1
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
2
|
Friedman C, Ari T, Ünsal G, Balci T, Morrison M, Ari N. Overlap Diagnostic Odyssey and Full Mouth Rehabilitation of a Juvenile Patient With IFIH1-Related Disorder: A Case of Aicardi-Goutières and Singleton Merten Syndromes Overlap. SPECIAL CARE IN DENTISTRY 2025; 45:e70026. [PMID: 40197712 PMCID: PMC11977043 DOI: 10.1111/scd.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/02/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVE This case report describes the prosthetic rehabilitation of a 15-year-old female patient with a rare IFIH1-related interferonopathy, presenting features from both Aicardi-Goutières Syndrome (AGS) and Singleton-Merten Syndrome (SMS). The report highlights the unique dental and maxillofacial challenges, and the multidisciplinary treatment approach required in such patients. METHODS The patient underwent a comprehensive prosthetic rehabilitation, which included two stages of extractions, followed by the fabrication of a complete upper denture and a two-implant-retained mandibular overdenture. Pre- and post-treatment assessments, including panoramic radiographs and cone beam computed tomography (CBCT), were utilized to guide treatment. RESULTS Initial assessments revealed root formation anomalies, multiple impacted teeth, internal resorption, and associated dental anomalies. Following extractions and ridge augmentation, two freestanding implants were successfully placed in the anterior mandible, with no complications during osseointegration. The patient reported satisfaction with the function, esthetics, and stability of her dental prostheses. CONCLUSIONS This case underscores the importance of a multidisciplinary approach for managing dental anomalies and bone fragility in patients with IFIH1-related disorders. Early genetic diagnosis and thorough treatment planning are critical for successful prosthetic rehabilitation and optimal patient outcomes.
Collapse
Affiliation(s)
- Clive Friedman
- Department of Paediatric DentistrySchulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Timucin Ari
- Department of Paediatric DentistrySchulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Gürkan Ünsal
- Division of Oral and Maxillofacial RadiologySchulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Tugce Balci
- Department of PaediatricsSchulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
- Medical Genetics Program of Southwestern OntarioLondon Health Sciences CentreLondonOntarioCanada
| | - Matthew Morrison
- Department of Oral SurgerySchulich School of Medicine & DentistryWestern UniversityLondonOntarioCanada
| | - Nilgun Ari
- Department of ProsthodonticsSchulich Medicine and DentistryWestern UniversityLondonOntarioCanada
| |
Collapse
|
3
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Cheng D, Zhu J, Liu G, Gack MU, MacDuff DA. HOIL1 mediates MDA5 activation through ubiquitination of LGP2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587772. [PMID: 38617308 PMCID: PMC11014604 DOI: 10.1101/2024.04.02.587772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The RIG-I-like receptors (RLRs), RIG-I and MDA5, are innate sensors of RNA virus infections that are critical for mounting a robust antiviral immune response. We have shown previously that HOIL1, a component of the Linear Ubiquitin Chain Assembly Complex (LUBAC), is essential for interferon (IFN) induction in response to viruses sensed by MDA5, but not for viruses sensed by RIG-I. LUBAC contains two unusual E3 ubiquitin ligases, HOIL1 and HOIP. HOIP generates methionine-1-linked polyubiquitin chains, whereas HOIL1 has recently been shown to conjugate ubiquitin onto serine and threonine residues. Here, we examined the differential requirement for HOIL1 and HOIP E3 ligase activities in RLR-mediated IFN induction. We determined that HOIL1 E3 ligase activity was critical for MDA5-dependent IFN induction, while HOIP E3 ligase activity played only a modest role in promoting IFN induction. HOIL1 E3 ligase promoted MDA5 oligomerization, its translocation to mitochondrial-associated membranes, and the formation of MAVS aggregates. We identified that HOIL1 can interact with and facilitate the ubiquitination of LGP2, a positive regulator of MDA5 oligomerization. In summary, our work identifies LGP2 ubiquitination by HOIL1 in facilitating the activation of MDA5 and the induction of a robust IFN response.
Collapse
Affiliation(s)
- Deion Cheng
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| | - Junji Zhu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - GuanQun Liu
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Michaela U. Gack
- . Cleveland Clinic Florida Research and Innovation Center, Port St. Lucie, Florida, USA
| | - Donna A. MacDuff
- . Department of Microbiology and Immunology, University of Illinois Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Liu A, Ying S. Aicardi-Goutières syndrome: A monogenic type I interferonopathy. Scand J Immunol 2023; 98:e13314. [PMID: 37515439 DOI: 10.1111/sji.13314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare monogenic autoimmune disease that primarily affects the brains of children patients. Its main clinical features include encephalatrophy, basal ganglia calcification, leukoencephalopathy, lymphocytosis and increased interferon-α (IFN-α) levels in the patient's cerebrospinal fluid (CSF) and serum. AGS may be caused by mutations in any one of nine genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, IFIH1, LSM11 and RNU7-1) that result in accumulation of self-nucleic acids in the cytoplasm or aberrant sensing of self-nucleic acids. This triggers overproduction of type I interferons (IFNs) and subsequently causes AGS, the prototype of type I interferonopathies. This review describes the discovery history of AGS with various genotypes and provides the latest knowledge of clinical manifestations and causative genes of AGS. The relationship between AGS and type I interferonopathy and potential therapeutic methods for AGS are also discussed in this review.
Collapse
Affiliation(s)
- Anran Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Carlson RJ, Leiken MD, Guna A, Hacohen N, Blainey PC. A genome-wide optical pooled screen reveals regulators of cellular antiviral responses. Proc Natl Acad Sci U S A 2023; 120:e2210623120. [PMID: 37043539 PMCID: PMC10120039 DOI: 10.1073/pnas.2210623120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023] Open
Abstract
The infection of mammalian cells by viruses and innate immune responses to infection are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) and consequent induction of host immune responses to RNA viruses. Previous genetic screens for factors involved in viral sensing did not resolve changes in the subcellular localization of host or viral proteins. Here, we increased the throughput of our optical pooled screening technology by over fourfold. This allowed us to carry out a genome-wide CRISPR knockout screen using high-resolution multiparameter imaging of cellular responses to Sendai virus infection coupled with in situ cDNA sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 10,366,390 cells-over an order of magnitude more genomic perturbations than demonstrated previously using an in situ SBS readout. By ranking perturbations using human-designed and deep learning image feature scores, we identified regulators of IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for viral sensing and is required for targeting of mitochondrial antiviral signaling protein (MAVS) to mitochondrial membranes where MAVS must be localized for effective signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out genome-wide pooled screens with complex high-resolution image-based phenotyping dramatically expands the scope of functional genomics approaches.
Collapse
Affiliation(s)
- Rebecca J. Carlson
- Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Michael D. Leiken
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | | | - Nir Hacohen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA02114
| | - Paul C. Blainey
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA02139
| |
Collapse
|
8
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
9
|
Ren X, Gelinas AD, Linehan M, Iwasaki A, Wang W, Janjic N, Pyle AM. Evolving A RIG-I Antagonist: A Modified DNA Aptamer Mimics Viral RNA. J Mol Biol 2021; 433:167227. [PMID: 34487794 DOI: 10.1016/j.jmb.2021.167227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022]
Abstract
Vertebrate organisms express a diversity of protein receptors that recognize and respond to the presence of pathogenic molecules, functioning as an early warning system for infection. As a result of mutation or dysregulated metabolism, these same innate immune receptors can be inappropriately activated, leading to inflammation and disease. One of the most important receptors for detection and response to RNA viruses is called RIG-I, and dysregulation of this protein is linked with a variety of disease states. Despite its central role in inflammatory responses, antagonists for RIG-I are underdeveloped. In this study, we use invitro selection from a pool of modified DNA aptamers to create a high affinity RIG-I antagonist. A high resolution crystal structure of the complex reveals molecular mimicry between the aptamer and the 5'-triphosphate terminus of viral ligands, which bind to the same amino acids within the CTD recognition platform of the RIG-I receptor. Our study suggests a powerful, generalizable strategy for generating immunomodulatory drugs and mechanistic tool compounds.
Collapse
MESH Headings
- Antigens, Viral/chemistry
- Antigens, Viral/metabolism
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/metabolism
- Binding Sites
- Cloning, Molecular
- Crystallography, X-Ray
- DEAD Box Protein 58/chemistry
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immunologic Factors/chemistry
- Immunologic Factors/metabolism
- Kinetics
- Models, Molecular
- Molecular Mimicry
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- SELEX Aptamer Technique
Collapse
Affiliation(s)
- Xiaoming Ren
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Amy D Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Melissa Linehan
- Department of Immunobiology, Yale University, New Haven, CT 06519, USA
| | - Akiko Iwasaki
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University, New Haven, CT 06519, USA
| | - Wenshuai Wang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA.
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Parra-Izquierdo I, Sánchez-Bayuela T, López J, Gómez C, Pérez-Riesgo E, San Román JA, Sánchez Crespo M, Yacoub M, Chester AH, García-Rodríguez C. Interferons Are Pro-Inflammatory Cytokines in Sheared-Stressed Human Aortic Valve Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910605. [PMID: 34638942 PMCID: PMC8508640 DOI: 10.3390/ijms221910605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is an athero-inflammatory process. Growing evidence supports the inflammation-driven calcification model, mediated by cytokines such as interferons (IFNs) and tumor necrosis factor (TNF)-α. Our goal was investigating IFNs' effects in human aortic valve endothelial cells (VEC) and the potential differences between aortic (aVEC) and ventricular (vVEC) side cells. The endothelial phenotype was analyzed by Western blot, qPCR, ELISA, monocyte adhesion, and migration assays. In mixed VEC populations, IFNs promoted the activation of signal transducers and activators of transcription-1 and nuclear factor-κB, and the subsequent up-regulation of pro-inflammatory molecules. Side-specific VEC were activated with IFN-γ and TNF-α in an orbital shaker flow system. TNF-α, but not IFN-γ, induced hypoxia-inducible factor (HIF)-1α stabilization or endothelial nitric oxide synthase downregulation. Additionally, IFN-γ inhibited TNF-α-induced migration of aVEC. Also, IFN-γ triggered cytokine secretion and adhesion molecule expression in aVEC and vVEC. Finally, aVEC were more prone to cytokine-mediated monocyte adhesion under multiaxial flow conditions as compared with uniaxial flow. In conclusion, IFNs promote inflammation and reduce TNF-α-mediated migration in human VEC. Moreover, monocyte adhesion was higher in inflamed aVEC sheared under multiaxial flow, which may be relevant to understanding the initial stages of CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Tania Sánchez-Bayuela
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Javier López
- ICICOR, Hospital Clínico Universitario, 47005 Valladolid, Spain; (J.L.); (J.A.S.R.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Cristina Gómez
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Enrique Pérez-Riesgo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - J. Alberto San Román
- ICICOR, Hospital Clínico Universitario, 47005 Valladolid, Spain; (J.L.); (J.A.S.R.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Magdi Yacoub
- National Heart & Lung Institute, Imperial College London, London SW3 6LR, UK;
- Magdi Yacoub Institute, Harefield UB9 6JH, UK
| | - Adrian H. Chester
- National Heart & Lung Institute, Imperial College London, London SW3 6LR, UK;
- Magdi Yacoub Institute, Harefield UB9 6JH, UK
- Correspondence: (A.H.C.); (C.G.-R.); Tel.: +44-(0)1895-760732 (A.H.C.); +34-983-184841 (C.G.-R.)
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: (A.H.C.); (C.G.-R.); Tel.: +44-(0)1895-760732 (A.H.C.); +34-983-184841 (C.G.-R.)
| |
Collapse
|
11
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
12
|
Bufalieri F, Basili I, Di Marcotullio L, Infante P. Harnessing the Activation of RIG-I Like Receptors to Inhibit Glioblastoma Tumorigenesis. Front Mol Neurosci 2021; 14:710171. [PMID: 34305530 PMCID: PMC8295747 DOI: 10.3389/fnmol.2021.710171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GB) is an incurable form of brain malignancy in an adult with a median survival of less than 15 months. The current standard of care, which consists of surgical resection, radiotherapy, and chemotherapy with temozolomide, has been unsuccessful due to an extensive inter- and intra-tumoral genetic and molecular heterogeneity. This aspect represents a serious obstacle for developing alternative therapeutic options for GB. In the last years, immunotherapy has emerged as an effective treatment for a wide range of cancers and several trials have evaluated its effects in GB patients. Unfortunately, clinical outcomes were disappointing particularly because of the presence of tumor immunosuppressive microenvironment. Recently, anti-cancer approaches aimed to improve the expression and the activity of RIG-I-like receptors (RLRs) have emerged. These innovative therapeutic strategies attempt to stimulate both innate and adaptive immune responses against tumor antigens and to promote the apoptosis of cancer cells. Indeed, RLRs are important mediators of the innate immune system by triggering the type I interferon (IFN) response upon recognition of immunostimulatory RNAs. In this mini-review, we discuss the functions of RLRs family members in the control of immune response and we focus on the potential clinical application of RLRs agonists as a promising strategy for GB therapy.
Collapse
Affiliation(s)
| | - Irene Basili
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Infante
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
13
|
Sönmez HE, Karaaslan C, de Jesus AA, Batu ED, Anlar B, Sözeri B, Bilginer Y, Karaguzel D, Ayvaz DC, Tezcan I, Goldbach-Mansky R, Ozen S. A clinical score to guide in decision making for monogenic type I IFNopathies. Pediatr Res 2020; 87:745-752. [PMID: 31641281 PMCID: PMC8425764 DOI: 10.1038/s41390-019-0614-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/13/2019] [Accepted: 10/01/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To develop a set of clinical criteria that identifies patients with a potential autoinflammatory IFNopathy. METHODS Based on a literature review, a set of clinical criteria identifying genetically confirmed monogenic IFNopathies was selected. For validation, the clinical score was assessed in healthy controls (HCs) and 18 disease controls, including 2 known autoimmune IFNopathies, juvenile systemic lupus erythematosus (JSLE, n = 4) and dermatomyositis (JDM, n = 4); adenosine deaminase 2 deficiency (DADA2, n = 4); and oligoarticular juvenile idiopathic arthritis (oJIA, n = 6). We assessed an IFN score (IRG-S) in whole blood by NanoString using a previously published 28-gene-IRG-S and a reduced 6-gene-IRG-S. RESULTS The 12 patients with a possible IFNopathy had higher clinical scores (3-5) than the patients with sJLE, JDM, DADA2, and oJIA and in HCs. Both the 28-IRG-S and 6-IRG-S were significantly higher in the autoinflammatory IFNopathy patients compared to HCs and oJIA and DADA2 patients but not different from patients with JSLE and JDM. Subsequently, genetic analysis revealed mutations in genes previously reported in genes related to the IFN pathway in 9 of the 12 patients. CONCLUSION We developed a clinical score to identify patients with possible autoinflammatory IFNopathies. A clinical score was associated with a high IRG-S and may serve to identify patients with an autoinflammatory IFNopathy.
Collapse
Affiliation(s)
- Hafize Emine Sönmez
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Hacettepe University Faculty of Science, Ankara, Turkey
| | - Adriana A. de Jesus
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ezgi Deniz Batu
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Banu Anlar
- Division of Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Sözeri
- Division of Rheumatology, Department of Pediatrics, Umraniye Research and Training Hospital, Istanbul, Turkey
| | - Yelda Bilginer
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Molecular Biology Section, Hacettepe University Faculty of Science, Ankara, Turkey
| | - Deniz Cagdas Ayvaz
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seza Ozen
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
14
|
Elion DL, Cook RS. Harnessing RIG-I and intrinsic immunity in the tumor microenvironment for therapeutic cancer treatment. Oncotarget 2018; 9:29007-29017. [PMID: 29989043 PMCID: PMC6034747 DOI: 10.18632/oncotarget.25626] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum. Approaches aimed at intrinsic cellular immunity in the tumor microenvironment are less understood, but are of intense interest, based on their ability to induce tumor cell apoptosis while orchestrating innate and adaptive immune responses against tumor antigens. The intrinsic immune response is initiated by ancient, highly conserved intracellular proteins that detect viral infection. For example, the RIG-I-like receptors (RLRs), a family of related RNA helicases, detect viral oligonucleotide patterns of certain RNA viruses. RLR activation induces immunogenic cell death of virally infected cells, accompanied by increased inflammatory cytokine production, antigen presentation, and antigen-directed immunity against virus antigens. Approaches aimed at non-infectious RIG-I activation in cancers are being tested as a treatment option, with the goal of inducing immunogenic tumor cell death, stimulating production of pro-inflammatory cytokines, enhancing tumor neoantigen presentation, and potently increasing cytotoxic activity of tumor infiltrating lymphocytes. These studies are finding success in several pre-clinical models, and are entering early phases of clinical trial. Here, we review pre-clinical studies of RLR agonists, including the successes and challenges currently faced RLR agonists on the path to clinical translation.
Collapse
Affiliation(s)
- David L Elion
- Cancer Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rebecca S Cook
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Hiraki LT, Silverman ED. Genomics of Systemic Lupus Erythematosus: Insights Gained by Studying Monogenic Young-Onset Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2018; 43:415-434. [PMID: 28711143 DOI: 10.1016/j.rdc.2017.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic, autoimmune, multisystem disease with a heterogeneous clinical phenotype. Genome-wide association studies have identified multiple susceptibility loci, but these explain a fraction of the estimated heritability. This is partly because within the broad spectrum of SLE are monogenic diseases that tend to cluster in patients with young age of onset, and in families. This article highlights insights into the pathogenesis of SLE provided by these monogenic diseases. It examines genetic causes of complement deficiency, abnormal interferon production, and abnormalities of tolerance, resulting in monogenic SLE with overlapping clinical features, autoantibodies, and shared inflammatory pathways.
Collapse
Affiliation(s)
- Linda T Hiraki
- Division of Rheumatology, SickKids Hospital, SickKids Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Epidemiology, Dalla Lana School of Public Health, 155 College Street, Toronto, Ontario M5T 3M7, Canada
| | - Earl D Silverman
- Division of Rheumatology, SickKids Hospital, SickKids Research Institute, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Paediatrics, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Buers I, Rice GI, Crow YJ, Rutsch F. MDA5-Associated Neuroinflammation and the Singleton-Merten Syndrome: Two Faces of the Same Type I Interferonopathy Spectrum. J Interferon Cytokine Res 2018; 37:214-219. [PMID: 28475458 DOI: 10.1089/jir.2017.0004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In 1973, Singleton and Merten described a new syndrome in 2 female probands with aortic and cardiac valve calcifications, early loss of secondary dentition, and widened medullary cavities of the phalanges. In 1984, Aicardi and Goutières defined a phenotype resembling congenital viral infection with basal ganglia calcification and increased protein content in the cerebrospinal fluid. Between 2006 and 2012, mutations in 6 different genes were described to be associated with Aicardi-Goutières syndrome, specifically-TREX1, RNASEH2A, RNASEH2B, RNASEH2C, ADAR, and SAMHD1. More recently, mutations in IFIH1 were reported in a variety of neuroimmunological phenotypes, including Aicardi-Goutières syndrome, while a specific Arg822Gln mutation in IFIH1 was described in 3 discrete families with Singleton-Merten syndrome (SMS). IFIH1 encodes for melanoma differentiation-associated gene 5 (MDA5), and all mutations identified to date have been associated with an enhanced interferon response in affected individuals. In this study, we present a male child demonstrating recurrent febrile episodes, spasticity, and basal ganglia calcification suggestive of Aicardi-Goutières syndrome, who carries the same Arg822Gln mutation in IFIH1 previously associated with SMS. We conclude that both diseases are part of the interferonopathy grouping and that the Arg822Gln mutation in IFIH1 can cause a spectrum of disease, including neurological involvement.
Collapse
Affiliation(s)
- Insa Buers
- 1 Department of General Pediatrics, Muenster University Children's Hospital , Muenster, Germany
| | - Gillian I Rice
- 2 Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester , Manchester, United Kingdom
| | - Yanick J Crow
- 2 Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester , Manchester, United Kingdom .,3 Laboratory of Neurogenetics and Neuroinflammation , INSERM UMR 1163, Paris, France .,4 Paris Descartes-Sorbonne Paris Cité University , Institute Imagine, Paris, France
| | - Frank Rutsch
- 1 Department of General Pediatrics, Muenster University Children's Hospital , Muenster, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Dae Chul Jeong
- Division of Pediatric Rheumatology and Clinical Immunology, Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW We give an update on the etiology and potential treatment options of rare inherited monogenic disorders associated with arterial calcification and calcific cardiac valve disease. RECENT FINDINGS Genetic studies of rare inherited syndromes have identified key regulators of ectopic calcification. Based on the pathogenic principles causing the diseases, these can be classified into three groups: (1) disorders of an increased extracellular inorganic phosphate/inorganic pyrophosphate ratio (generalized arterial calcification of infancy, pseudoxanthoma elasticum, arterial calcification and distal joint calcification, progeria, idiopathic basal ganglia calcification, and hyperphosphatemic familial tumoral calcinosis; (2) interferonopathies (Singleton-Merten syndrome); and (3) others, including Keutel syndrome and Gaucher disease type IIIC. Although some of the identified causative mechanisms are not easy to target for treatment, it has become clear that a disturbed serum phosphate/pyrophosphate ratio is a major force triggering arterial and cardiac valve calcification. Further studies will focus on targeting the phosphate/pyrophosphate ratio to effectively prevent and treat these calcific disease phenotypes.
Collapse
MESH Headings
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Basal Ganglia Diseases/drug therapy
- Basal Ganglia Diseases/genetics
- Basal Ganglia Diseases/metabolism
- Calcinosis/drug therapy
- Calcinosis/genetics
- Calcinosis/metabolism
- Cartilage Diseases/drug therapy
- Cartilage Diseases/genetics
- Cartilage Diseases/metabolism
- Dental Enamel Hypoplasia/drug therapy
- Dental Enamel Hypoplasia/genetics
- Dental Enamel Hypoplasia/metabolism
- Diphosphates/metabolism
- Enzyme Replacement Therapy
- Gaucher Disease/drug therapy
- Gaucher Disease/genetics
- Gaucher Disease/metabolism
- Hand Deformities, Congenital/drug therapy
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Humans
- Hyperostosis, Cortical, Congenital/drug therapy
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/metabolism
- Hyperphosphatemia/drug therapy
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Interferons/metabolism
- Metacarpus/abnormalities
- Metacarpus/metabolism
- Muscular Diseases/drug therapy
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Odontodysplasia/drug therapy
- Odontodysplasia/genetics
- Odontodysplasia/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/genetics
- Osteoporosis/metabolism
- Phosphates/metabolism
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Pseudoxanthoma Elasticum/drug therapy
- Pseudoxanthoma Elasticum/genetics
- Pseudoxanthoma Elasticum/metabolism
- Pulmonary Valve Stenosis/drug therapy
- Pulmonary Valve Stenosis/genetics
- Pulmonary Valve Stenosis/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
19
|
The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat Immunol 2017; 18:744-752. [PMID: 28553952 PMCID: PMC5697900 DOI: 10.1038/ni.3766] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The single-nucleotide polymorphism rs1990760 in the gene encoding the cytosolic viral sensor IFIH1 results in an amino-acid change (A946T; IFIH1T946) that is associated with multiple autoimmune diseases. The effect of this polymorphism on both viral sensing and autoimmune pathogenesis remains poorly understood. Here we found that human peripheral blood mononuclear cells (PBMCs) and cell lines expressing the risk variant IFIH1T946 exhibited heightened basal and ligand-triggered production of type I interferons. Consistent with those findings, mice with a knock-in mutation encoding IFIH1T946 displayed enhanced basal expression of type I interferons, survived a lethal viral challenge and exhibited increased penetrance in autoimmune models, including a combinatorial effect with other risk variants. Furthermore, IFIH1T946 mice manifested an embryonic survival defect consistent with enhanced responsiveness to RNA self ligands. Together our data support a model wherein the production of type I interferons driven by an autoimmune risk variant and triggered by ligand functions to protect against viral challenge, which probably accounts for its selection within human populations but provides this advantage at the cost of modestly promoting the risk of autoimmunity.
Collapse
|
20
|
Pettersson M, Bergendal B, Norderyd J, Nilsson D, Anderlid BM, Nordgren A, Lindstrand A. Further evidence for specific IFIH1 mutation as a cause of Singleton-Merten syndrome with phenotypic heterogeneity. Am J Med Genet A 2017; 173:1396-1399. [PMID: 28319323 DOI: 10.1002/ajmg.a.38214] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
Singleton-Merten syndrome (MIM 182250) is an autosomal dominant inherited disorder characterized by early onset periodontitis, root resorption, osteopenia, osteoporosis, and aortic valve or thoracic aorta calcification. The disorder can have significant intrafamilial phenotypic variability. Here, we present a mother and daughter with Singleton-Merten syndrome harboring a previously described pathogenic missense mutation, c.2465G>A p.(Arg822Gln), in IFIH1 (interferon induced with helicase C domain 1), encoding MDA5 (Melanoma Differentiation-Associated protein 5). These data confirm the pathogenicity of IFIH1 c.2465G>A p.(Arg822Gln) for Singleton-Merten syndrome and affirm the striking phenotypic heterogeneity of this disorder. In addition, we expand the Singleton-Merten phenotype by adding severe systemic lupus erythematosus (SLE) to the clinical picture. Investigations of known SLE genes as well as a single nucleotide polymorphism suggested to be involved in development of SLE were normal.
Collapse
Affiliation(s)
- Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Bergendal
- National Oral Disability Centre for Rare Disorders, The Institute for Postgraduate Dental Education, Jönköping, Sweden.,School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Johanna Norderyd
- National Oral Disability Centre for Rare Disorders, The Institute for Postgraduate Dental Education, Jönköping, Sweden.,School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Mol Cell 2017; 65:403-415.e8. [PMID: 28132841 DOI: 10.1016/j.molcel.2016.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/28/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Cell-autonomous induction of type I interferon must be stringently regulated. Rapid induction is key to control virus infection, whereas proper limitation of signaling is essential to prevent immunopathology and autoimmune disease. Using unbiased kinome-wide RNAi screening followed by thorough validation, we identified 22 factors that regulate RIG-I/IRF3 signaling activity. We describe a negative-feedback mechanism targeting RIG-I activity, which is mediated by death associated protein kinase 1 (DAPK1). RIG-I signaling triggers DAPK1 kinase activation, and active DAPK1 potently inhibits RIG-I stimulated IRF3 activity and interferon-beta production. DAPK1 phosphorylates RIG-I in vitro at previously reported as well as other sites that limit 5'ppp-dsRNA sensing and virtually abrogate RIG-I activation.
Collapse
|
22
|
Klase ZA, Khakhina S, Schneider ADB, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 2016; 10:e0004877. [PMID: 27560129 PMCID: PMC4999274 DOI: 10.1371/journal.pntd.0004877] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain-Barré syndrome) has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of "TORCH" viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication.
Collapse
Affiliation(s)
- Zachary A Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Michael V Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Zika Foundation, College Station, Texas, United States of America
| | - Jill Glasspool-Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Minter MR, Moore Z, Zhang M, Brody KM, Jones NC, Shultz SR, Taylor JM, Crack PJ. Deletion of the type-1 interferon receptor in APPSWE/PS1ΔE9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathol Commun 2016; 4:72. [PMID: 27400725 PMCID: PMC4940712 DOI: 10.1186/s40478-016-0341-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 06/24/2016] [Indexed: 12/28/2022] Open
Abstract
A neuro-inflammatory response is evident in Alzheimer’s disease (AD), yet the precise mechanisms by which neuro-inflammation influences the progression of Alzheimer’s disease (AD) remain poorly understood. Type-1 interferons (IFNs) are master regulators of innate immunity and have been implicated in multiple CNS disorders, however their role in AD progression has not yet been fully investigated. Hence, we generated APPSWE/PS1ΔE9 mice lacking the type-1 IFN alpha receptor-1 (IFNAR1, APPSWE/PS1ΔE9 x IFNAR1−/−) aged to 9 months to investigate the role of type-1 IFN signaling in a well-validated model of AD. APPSWE/PS1ΔE9 x IFNAR1−/− mice displayed a modest reduction in Aβ monomer levels, despite maintenance of plaque deposition. This finding correlated with partial rescue of spatial learning and memory impairments in the Morris water maze in comparison to APPSWE/PS1ΔE9 mice. Q-PCR identified a reduced type-1 IFN response and modulated pro-inflammatory cytokine secretion in APPSWE/PS1ΔE9 x IFNAR1−/− mice compared to APPSWE/PS1ΔE9 mice. Interestingly, immunohistochemistry displayed enhanced astrocyte reactivity but attenuated microgliosis surrounding amyloid plaque deposits in APPSWE/PS1ΔE9 x IFNAR1−/− mice in comparison to APPSWE/PS1ΔE9 mice. These APPSWE/PS1ΔE9 x IFNAR1−/− microglial populations demonstrated an anti-inflammatory phenotype that was confirmed in vitro by soluble Aβ1-42 treatment of IFNAR1−/− primary glial cultures. Our findings suggest that modulating neuro-inflammatory responses by suppressing type-1 IFN signaling may provide therapeutic benefit in AD.
Collapse
|