagen I and fibronectin expression and higher NF-κB activation than wild-type cells. CONCLUSIONS Cardiotrophin-1 participates in the endogenous response that opposes renal damage by counteracting the inflammatory, apoptotic and fibrotic processes. And exogenous cardiotrophin-1 is proposed as a candidate for the treatment and prevention of chronic renal fibrosis.
Collapse
Affiliation(s)
- Nuria Perretta‐Tejedor
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - José M. Muñoz‐Félix
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Annette Düwel
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Yaremi Quiros‐Luis
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
| | - José L. Fernández‐Martín
- UGC Bone Metabolism Institute of Health Research of the Principality of Asturias (ISPA) Oviedo Asturias Spain
| | - Ana I. Morales
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Francisco J. López‐Hernández
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - José M. López‐Novoa
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Carlos Martínez‐Salgado
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| |
Collapse
|
26
|
Stephens J, Ravussin E, White U. The Expression of Adipose Tissue-Derived Cardiotrophin-1 in Humans with Obesity. BIOLOGY 2019; 8:biology8020024. [PMID: 31013924 PMCID: PMC6627495 DOI: 10.3390/biology8020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 01/23/2023]
Abstract
Cardiotrophin-1 (CT-1) is a gp130 cytokine that was previously characterized for its effects on cardiomyocytes and identified as a marker of heart failure. More recent studies reported elevated circulating levels of CT-1 in humans with obesity and metabolic syndrome (MetS). However, a subsequent rodent study implicated CT-1 as a potential therapeutic target for obesity and MetS. Adipose tissue (AT) is broadly acknowledged as an endocrine organ and is a substantial source of CT-1. However, no study has examined the expression of adipose-derived CT-1 in humans. We present the first analysis of CT-1 mRNA expression in subcutaneous AT and its association with clinical variables in 22 women with obesity and 15 men who were 40% overfed for 8-weeks. We observed that CT-1 expression was higher in the subcutaneous abdominal (scABD) than the femoral (scFEM) depot. Importantly, we reveal that scFEM but not scABD, CT-1 expression was negatively associated with visceral adiposity and intrahepatic lipid, while positively correlated with insulin sensitivity in obese women. Also, men with higher CT-1 levels at baseline had less of a decline in insulin sensitivity in response to overfeeding. Our data provide new knowledge on the regulation of adipose-derived CT-1 in obesity and during weight gain in response to overfeeding in humans and suggest that CT-1 may play a protective role in obesity and related disorders.
Collapse
Affiliation(s)
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Ursula White
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
27
|
Carneros D, Santamaría EM, Larequi E, Vélez-Ortiz JM, Reboredo M, Mancheño U, Perugorria MJ, Navas P, Romero-Gómez M, Prieto J, Hervás-Stubbs S, Bustos M. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization. FASEB J 2019; 33:7578-7587. [PMID: 30892966 DOI: 10.1096/fj.201801563r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Macrophages play a central role in tissue remodeling, repair, and resolution of inflammation. Macrophage polarization to M1 or M2 activation status may determine the progression or resolution of the inflammatory response. We have previously reported that cardiotrophin-1 (CT-1) displays both cytoprotective and metabolic activities. The role of CT-1 in inflammation remains poorly understood. Here, we employed recombinant CT-1 (rCT-1) and used CT-1-null mice and myeloid-specific CT-1 transgenic mice to investigate whether CT-1 might play a role in the modulation of the inflammatory response. We observed that CT-1 deficiency was associated with enhanced release of inflammatory mediators and with stronger activation of NF-κB in response to LPS, whereas the inflammatory response was attenuated in CT-1 transgenic mice or by administering rCT-1 to wild-type animals prior to LPS challenge. We found that CT-1 promoted IL-6 expression only by nonhematopoietic cells, whereas LPS up-regulated IL-6 expression in both hematopoietic and nonhematopoietic cells. Notably, rCT-1 inhibited LPS-mediated soluble IL-6R induction. Using IL-6-/- mice, we showed that rCT-1 inhibited LPS-induced TNF-α and IFN-γ response in an IL-6-independent manner. Importantly, we demonstrated that CT-1 primes macrophages for IL-4-dependent M2 polarization by inducing IL-4 receptor expression. Mechanistic analyses showed that the signal transducer and activator of transcription 3-suppressor of cytokine signaling 3 axis mediates this effect. Our findings support the notion that CT-1 is a critical regulator of inflammation and suggest that rCT-1 could be a molecule with potential therapeutic application in inflammatory conditions.-Carneros, D., Santamaría, E. M., Larequi, E., Vélez-Ortiz, J. M., Reboredo, M., Mancheño, U., Perugorria, M. J., Navas, P., Romero-Gómez, M., Prieto, J., Hervás-Stubbs, S., Bustos, M. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization.
Collapse
Affiliation(s)
- David Carneros
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville-Virgen del Rocio University Hospital, Seville, Spain
| | - Eva M Santamaría
- Division of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigatión Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Larequi
- Division of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jose Miguel Vélez-Ortiz
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville-Virgen del Rocio University Hospital, Seville, Spain
| | - Mercedes Reboredo
- Division of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigatión Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Uxua Mancheño
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - María Jesús Perugorria
- Centro de Investigatión Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), University of Pablo de Olavide-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Romero-Gómez
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville-Virgen del Rocio University Hospital, Seville, Spain.,Centro de Investigatión Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Prieto
- Division of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Centro de Investigatión Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Hervás-Stubbs
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)-University of Seville-Virgen del Rocio University Hospital, Seville, Spain
| |
Collapse
|
28
|
Magno AL, Herat LY, Carnagarin R, Schlaich MP, Matthews VB. Current Knowledge of IL-6 Cytokine Family Members in Acute and Chronic Kidney Disease. Biomedicines 2019; 7:biomedicines7010019. [PMID: 30871285 PMCID: PMC6466237 DOI: 10.3390/biomedicines7010019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022] Open
Abstract
Healthy kidneys are important for the efficient regulation of metabolism. However, there is an ever increasing population of patients suffering from both acute and chronic kidney diseases that disrupt this homeostasis. This review will explore the emerging roles that interleukin 6 (IL-6) cytokine family members play in the pathogenesis of kidney disease. The IL-6 family of cytokines are involved in a diverse range of physiological functions. In relation to kidney disease, their involvement is no less diverse. Evidence from both preclinical and clinical sources show that IL-6 cytokine family members can play either a deleterious or protective role in response to kidney disease. This appears to be dependent on the type of kidney disease in question or the specific cytokine. Current attempts to use or target IL-6 cytokine family members as therapies of kidney diseases will be highlighted throughout this review. Finally, the involvement of IL-6 cytokine family members in kidney disease will be presented in the context of three regularly overlapping conditions: obesity, hypertension and diabetes.
Collapse
Affiliation(s)
- Aaron L Magno
- Research Centre, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Biomedical Science-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth 6000, Western Australia, Australia.
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Biomedical Science-Royal Perth Hospital Unit, University of Western Australia, Crawley 6000, Western Australia, Australia.
| |
Collapse
|
29
|
Davegårdh C, Hall Wedin E, Broholm C, Henriksen TI, Pedersen M, Pedersen BK, Scheele C, Ling C. Sex influences DNA methylation and gene expression in human skeletal muscle myoblasts and myotubes. Stem Cell Res Ther 2019; 10:26. [PMID: 30646953 PMCID: PMC6332625 DOI: 10.1186/s13287-018-1118-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Background Sex differences are known to impact muscle phenotypes, metabolism, and disease risk. Skeletal muscle stem cells (satellite cells) are important for muscle repair and to maintain functional skeletal muscle. Here we studied, for the first time, effects of sex on DNA methylation and gene expression in primary human myoblasts (activated satellite cells) before and after differentiation into myotubes. Method We used an array-based approach to analyse genome-wide DNA methylation and gene expression in myoblasts and myotubes from 13 women and 13 men. The results were followed up with a reporter gene assay. Results Genome-wide DNA methylation and gene expression differences between the sexes were detected in both myoblasts and myotubes, on the autosomes as well as the X-chromosome, despite lack of exposure to sex hormones and other factors that differ between sexes. Pathway analysis revealed higher expression of oxidative phosphorylation and other metabolic pathways in myoblasts from women compared to men. Oxidative phosphorylation was also enriched among genes with higher expression in myotubes from women. Forty genes in myoblasts and 9 in myotubes had differences in both DNA methylation and gene expression between the sexes, including LAMP2 and SIRT1 in myoblasts and KDM6A in myotubes. Furthermore, increased DNA methylation of LAMP2 promoter had negative effects on reporter gene expression. Five genes (CREB5, RPS4X, SYAP1, XIST, and ZRSR2) showed differential DNA methylation and gene expression between the sexes in both myoblasts and myotubes. Interestingly, differences in DNA methylation and expression between women and men were also found during differentiation (myoblasts versus myotubes), e.g., in genes involved in energy metabolism. Interestingly, more DNA methylation changes occur in women compared to men on autosomes. Conclusion All together, we show that epigenetic and transcriptional differences exist in human myoblasts and myotubes as well as during differentiation between women and men. We believe that these intrinsic differences might contribute to sex dependent differences in muscular phenotypes. Electronic supplementary material The online version of this article (10.1186/s13287-018-1118-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 20502, Malmö, Sweden.
| | - Elin Hall Wedin
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 20502, Malmö, Sweden
| | - Christa Broholm
- Department of Endocrinology, Rigshospitalet, 2100, Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tora Ida Henriksen
- Department of Endocrinology, Rigshospitalet, 2100, Copenhagen, Denmark.,The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center, Section for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 20502, Malmö, Sweden.
| |
Collapse
|
30
|
Potential clinical treatment of colitis with cardiotrophin-1. Clin Sci (Lond) 2018; 132:2169-2174. [PMID: 30341227 DOI: 10.1042/cs20171626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
In a recent issue of Clinical Science, Prieto-Vicente et al. [Clin. Sci. (2018) 132, 985-1001] have smartly demonstrated a potential new use of cardiotrophin-1 (CT-1) to treat and palliate an inflammatory bowel disease such as ulcerative colitis. In that work, authors report that in ulcerative colitic mice, administration of exogenous recombinant CT-1 (rCT-1) promotes lower colon damage and lower disease activity index, reducing systemic levels of tumor necrosis factor α (TNF-α) and also diminishing TNF-α expression in colon together with the reduction in other common inflammation markers. Besides, in vivo rCT-1 administration induces activation of several molecular pathways, including nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and signal transducer and activator of transcription (STAT)-3, and abolishes bacterial translocation from intestine to other organs, including mesenteric ganglia, lungs, and spleen. Additionally, these results were nicely corroborated in CT-1 depleted mice; in which colon damage and ulcerative colitis severity were greater compared with the wild-type counterparts. All together, these results suggested that CT-1 could be a promising new therapeutic approach for treating inflammatory bowel disease, particularly ulcerative colitis. However, further studies are required to determine its major mechanisms of action and the potential efficacy of CT-1 in human inflammatory bowel diseases.
Collapse
|
31
|
Cardiotrophin-1 Improves Kidney Preservation, Graft Function, and Survival in Transplanted Rats. Transplantation 2018; 102:e404-e412. [DOI: 10.1097/tp.0000000000002313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Anik Ilhan G, Kanlioglu C, Arslan G, Yildizhan B, Pekin T. Cardiotrophin-1 as a new metabolic biomarker in women with PCOS. Gynecol Endocrinol 2018; 34:781-783. [PMID: 29600728 DOI: 10.1080/09513590.2018.1457637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to investigate cardiotrophin-1 (CT-1) levels as a new metabolic biomarker in women with polycystic ovary syndrome (PCOS). One hundred consecutive women with PCOS were divided into two groups according to presence of metabolic syndrome as MetS+ and MetS-. Clinical, hormonal and metabolic parameters in addition to CT-1 levels were compared between the groups. Correlation analyses were performed between CT-1 and clinical and metabolic parameters in women with PCOS. One hundred PCOS subjects were enrolled in the study, of which 29 subjects were diagnosed with metabolic syndrome. WHR, systolic and diastolic blood pressures, triglyceride, total cholesterol, HOMA-IR, FAI, FGS and CT-1 levels were significantly higher in the MetS+ group compared with the MetS- group. HDL cholesterol was significantly higher in the MetS- group than the MetS+ one. CT-1 levels were found to be positively correlated with diastolic blood pressure, TG levels and FGS. Cardiotrophin-1 may be a promising new metabolic biomarker in women with PCOS. CT-1 may be beneficial for estimating the risk of long-term adverse health consequences and establishing early intervention and preventation strategies.
Collapse
Affiliation(s)
- Gokce Anik Ilhan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Cansu Kanlioglu
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Gaye Arslan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Begum Yildizhan
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| | - Tanju Pekin
- a Department of Obstetrics and Gynecology , Marmara University , Istanbul , Turkey
| |
Collapse
|
33
|
Cardiotrophin-1 attenuates experimental colitis in mice. Clin Sci (Lond) 2018; 132:985-1001. [PMID: 29572384 DOI: 10.1042/cs20171513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) holds potent anti-inflammatory, cytoprotective, and anti-apoptotic effects in the liver, kidneys, and heart. In the present study, the role of endogenous CT-1 and the effect of exogenous CT-1 were evaluated in experimental ulcerative colitis. Colitis was induced in CT-1 knockout and wild-type (WT) mice by administration of dextran sulphate sodium (DSS) in the drinking water during 7 days. CT-1 knockout mice showed higher colon damage and disease severity than WT mice. In addition, CT-1 (200 µg/kg/day, iv) or vehicle (as control) was administered during 3 days to WT, colitic mice, starting on day 4 after initiation of DSS. Disease activity index (DAI), inflammatory markers (tumor necrosis factor α (TNF-α), INFγ, IL-17, IL-10, inducible nitric oxide synthase (iNOS)), colon damage, apoptosis (cleaved caspase 3), nuclear factor κB (NFκB) and STAT-3 activation, and bacterial translocation were measured. Compared with mice treated with DSS, mice also treated with exogenous CT-1 showed lower colon damage, DAI, plasma levels of TNFα, colon expression of TNF-α, INFγ, IL-17, iNOS and cleaved caspase 3, higher NFκB and signal transducer and activator of transcription 3 (STAT3) pathways activation, and absence of bacterial translocation. We conclude that endogenous CT-1 plays a role in the defense and repair response of the colon against ulcerative lesions through an anti-inflammatory and anti-apoptotic effect. Supplementation with exogenous CT-1 ameliorates disease symptoms, which opens a potentially new therapeutic strategy for ulcerative colitis.
Collapse
|
34
|
Marti A, Morell-Azanza L, Rendo-Urteaga T, García-Calzón S, Ojeda-Rodríguez A, Martín-Calvo N, Moreno-Aliaga MJ, Martínez JA, Azcona-San Julián MC. Serum and gene expression levels of CT-1, IL-6, and TNF-α after a lifestyle intervention in obese children. Pediatr Diabetes 2018; 19:217-222. [PMID: 28749076 DOI: 10.1111/pedi.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inflammation related molecules such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and cardiotrophin-1 (CT-1) are highly expressed in obese individuals and could partly explain some comorbidities associated to obesity. In obese children, lifestyle interventions are able to lower inflammation and reduce cardiovascular risk factors associated with obesity. The aim of the present work was to study changes in inflammation-related molecules serum and peripheral blood mononuclear cells (PBMC) transcript levels after a 10-week lifestyle intervention in obese children and asses their potential association with glucose metabolism. METHODS Twenty-three obese children (mean age 11.5 years; 48% males) underwent a 10-week lifestyle not controlled intervention trial. Anthropometric and biochemical measurements were analyzed. Transcript analysis for CT-1, IL-6, and TNF-α in PBMC were performed by RT-PCR. Serum cytokine levels were also measured at baseline and after 10-weeks. RESULTS Participants achieved a significant reduction in body adiposity (0.34 decrease in body mass index-standard deviation), total cholesterol, and glucose levels after 10-weeks. A Significant decrease in serum TNF-α and C reactive protein (CRP) were observed. CT-1 transcript levels were significantly reduced (P = .005) after lifestyle intervention, and these changes were significantly correlated with changes in serum CT-1 levels (r = 0.451; P = .031). In multiple regression analysis baseline CT-1 transcript levels were positively associated with final insulin (R2 = 0.506; P = .035) and HOMA-IR values (R2 = 0.473; P = .034). CONCLUSIONS We reported that serum CRP, TNF-α, as well as PBMC CT-1 transcript levels were reduced after lifestyle intervention in obese children. More studies are needed to clarify the role of inflammation-related molecules in glucose metabolism.
Collapse
Affiliation(s)
- A Marti
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - L Morell-Azanza
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - T Rendo-Urteaga
- Youth/Child and cAdiovascular Risk and Environmental (YCARE) Research Group, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - S García-Calzón
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Malmö, Sweden
| | - A Ojeda-Rodríguez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - N Martín-Calvo
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine & Public Health, School of Medicine, University of Navarra, Pamplona, Spain
| | - M J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - J A Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Pamplona, Spain.,IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Center of Biomedical Research in Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Center for Nutrition Research, University of Navarra, Pamplona, Spain.,Madrid Institute of Advanced Science (IMDEA Food), Madrid, Spain
| | - M C Azcona-San Julián
- IdiSNA (Navarra Institute for Health Research), Pamplona, Spain.,Paediatric Endocrinology Unit, Department of Paediatrics, Clinica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
35
|
Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Fernández-Quintela A, Martínez JA, Moreno-Aliaga MJ, Portillo MP. Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. Int J Mol Sci 2017; 18:ijms18081770. [PMID: 28809783 PMCID: PMC5578159 DOI: 10.3390/ijms18081770] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023] Open
Abstract
Adipose tissue releases bioactive mediators called adipokines. This review focuses on the effects of omentin, vaspin, cardiotrophin-1, Tumor necrosis factor-like Weak Inducer of Apoptosis (TWEAK) and nephroblastoma overexpressed (NOV/CCN3) on obesity and diabetes. Omentin is produced by the stromal-vascular fraction of visceral adipose tissue. Obesity reduces omentin serum concentrations and adipose tissue secretion in adults and adolescents. This adipokine regulates insulin sensitivity, but its clinical relevance has to be confirmed. Vaspin is produced by visceral and subcutaneous adipose tissues. Vaspin levels are higher in obese subjects, as well as in subjects showing insulin resistance or type 2 diabetes. Cardiotrophin-1 is an adipokine with a similar structure as cytokines from interleukin-6 family. There is some controversy regarding the regulation of cardiotrophin-1 levels in obese -subjects, but gene expression levels of cardiotrophin-1 are down-regulated in white adipose tissue from diet-induced obese mice. It also shows anti-obesity and hypoglycemic properties. TWEAK is a potential regulator of the low-grade chronic inflammation characteristic of obesity. TWEAK levels seem not to be directly related to adiposity, and metabolic factors play a critical role in its regulation. Finally, a strong correlation has been found between plasma NOV/CCN3 concentration and fat mass. This adipokine improves insulin actions.
Collapse
Affiliation(s)
- Xavier Escoté
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Saioa Gómez-Zorita
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Miguel López-Yoldi
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - Alfredo Fernández-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, 31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008 Pamplona, Spain.
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, 01006 Vitoria, Spain.
| |
Collapse
|
36
|
Peng L, Shu X, Lang C, Yu X. Cardiotrophin-1 stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through PI3K/Akt-dependent signaling pathways. Cytotechnology 2017; 69:933-941. [PMID: 28601931 DOI: 10.1007/s10616-017-0103-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiotrophin-1 (CT1) plays an important role in the differentiation, development, and survival of neural stem cells. In this study, we analyzed its effects on the stimulation of human umbilical cord blood-derived mesenchymal stem cells in terms of their potential to differentiate into neuron-like cells, their survival characteristics, and the molecular mechanisms involved. The treatment of cells with neural induction medium (NIM) and CT1 generated more cells that were neuron-like and produced stronger expression of neural-lineage markers than cells treated with NIM and without CT1. Bcl-2 and Akt phosphorylation (p-Akt) expression levels increased significantly in cells treated with both NIM and CT1. This treatment also effectively blocked cell death following neural induction and decreased Bax, Bak and cleaved-caspase 3 expression compared with cells treated with NIM without CT1. In addition, the inhibition of phosphatidylinositol 3-kinase (PI3K) abrogated p-Akt and Bcl-2 expression. Thus, PI3K/Akt contribute to CT1-stimulated neural differentiation and to the survival of differentiated cells.
Collapse
Affiliation(s)
- Longying Peng
- Department of Pediatric, First Affiliated Hospital, Zunyi Medical College, Zunyi, 563003, Guizhou Province, China
| | - Xiaomei Shu
- Department of Pediatric, First Affiliated Hospital, Zunyi Medical College, Zunyi, 563003, Guizhou Province, China.
| | - Changhui Lang
- Department of Pediatric, First Affiliated Hospital, Zunyi Medical College, Zunyi, 563003, Guizhou Province, China
| | - Xiaohua Yu
- Department of Pediatric, First Affiliated Hospital, Zunyi Medical College, Zunyi, 563003, Guizhou Province, China
| |
Collapse
|
37
|
López-Yoldi M, Marcos-Gomez B, Romero-Lozano MA, Sáinz N, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 Regulates Adipokine Production in 3T3-L1 Adipocytes and Adipose Tissue From Obese Mice. J Cell Physiol 2017; 232:2469-2477. [PMID: 27608275 DOI: 10.1002/jcp.25590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 12/19/2022]
Abstract
Cardiotrophin-1 (CT-1) belongs to the IL-6 family of cytokines. Previous studies of our group revealed that CT-1 is a key regulator of glucose and lipid metabolism. The aim of the present study was to analyze the in vitro and in vivo effects of CT-1 on the production of several adipokines involved in body weight regulation, nutrient metabolism, and inflammation. For this purpose, 3T3-L1 adipocytes were incubated with recombinant protein CT-1 (rCT-1) (1-40 ng/ml) for 1 and 18 h. Moreover, the acute effects of rCT-1 administration (0.2 mg/kg, i.v.) for 30 min and 3 h on adipokines levels were also evaluated in high-fat fed obese mice. In 3T3-L1 adipocytes, rCT-1 treatment downregulated the expression and secretion of leptin, resistin, and visfatin. However, rCT-1 significantly stimulated apelin mRNA and secretion. rCT-1 (18 h) also promoted the activation by phosphorylation of AKT, ERK 1/2, and STAT3. Interestingly, pre-treatment with the PI3K inhibitor LY294002 reversed the stimulatory effects of rCT-1 on apelin expression, suggesting that this pathway could be mediating the effects of rCT-1 on apelin production. In contrast, acute administration of rCT-1 (30 min and 3 h) to diet-induced obese mice downregulated leptin and resistin, without significantly modifying apelin or visfatin mRNA in adipose tissue. Furthermore, CT-1 null mice exhibited altered expression of adipokines in adipose tissue. The present study demonstrates that rCT-1 modulates the production of adipokines in vitro and in vivo, suggesting that the regulation of the secretory function of adipocytes could be involved in the metabolic actions of this cytokine. J. Cell. Physiol. 232: 2469-2477, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel López-Yoldi
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Beatriz Marcos-Gomez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain
| | | | - Neira Sáinz
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain
| | - Jesús Prieto
- Department of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Navarra, Spain.,CIBERehd, Institute of Health Carlos III, Madrid, Spain
| | - Jose Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain.,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| | - Matilde Bustos
- Department of Hepatology and Gene Therapy, CIMA, University of Navarra, Pamplona, Navarra, Spain
| | - Maria J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Navarra, Spain.,Centre for Nutrition Research, University of Navarra, Pamplona, Navarra, Spain.,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain.,IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
| |
Collapse
|
38
|
Briana DD, Germanou K, Boutsikou M, Boutsikou T, Athanasopoulos N, Marmarinos A, Gourgiotis D, Malamitsi-Puchner A. Potential prognostic biomarkers of cardiovascular disease in fetal macrosomia: the impact of gestational diabetes. J Matern Fetal Neonatal Med 2017; 31:895-900. [PMID: 28298172 DOI: 10.1080/14767058.2017.1300651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fetal macrosomia is associated with cardiac hypertrophy and increased cardiovascular risk. Cardiac biomarkers may play diagnostic/prognostic role in cardiovascular disease. We tested whether cardiac biomarkers are differentially expressed in cord blood samples of full-term singleton large-for-gestational-age (LGA), as compared to appropriate-for-gestational-age (AGA) pregnancies. METHODS Cardiotrophin-1 (CT-1), Titin, pentraxin (PTX-3) and soluble CD36 (sCD36) concentrations were determined in 80 cord blood samples from a) LGA pregnancies due to maternal diabetes (n = 8), overweight/obese (n = 11), excessive weight gain (n = 7), without specific pathology (n = 14), b) AGA normal pregnancies (controls, n = 40). Neonates were classified as LGA or AGA based on customized birth weight (BW) standards. RESULTS CT-1 and Titin concentrations were higher in LGA than AGA pregnancies (p < .001 and p = .023, respectively). A subgroup analysis (in the LGA group) showed increased CT-1 concentrations only in diabetic pregnancies. PTX-3 and sCD36 concentrations were similar in LGA and AGA fetuses. In the LGA group, PTX-3 concentrations positively correlated with birth-weight (r = .416, p = .008) and respective sCD36 concentrations (r = .443, p = .004). CONCLUSION Higher Titin concentrations in LGAs possibly represent a candidate molecular mechanism underlying the association between fetal macrosomia and cardiomyocyte/diastolic dysfunction. CT-1 is up-regulated only in LGAs exposed to maternal diabetes. PTX-3 and sCD36 are probably not affected by excessive fetal growth.
Collapse
Affiliation(s)
- Despina D Briana
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Kleopatra Germanou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Boutsikou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Theodora Boutsikou
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Nikolaos Athanasopoulos
- a Department of Neonatology , National and Kapodistrian University of Athens , Athens , Greece
| | - Antonios Marmarinos
- b Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics , National and Kapodistrian University of Athens , Athens , Greece
| | - Dimitrios Gourgiotis
- b Laboratory of Clinical Biochemistry-Molecular Diagnostics, 2nd Department of Pediatrics , National and Kapodistrian University of Athens , Athens , Greece
| | | |
Collapse
|
39
|
Cron L, Allen T, Febbraio MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. ACTA ACUST UNITED AC 2016; 219:259-65. [PMID: 26792338 DOI: 10.1242/jeb.129213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is well known that obesity is responsible, at least in part, for the increased incidence of chronic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Despite public education programs emphasizing lifestyle modifications to arrest this global pandemic, it is now estimated that 10-15% of the world's population are overweight or obese. As a result, new therapeutic options for the treatment of obesity-related disorders are clearly warranted. Much of the benefit of physical activity has been attributed to several mechanisms including reduced adiposity, increased cardiorespiratory fitness, reduced circulating lipids and the maintenance of muscle mass. However, the observation that the gp130 receptor cytokine interleukin-6 (IL-6) was released from skeletal muscle during exercise to improve metabolic homeostasis altered our understanding of the health benefits of exercise and opened avenues for research into potential novel therapeutics to treat metabolic disease. One gp130 receptor cytokine in particular, ciliary neurotrophic factor (CNTF), a pluripotent neurocytokine, showed efficacy as a potential anti-obesogenic therapy. This review examines the potential of gp130 receptor ligands, with a focus on IL-6 and CNTF as therapeutic strategies to treat obesity-related disorders.
Collapse
Affiliation(s)
- Lena Cron
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Faculty of Biology & Medicine, University of Lausanne, Lausanne,1015 Vaud, Switzerland
| | - Tamara Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Division of Diabetes & Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
40
|
Pérez-Matute P, Pichel JG, Iñiguez M, Recio-Fernández E, Pérez-Martínez L, Torrens R, Blanco JR, Oteo JA. Maraviroc ameliorates the increased adipose tissue macrophage recruitment induced by a high-fat diet in a mouse model of obesity. Antivir Ther 2016; 22:163-168. [PMID: 27725337 DOI: 10.3851/imp3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Any strategy designed to decrease the macrophage content in adipose tissue (AT) is of great value as a way to decrease inflammation in this fat depot and also as a way to prevent or treat obesity and associated disorders. Maraviroc (MVC), a CCR5 antagonist approved for the treatment of HIV-infected patients, has beneficial effects on metabolism. The objective of this study was to investigate the effects of MVC on AT macrophage recruitment in a mouse model of obesity. The plausible underlying mechanisms of action were also investigated. METHODS 32 male C57BL/6 mice were randomly assigned to the following groups: control, MVC (300 mg/l MVC in drinking water), high-fat diet (HFD) or HFD+MVC. After 16 weeks of treatment, histopathological and molecular analyses were performed on epididymal fat. RESULTS Our results demonstrated that MVC reduced the presence of macrophages in epididymal fat despite the ingestion of an HFD. The inhibition of MCP-1 gene expression and JNK signalling pathway along with the upregulation of protective cytokines such as cardiotrophin-1 could contribute to these actions. MVC effects on AT macrophage recruitment were associated with a lower body weight gain and a partial improvement in insulin resistance despite an HFD. CONCLUSIONS We have demonstrated the ability of MVC to ameliorate the increased AT macrophage recruitment induced by an HFD in a mouse model of obesity. These actions could be of interest when designing antiretroviral treatments in HIV-patients.
Collapse
Affiliation(s)
- Patricia Pérez-Matute
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - José G Pichel
- Lung Cancer Unit, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - María Iñiguez
- Genomics Core Facility, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Emma Recio-Fernández
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - Laura Pérez-Martínez
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - Raquel Torrens
- Lung Cancer Unit, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - José Ramón Blanco
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| | - José Antonio Oteo
- Infectious Diseases Department, Center for Biomedical Research of La Rioja, Hospital San Pedro, Logroño, Spain
| |
Collapse
|
41
|
López-Yoldi M, Castilla-Madrigal R, Lostao MP, Barber A, Prieto J, Martínez JA, Bustos M, Moreno-Aliaga MJ. Cardiotrophin-1 decreases intestinal sugar uptake in mice and in Caco-2 cells. Acta Physiol (Oxf) 2016; 217:217-26. [PMID: 26972986 DOI: 10.1111/apha.12674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/12/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
AIM Cardiotrophin-1 (CT-1) is a member of the IL-6 family of cytokines with a key role in glucose and lipid metabolism. In the current investigation, we examined the in vivo and in vitro effects of CT-1 treatment on intestinal sugar absorption in different experimental models. METHODS rCT-1 effects on α-Methyl-D-glucoside uptake were assessed in everted intestinal rings from wild-type and CT-1(-/-) mice and in Caco-2 cells. rCT-1 actions on SGLT-1 expression in brush border membrane vesicles and the identification of the potential signalling pathways involved were determined by Western blot. RESULTS In vivo administration (0.2 mg kg(-1) ) of rCT-1 caused a significant decrease on α-Methyl-D-glucoside uptake in everted intestinal rings from wild-type and CT-1(-/-) mice after short-term and long-term treatments. Similarly, in vitro treatment (1-50 ng mL(-1) ) with rCT-1 reduced α-Methyl-D-glucoside uptake in everted intestinal rings. In Caco-2 cells, rCT-1 treatment (20 ng mL(-1) , 1 and 24 h) lowered apical uptake of α-Methyl-D-glucoside in parallel with a decrease on SGLT-1 protein expression. rCT-1 promoted the phosphorylation of STAT-3 after 5 and 15 min treatment, but inhibited the activation by phosphorylation of AMPK after 30 and 60 min. Interestingly, pre-treatment with the JAK/STAT inhibitor (AG490) and with the AMPK activator (AICAR) reversed the inhibitory effects of rCT-1 on α-Methyl-D-glucoside uptake. AICAR also prevented the inhibition of SGLT-1 observed in rCT-1-treated cells. CONCLUSIONS CT-1 inhibits intestinal sugar absorption by the reduction of SGLT-1 levels through the AMPK pathway, which could also contribute to explain the hypoglycaemic and anti-obesity properties of CT-1.
Collapse
Affiliation(s)
- M. López-Yoldi
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
| | - R. Castilla-Madrigal
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
| | - M. P. Lostao
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
| | - A. Barber
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
| | - J. Prieto
- Department of Gene Therapy and Hepatology; CIMA; University of Navarra; Pamplona Navarra Spain
- CIBERehd; Institute of Health Carlos III; Madrid Spain
| | - J. A. Martínez
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
- CIBERobn; Physiopathology of Obesity and Nutrition; Institute of Health Carlos III; Madrid Spain
| | - M. Bustos
- Department of Gene Therapy and Hepatology; CIMA; University of Navarra; Pamplona Navarra Spain
| | - M. J. Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology; University of Navarra; Pamplona Navarra Spain
- Centre for Nutrition Research; University of Navarra; Pamplona Navarra Spain
- IdiSNA; Navarra Institute for Health Research; Pamplona Spain
- CIBERobn; Physiopathology of Obesity and Nutrition; Institute of Health Carlos III; Madrid Spain
| |
Collapse
|