1
|
Kwantwi LB, Tandoh T. Focal adhesion kinase-mediated interaction between tumor and immune cells in the tumor microenvironment: implications for cancer-associated therapies and tumor progression. Clin Transl Oncol 2025; 27:1398-1405. [PMID: 39269597 DOI: 10.1007/s12094-024-03723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Focal adhesion kinase (FAK) expression has been linked to tumor growth, immunosuppression, metastasis, angiogenesis, and therapeutic resistance through kinase-dependent and kinase scaffolding functions in the nucleus and cytoplasm. Hence, targeting FAK alone or with other agents has gained attention as a potential therapeutic strategy. Moreover, mounting evidence shows that FAK activity can influence the tumor immune microenvironment crosstalk to support tumor progression. Recently, tumor immune microenvironment interaction orchestrators have shown to be promising therapeutic agents for cancer immunotherapies. Therefore, this review highlights how FAK regulates the tumor immune microenvironment interplay to promote tumor immune evasive mechanisms and their potential for combination therapies with standard cancer treatments.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| | - Theophilus Tandoh
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
2
|
Zhou H, Yu CY, Wei H. Liposome-based nanomedicine for immune checkpoint blocking therapy and combinatory cancer therapy. Int J Pharm 2024; 652:123818. [PMID: 38253269 DOI: 10.1016/j.ijpharm.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The discovery of immune checkpoint (IC) has led to a wave of leap forward in cancer immunotherapy that represents probably the most promising strategy for cancer therapy. However, the clinical use of immune checkpoint block (ICB) therapy is limited by response rates and side effects. A strategy that addresses the limitations of ICB therapies through combination therapies, using nanocarriers as mediators, has been mentioned in numerous research papers. Liposomes have been probably one of the most extensively used nanocarriers for clinical applications, with broad drug delivery and high safety. A timely review on this hot subject of research, i.e., the application of liposomes for ICB, is thus highly desirable for both fundamental and clinical translatable studies, but remains, to our knowledge, unexplored so far. For this purpose, this review is composed to address the dilemma of ICB therapy and the reasons for this dilemma. We later describe how other cancer treatments have broken this dilemma. Finally, we focus on the role of liposomes in various combinatory cancer therapy. This review is believed to serve as a guidance for the rational design and development of liposome for immunotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Haoyuan Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| |
Collapse
|
3
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
5
|
Roy G, Chakraborty A, Swami B, Pal L, Ahuja C, Basak S, Bhaskar S. Type 1 interferon mediated signaling is indispensable for eliciting anti-tumor responses by Mycobacterium indicus pranii. Front Immunol 2023; 14:1104711. [PMID: 37122749 PMCID: PMC10140407 DOI: 10.3389/fimmu.2023.1104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The evolving tumor secretes various immunosuppressive factors that reprogram the tumor microenvironment (TME) to become immunologically cold. Consequently, various immunosuppressive cells like Tregs are recruited into the TME which in turn subverts the anti-tumor response of dendritic cells and T cells.Tumor immunotherapy is a popular means to rejuvenate the immunologically cold TME into hot. Mycobacterium indicus pranii (MIP) has shown strong immunomodulatory activity in different animal and human tumor models and has been approved for treatment of lung cancer (NSCLC) patients as an adjunct therapy. Previously, MIP has shown TLR2/9 mediated activation of antigen presenting cells/Th1 cells and their enhanced infiltration in mouse melanoma but the underlying mechanism by which it is modulating these immune cells is not yet known. Results This study reports for the first time that MIP immunotherapy involves type 1 interferon (IFN) signaling as one of the major signaling pathways to mediate the antitumor responses. Further, it was observed that MIP therapy significantly influenced frequency and activation of different subsets of T cells like regulatory T cells (Tregs) and CD8+ T cells in the TME. It reduces the migration of Tregs into the TME by suppressing the expression of CCL22, a Treg recruiting chemokine on DCs and this process is dependent on type 1 IFN. Simultaneously, in a type 1 IFN dependent pathway, it enhances the activation and effector function of the immunosuppressive tumor resident DCs which in turn effectively induce the proliferation and effector function of the CD8+ T cells. Conclusion This study also provides evidence that MIP induced pro-inflammatory responses including induction of effector function of conventional dendritic cells and CD8+ T cells along with reduction of intratumoral Treg frequency are essentially mediated in a type 1 IFN-dependent pathway.
Collapse
Affiliation(s)
- Gargi Roy
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Anush Chakraborty
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Bharati Swami
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Lalit Pal
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Charvi Ahuja
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Lab, National Institute of Immunology, New Delhi, India
| | - Sangeeta Bhaskar
- Product Development Cell, National Institute of Immunology, New Delhi, India
- *Correspondence: Sangeeta Bhaskar,
| |
Collapse
|
6
|
Lim JS, Kim CR, Shin KS, Park HJ, Yoon TJ. Red Ginseng Extract and γ-Aminobutyric Acid Synergistically Enhance Immunity Against Cancer Cells and Antitumor Metastasis Activity in Mice. J Med Food 2023; 26:27-35. [PMID: 36576794 DOI: 10.1089/jmf.2022.k.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The effects of combined administration of red ginseng (RG) extracts and gamma-aminobutyric acid (GABA) on immunostimulatory activity and tumor metastasis inhibition were investigated in mice. For the immunostimulatory activity, splenocyte proliferation, natural killer (NK) cell activity, including the production of granzyme B (GrB) and interferon gamma (IFN-γ), and serum level of cytokine such as IFN-γ, interleukin (IL)-17, and IL-21 were assessed. Peyer's patch cells obtained from mice administered with RG+GABA were cultured, and the cytokine level in the culture supernatant and bone marrow (BM) cell proliferation activity were examined. The proliferative activity of splenocytes was significantly higher in the RG-GABA treatment group than in RG or GABA alone (P < .05). In the experimental tumor metastasis model, oral administration of RG+GABA showed a higher antitumor metastatic effect compared to that of RG or GABA alone. Oral administration of RG+GABA significantly augmented NK cell-mediated cytotoxicity against YAC-1 tumor cells. In addition, the production of GrB and IFN-γ was stimulated in the culture supernatant of NK cells and YAC-1 cells. Serum concentrations of IFN-γ, IL-17, and IL-21 in mice with RG+GABA were significantly higher compared to the corresponding blood levels in mice administered with RG or GABA alone. The RG+GABA group showed significant BM cell proliferation and increased production of IL-6 and granulocyte-macrophage colony-stimulating factor compared to that in the monotherapy groups. Therefore, RG may have a synergistic effect with GABA for enhancing the host defense system such as BM proliferation and NK cell activity in a tumor metastasis model.
Collapse
Affiliation(s)
- Jung Sik Lim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea
| | - Chae Rim Kim
- Department of Food and Nutrition, Yuhan University, Buchoen, Korea.,DoGenBio Co., Seoul, Korea
| | - Kwang Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Yeongtong-gu, Korea
| | - Hee Jung Park
- Department of Food and Nutrition, Sangmyung University, Seoul, Korea
| | | |
Collapse
|
7
|
Li Z, Wang Q, Huang X, Yang M, Zhou S, Li Z, Fang Z, Tang Y, Chen Q, Hou H, Li L, Fei F, Wang Q, Wu Y, Gong A. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy. Front Nutr 2023; 10:1113739. [PMID: 36875841 PMCID: PMC9978120 DOI: 10.3389/fnut.2023.1113739] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Metabolic reprogramming is one of fourteen hallmarks of tumor cells, among which aerobic glycolysis, often known as the "Warburg effect," is essential to the fast proliferation and aggressive metastasis of tumor cells. Lactate, on the other hand, as a ubiquitous molecule in the tumor microenvironment (TME), is generated primarily by tumor cells undergoing glycolysis. To prevent intracellular acidification, malignant cells often remove lactate along with H+, yet the acidification of TME is inevitable. Not only does the highly concentrated lactate within the TME serve as a substrate to supply energy to the malignant cells, but it also works as a signal to activate multiple pathways that enhance tumor metastasis and invasion, intratumoral angiogenesis, as well as immune escape. In this review, we aim to discuss the latest findings on lactate metabolism in tumor cells, particularly the capacity of extracellular lactate to influence cells in the tumor microenvironment. In addition, we examine current treatment techniques employing existing medications that target and interfere with lactate generation and transport in cancer therapy. New research shows that targeting lactate metabolism, lactate-regulated cells, and lactate action pathways are viable cancer therapy strategies.
Collapse
Affiliation(s)
- Zhangzuo Li
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Mengting Yang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shujing Zhou
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zhengrui Li
- School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhengzou Fang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yidan Tang
- Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Qian Chen
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hanjin Hou
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fei Fei
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiaowei Wang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuqing Wu
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
10
|
Dendritic cell-based cancer immunotherapy in the era of immune checkpoint inhibitors: From bench to bedside. Life Sci 2022; 297:120466. [PMID: 35271882 DOI: 10.1016/j.lfs.2022.120466] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) can present tumoral antigens to T-cells and stimulate T-cell-mediated anti-tumoral immune responses. In addition to uptaking, processing, and presenting tumoral antigens to T-cells, co-stimulatory signals have to be established between DCs with T-cells to develop anti-tumoral immune responses. However, most of the tumor-infiltrated immune cells are immunosuppressive in the tumor microenvironment (TME), paving the way for immune evasion of tumor cells. This immunosuppressive TME has also been implicated in suppressing the DC-mediated anti-tumoral immune responses, as well. Various factors, i.e., immunoregulatory cells, metabolic factors, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules, have been implicated in developing the immunosuppressive TME. Herein, we aimed to review the biology of DCs in developing T-cell-mediated anti-tumoral immune responses, the significance of immunoregulatory cells in the TME, metabolic barriers contributing to DCs dysfunction in the TME, tumor-derived immunosuppressive factors, and inhibitory immune checkpoint molecules in DC-based cell therapy outcomes. With reviewing the ongoing clinical trials, we also proposed a novel therapeutic strategy to increase the efficacy of DC-based cell therapy. Indeed, the combination of DC-based cell therapy with monoclonal antibodies against novel immune checkpoint molecules can be a promising strategy to increase the response rate of patients with cancers.
Collapse
|
11
|
Sheldon H, Bridges E, Silva I, Masiero M, Favara DM, Wang D, Leek R, Snell C, Roxanis I, Kreuzer M, Gileadi U, Buffa FM, Banham A, Harris AL. ADGRL4/ELTD1 Expression in Breast Cancer Cells Induces Vascular Normalization and Immune Suppression. Mol Cancer Res 2021; 19:1957-1969. [PMID: 34348993 PMCID: PMC7611948 DOI: 10.1158/1541-7786.mcr-21-0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/08/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
ELTD1/ADGRL4 expression is increased in the vasculature of a number of tumor types and this correlates with a good prognosis. Expression has also been reported in some tumor cells with high expression correlating with a good prognosis in hepatocellular carcinoma (HCC) and a poor prognosis in glioblastoma. Here we show that 35% of primary human breast tumors stain positively for ELTD1, with 9% having high expression that correlates with improved relapse-free survival. Using immunocompetent, syngeneic mouse breast cancer models we found that tumors expressing recombinant murine Eltd1 grew faster than controls, with an enhanced ability to metastasize and promote systemic immune effects. The Eltd1-expressing tumors had larger and better perfused vessels and tumor-endothelial cell interaction led to the release of proangiogenic and immune-modulating factors. M2-like macrophages increased in the stroma along with expression of programmed death-ligand 1 (PD-L1) on tumor and immune cells, to create an immunosuppressive microenvironment that allowed Eltd1-regulated tumor growth in the presence of an NY-ESO-1-specific immune response. Eltd1-positive tumors also responded better to chemotherapy which could explain the relationship to a good prognosis observed in primary human cases. Thus, ELTD1 expression may enhance delivery of therapeutic antibodies to reverse the immunosuppression and increase response to chemotherapy and radiotherapy in this subset of tumors. ELTD1 may be useful as a selection marker for such therapies. IMPLICATIONS: ELTD1 expression in mouse breast tumors creates an immunosuppressive microenvironment and increases vessel size and perfusion. Its expression may enhance the delivery of therapies targeting the immune system.
Collapse
Affiliation(s)
- Helen Sheldon
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Esther Bridges
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ildefonso Silva
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Massimo Masiero
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - David M Favara
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Dian Wang
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Russell Leek
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Cameron Snell
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Ioannis Roxanis
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Mira Kreuzer
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Uzi Gileadi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Francesca M Buffa
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Alison Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Adrian L Harris
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, United Kingdom.
- Cancer Research UK Molecular Oncology Laboratories, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Sheng W, Liu Y, Chakraborty D, Debo B, Shi Y. Simultaneous Inhibition of LSD1 and TGFβ Enables Eradication of Poorly Immunogenic Tumors with Anti-PD-1 Treatment. Cancer Discov 2021; 11:1970-1981. [PMID: 33687985 DOI: 10.1158/2159-8290.cd-20-0017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 11/25/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
Epigenetic regulators are a class of promising targets in combination with immune checkpoint inhibitors for cancer treatment, but the impact of the broad effects of perturbing epigenetic regulators on tumor immunotherapy remains to be fully explored. Here we show that ablation of the histone demethylase LSD1 in multiple tumor cells induces TGFβ expression, which exerts an inhibitory effect on T-cell immunity through suppressing the cytotoxicity of intratumoral CD8+ T cells and consequently dampens the antitumor effect of LSD1 ablation-induced T-cell infiltration. Importantly, concurrent depletion of LSD1 and TGFβ in combination with PD-1 blockade significantly increases both CD8+ T-cell infiltration and cytotoxicity, leading to eradication of poorly immunogenic tumors and a long-term protection from tumor rechallenge. Thus, combining LSD1 inhibition with blockade of TGFβ and PD-1 may represent a promising triple combination therapy for treating certain refractory tumors. SIGNIFICANCE: Cotargeting LSD1 and TGFβ cooperatively elevates intratumoral CD8+ T-cell infiltration and unleashes their cytotoxicity, leading to tumor eradication upon anti-PD-1 treatment. Our findings illustrate a duality of epigenetic perturbations in immunotherapy and implicate the combination of LSD1 inhibition with dual PD-1/TGFβ blockade in treating certain poorly immunogenic tumors.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Wanqiang Sheng
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Yi Liu
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Damayanti Chakraborty
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brian Debo
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts. .,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
14
|
Wang L, Zhang S, Wang X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol 2021; 10:602416. [PMID: 33489906 PMCID: PMC7817624 DOI: 10.3389/fonc.2020.602416] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common malignancy among women worldwide. Metastasis is mainly responsible for treatment failure and is the cause of most breast cancer deaths. The role of metabolism in the progression and metastasis of breast cancer is gradually being emphasized. However, the regulatory mechanisms that conduce to cancer metastasis by metabolic reprogramming in breast cancer have not been expounded. Breast cancer cells exhibit different metabolic phenotypes depending on their molecular subtypes and metastatic sites. Both intrinsic factors, such as MYC amplification, PIK3CA, and TP53 mutations, and extrinsic factors, such as hypoxia, oxidative stress, and acidosis, contribute to different metabolic reprogramming phenotypes in metastatic breast cancers. Understanding the metabolic mechanisms underlying breast cancer metastasis will provide important clues to develop novel therapeutic approaches for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
15
|
Abd-El-Raouf R, Ouf SA, Gabr MM, Zakaria MM, El-Yasergy KF, Ali-El-Dein B. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming. Sci Rep 2020; 10:18024. [PMID: 33093503 PMCID: PMC7581527 DOI: 10.1038/s41598-020-74390-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bacteria is recognized as opportunistic tumor inhabitant, giving rise to an environmental stress that may alter tumor microenvironment, which directs cancer behavior. In vitro infection of the T24 cell line with E. coli was performed to study the bacterial impact on bladder cancer cells. EMT markers were assessed using immunohistochemistry, western blot and RT-PCR. Stemness characteristics were monitored using RT-PCR. Furthermore, the metabolic reprograming was investigated by detection of ROS and metabolic markers. A significant (p ≤ 0.001) upregulation of vimentin as well as downregulation of CK19 transcription and protein levels was reported. A significant increase (p ≤ 0.001) in the expression level of stemness markers (CD44, NANOG, SOX2 and OCT4) was reported. ROS level was elevated, that led to a significant increase (p ≤ 0.001) in UCP2. This enhanced a significant increase (p ≤ 0.001) in PDK1 to significantly downregulate PDH (p ≤ 0.001) in order to block oxidative phosphorylation in favor of glycolysis. This resulted in a significant decrease (p ≤ 0.001) of AMPK, and a significant elevation (p ≤ 0.001) of MCT1 to export the produced lactate to extracellular matrix. Thus, bacteria may induce alteration to the heterogonous tumor cell population through EMT, CSCs and metabolic reprogramming, which may improve cancer cell ability to migrate and self-renew.
Collapse
Affiliation(s)
- Romaila Abd-El-Raouf
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salama A Ouf
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mahmoud M Gabr
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Zakaria
- Researches Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Khaled F El-Yasergy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bedeir Ali-El-Dein
- Urology Department, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel) 2020; 12:E1047. [PMID: 32340275 PMCID: PMC7226590 DOI: 10.3390/cancers12041047] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Ali Baradaran
- Research & Development Lab, BSD Robotics, 4500 Brisbane, Australia;
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | | | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
17
|
Novik AV, Danilova AB, Sluzhev MI, Nehaeva TL, Larin SS, Girdyuk DV, Protsenko SA, Semenova AI, Danilov AO, Moiseyenko VM, Georgiev GP, Baldueva IA. An Open-Label Study of the Safety and Efficacy of Tag-7 Gene-Modified Tumor Cells-Based Vaccine in Patients with Locally Advanced or Metastatic Malignant Melanoma or Renal Cell Cancer. Oncologist 2020; 25:e1303-e1317. [PMID: 32240562 DOI: 10.1634/theoncologist.2020-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/18/2020] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED This study showed that carefully selected patients with locally advanced and metastatic forms of malignant melanoma and renal cell carcinoma could potentially have long-term disease control with a tag-7 gene-modified tumor cells-based vaccine. Randomized clinical trials in patients whose tumors produce low amounts of immunosuppressive factors are needed to confirm this hypothesis in both the adjuvant and metastatic settings. BACKGROUND Immunotherapy may produce long-lasting effects on survival and toxicity. The magnitude of efficacy may be dependent on immune factors. We analyzed the results of a phase I/II study of a tag-7 gene-modified tumor cells-based vaccine (GMV) in patients with malignant melanoma (MM) or renal cell carcinoma (RCC) with biomarker analysis of immunosuppressive factors (ISFs) production by their tumor cells. METHODS From 2001 to 2014, 80 patients received GMV: 68 with MM and 12 with RCC. Treatment in the metastatic setting included 61 patients (MM, 51; RCC, 10), and treatment in the adjuvant setting (after complete cytoreduction) included 19 patients (MM, 17; RCC, 2). Twenty-six patients were stage III (33%), and 54 (67%) were stage IV. The patients' tumor samples were transferred to culture, transfected with tag-7 gene, and inactivated by radiation. The produced product was injected subcutaneously every 3 weeks until progression or 2 years of therapy. ISFs were measured in the supernatants of the tumor cell cultures and used as predictive factors. RESULTS No major safety issues or grade 5 adverse events (AEs) were seen. One grade 4 and two grade 3 AEs were registered. No AEs were registered in 89.4% of treatment cycles. No delayed AE was found. The 5-year overall survival (OS) in the intention-to-treat population was 25.1%. There were no differences between MM OS and RCC OS (log rank, p = .44). Median OS in the metastatic setting was 0.7 years and in the adjuvant setting was 3.1 years. Classification trees were built on the basis of ISF production (Fig. 1). The median OS was 6.6 years in the favorable prognosis (FP) group (major histocompatibility complex class I polypeptide-related sequence A [MICA] level ≤582 pg/mL, n = 15) and 4.6 months in the unfavorable (UF) group (MICA level >582 pg/mL, n = 12; p < .0001). No significant differences were found between classification trees based on ISFs (transforming growth factor β1 [TGF-β1], interleukin-10 [IL-10], and vascular endothelial growth factor [VEGF]). In patients with stage III-IV MM with FP, median OS was 2.3 years, with 31% patients alive at 10 years (Fig. 2) in the UF group (0.4 years; log rank, p = 1.94E-5). No FP patients received modern immunotherapy. CONCLUSION GMV showed high results in carefully selected patients with low ISF (TGF-β1, IL-10, and VEGF) production. The method should be further investigated in patients with FP.
Collapse
Affiliation(s)
- Aleksei Viktorovich Novik
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
- Department of Oncology, Child Oncology and Ray Therapy, St. Petersburg State Pediatric Medical University, St. Petersburg, Russian Federation
| | - Anna Borisovna Danilova
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| | - Maksim Ivanovich Sluzhev
- Department of Oncology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation
| | - Tatiana Leonidovna Nehaeva
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| | - Sergei Sergeevich Larin
- Laboratory of Gene Therapy, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry Viktorovich Girdyuk
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| | - Svetlana Anatolevna Protsenko
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| | - Anna Igorevna Semenova
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
- Department of Chemotherapy and Innovative Technologies, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| | - Aleksei Olegovich Danilov
- Laboratory of Clinical Diagnostic, Clinical and Research Center of Specialized Types of Medical Care (Oncological), St. Petersburg, Russian Federation
| | | | | | - Irina Aleksandrovna Baldueva
- Department of Oncoimmunology, N.N. Petrov National Medical Research Center of Oncology, St. Petersburg, Russian Federation
| |
Collapse
|
18
|
Kumar A, Chamoto K, Chowdhury PS, Honjo T. Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy. eLife 2020; 9:52330. [PMID: 32122466 PMCID: PMC7105382 DOI: 10.7554/elife.52330] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
PD-1 blockade therapy has revolutionized cancer treatments. However, a substantial population of patients is unresponsive. To rescue unresponsive patients, the mechanism of unresponsiveness to PD-1 blockade therapy must be elucidated. Using a ‘bilateral tumor model’ where responsive and unresponsive tumors were inoculated into different sides of the mouse belly, we demonstrated that unresponsive tumors can be categorized into two groups: with and without systemic immunosuppressive property (SIP). The SIP-positive tumors released uncharacterized, non-proteinaceous small molecules that inhibited mitochondrial activation and T cell proliferation. By contrast, the SIP-negative B16 tumor escaped from immunity by losing MHC class I expression. Unresponsiveness of SIP-positive tumors was partially overcome by improving the mitochondrial function with a mitochondrial activator; this was not successful for B16, which employs immune ignorance. These results demonstrated that the ‘bilateral tumor model’ was useful for stratifying tumors to investigate the mechanism of unresponsiveness and develop a strategy for proper combination therapy. Immunotherapy is a fast-emerging treatment area that turns the body’s own immune system against cancer. One powerful group of treatments are the PD-1 blockers. PD-1 is an inducible protein that is sometimes found on healthy immune cells called T cells and normally acts to stop T cells mistakenly attacking healthy cells. However, it can also prevent T cells attacking cancer. This happens when cancer cells make a protein called PD-1 ligand, which interacts with PD-1 to switch off nearby T cells. Antibodies that block PD-1 or PD-1 ligand can reactivate T cells, allowing them to destroy the cancer, but this PD-1 blocking therapy currently works in less than half of all patients who receive the treatment. To mount a successful defense against cancer, a T cell needs to be able to perform two key tasks: recognize cancer cells and prepare to attack. T cells are alerted to the presence of the disease by MHC class I proteins on the surface of cancer cells holding up small fragments of molecules that are tell-tale sign that the cell is cancerous. To prepare to attack, a T cell depends on its mitochondria – the powerhouses of the cell – to send a cascade of signals inside the T cell that help it to activate and multiply. It is possible that cancer cells escape PD-1 blocking treatments by interfering with either one of these two tasks. They may either hide their MHC class I proteins to become invisible to passing T cells – a phenomenon known as “local immune ignorance”; or they may release long-range molecules to stop T cells preparing to attack – “systemic immune suppression”. To explore these options further, Kumar, Chamoto et al. developed a new tumor model in mice. Each mouse had two tumors, one that responded to PD-1 blocking treatment and one that did not. The idea was that, if the unresponsive tumor was simply hiding from passing T cells, its presence should not affect the other tumor. But, if it was releasing molecules to block T-cell activation, the other tumor could become unresponsive to PD-1 blocking treatment too. Kumar, Chamoto et al. examined different types of unresponsive tumor in this model system and found that they fell into two groups. The first group simply hid themselves from nearby T cells, while the second group released molecules to dampen all T cells. The identity of these molecules is unknown, but further experiments suggested that they likely work by blocking the mitochondria in T cells. In mice with these tumors, drugs that boosted mitochondria activity made anti-PD-1 treatment more effective. If the findings in this mouse model parallel those in humans, it could open a new research area for immunotherapy. The next step is for researchers need to identify the molecule responsible for systemic immune suppression. This could help to make PD-1 blocking treatments more effective in people who do not currently respond.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Partha S Chowdhury
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Wang Y, Huang H, Yao S, Li G, Xu C, Ye Y, Gui S. A lipid-soluble extract of Pinellia pedatisecta Schott enhances antitumor T cell responses by restoring tumor-associated dendritic cell activation and maturation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111980. [PMID: 31146000 DOI: 10.1016/j.jep.2019.111980] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/22/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia pedatisecta Schott (PPS)is a traditional Chinese medicine functioning as reducing swelling and drying dampness. Pinellia pedatisecta Schott extract (PE) has been confirmed to suppress cervical tumor growth and modulate the antitumor CD4+T helper immunity towards Th1. AIMS To explore the roles of PE in modulating tumor-associated dendritic cell (TADC) activation and function. METHODS For in vivo studies, HPV+TC-1 mouse tumor models were conducted and treated with PE for 3 weeks (10 mg/kg/d or 20 mg/kg/day). The immune profiles of spleen, tumor-draining lymph nodes (TDLNs), tumor and serum were analyzed by flow cytometry and multiplexed bead-based immunoassay. For in vitro studies, TADCs were generated by tumor-conditioned medium and treated with PE solution. The maturation and function of TADCs were evaluated by flow cytometry, ELISA, mixed lymphocyte reaction (MLR) and cytotoxic T lymphocyte (CTL) assay. Furthermore, the effect of PE on SOCS1 pathway was examined by western blotting and real time PCR. RESULTS PE upregulated the expression of major histocompatibility complex class II (MHCII) and costimulatory molecules CD80 and CD86 on TADCs and promoted IL-12 secretion from TADCs. In addition, PE-treated TADCs promoted the proliferation of CD4+ and CD8+ T cells and induced the differentiation of IFN-γ+CD4+ and GZMB+CD8+ T cells. PE-treated TADCs also elicited a more powerful antigen-specific cytotoxic T lymphocyte (CTL) response. Furthermore, PE treatment in vivo enhanced the proliferation, activated the functional ability (increased Ki67, CD137, GZMB or IFN-γ, TNF-α expression) and reversed the exhaustion (impaired CD95 or PD-1 expression) of antitumor T cells. Mechanistically, PE inhibited SOCS1-restrained JAK2 activation in TADCs. CONCLUSIONS PE efficiently restored the immature status of TADCs and enhanced their function as antigen-presenting cells to further elicit antitumor Th1 and CTL responses, suggesting that PE may be a potential immunomodulatory drug for cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Haixia Huang
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guiling Li
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China.
| | - Congjian Xu
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suiqi Gui
- Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, China
| |
Collapse
|
20
|
BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response. Cancer Lett 2019; 465:45-58. [PMID: 31473251 DOI: 10.1016/j.canlet.2019.08.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic strategies aiming to leverage anti-tumor immunity are being intensively investigated as they show promising results in cancer therapy. The PD-1/PD-L1 pathway constitutes an important target to restore functional anti-tumor immune response. Here, we report that BET protein inhibition suppresses PD-1/PD-L1 in triple-negative breast cancer. BET proteins control PD-1 expression in T cells, and PD-L1 in breast cancer cell models. BET protein targeting reduces T cell-derived interferon-γ production and signaling, thereby suppressing PD-L1 induction in breast cancer cells. Moreover, BET protein inhibition improves tumor cell-specific T cell cytotoxic function. Overall, we demonstrate that BET protein targeting represents a promising strategy to overcome tumor-reactive T cell exhaustion and improve anti-tumor immune responses, by reducing the PD-1/PD-L1 axis in triple-negative breast cancer.
Collapse
|
21
|
Porta C, Marino A, Consonni FM, Bleve A, Mola S, Storto M, Riboldi E, Sica A. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis 2019; 39:1095-1104. [PMID: 29982315 DOI: 10.1093/carcin/bgy088] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
New evidences indicate that the metabolic instruction of immunity (immune metabolism) results from the integration of cell metabolism and whole-body metabolism, which are both influenced by nutrition, microbiome metabolites and disease-driven metabolism (e.g. cancer metabolism). Cancer metabolism influences the immunological homeostasis and promotes immune alterations that support disease progression, hence influencing the clinical outcome. Cancer cells display increased glucose uptake and fermentation of glucose to lactate, even in the presence of completely functioning mitochondria. A major side effect of this event is immunosuppression, characterized by limited immunogenicity of cancer cells and restriction of the therapeutic efficacy of anticancer immunotherapy. Here, we discuss how the metabolism of myeloid cells associated with cancer contributes to the differentiation of their suppressive phenotype and therefore to cancer immune evasion.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | | | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Mariangela Storto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
22
|
Moresco MA, Raccosta L, Corna G, Maggioni D, Soncini M, Bicciato S, Doglioni C, Russo V. Enzymatic Inactivation of Oxysterols in Breast Tumor Cells Constraints Metastasis Formation by Reprogramming the Metastatic Lung Microenvironment. Front Immunol 2018; 9:2251. [PMID: 30333826 PMCID: PMC6176086 DOI: 10.3389/fimmu.2018.02251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023] Open
Abstract
Recent evidence indicates that immune cells contribute to the formation of tumor metastases by regulating the pre-metastatic niche. Whether tumor-derived factors involved in primary tumor formation play a role in metastasis formation is poorly characterized. Oxysterols act as endogenous regulators of lipid metabolism through the interaction with the nuclear Liver X Receptors-(LXR)α and LXRβ. In the context of tumor development, they establish a pro-tumor environment by dampening antitumor immune responses, and by recruiting pro-angiogenic and immunosuppressive neutrophils. However, the ability of LXR/oxysterol axis to promote tumor invasion and metastasis by exploiting immune cells, is still up to debate. In this study we provide evidence that oxysterols participate in the primary growth of orthotopically implanted 4T1 breast tumors by establishing a tumor-promoting microenvironment. Furthermore, we show that oxysterols are involved in the metastatic spread of 4T1 breast tumors, since their enzymatic inactivation mediated by the sulfotransferase 2B1b, reduces the number of metastatic cells in the lungs of tumor-bearing mice. Finally, we provide evidence that oxysterols support the metastatic cascade by modifying the lung metastatic niche, particularly allowing the recruitment of tumor-promoting neutrophils. These results identify a possible new metastatic pathway to target in order to prevent metastasis formation in breast cancer patients.
Collapse
Affiliation(s)
- Marta A Moresco
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Laura Raccosta
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Gianfranca Corna
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Daniela Maggioni
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Matias Soncini
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Claudio Doglioni
- Università Vita-Salute San Raffaele, Milan, Italy.,Department of Pathology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|