1
|
Shi Y, Zhang J, Li Y, Feng C, Shao C, Shi Y, Fang J. Engineered mesenchymal stem/stromal cells against cancer. Cell Death Dis 2025; 16:113. [PMID: 39971901 PMCID: PMC11839947 DOI: 10.1038/s41419-025-07443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/03/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Mesenchymal stem/stromal cells (MSCs) have garnered attention for their potential in cancer therapy due to their ability to home to tumor sites. Engineered MSCs have been developed to deliver therapeutic proteins, microRNAs, prodrugs, chemotherapy drugs, and oncolytic viruses directly to the tumor microenvironment, with the goal of enhancing therapeutic efficacy while minimizing off-target effects. Despite promising results in preclinical studies and clinical trials, challenges such as variability in delivery efficiency and safety concerns persist. Ongoing research aims to optimize MSC-based cancer eradication and immunotherapy, enhancing their specificity and efficacy in cancer treatment. This review focuses on advancements in engineering MSCs for tumor-targeted therapy.
Collapse
Affiliation(s)
- Yuzhu Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Zhang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yanan Li
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200025, China.
| | - Jiankai Fang
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
2
|
Zhang Z, Wang J, Li H, Niu Q, Tao Y, Zhao X, Zeng Z, Dong H. The role of the interleukin family in liver fibrosis. Front Immunol 2025; 16:1497095. [PMID: 39995661 PMCID: PMC11847652 DOI: 10.3389/fimmu.2025.1497095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis represents a wound-healing response to chronic liver injury caused by viral infections, alcohol, and chemicals agents. It is a critical step in the progression from chronic liver disease to cirrhosis and hepatocellular carcinoma. No chemical or biological drugs have been approved for the treatment of liver fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol alpha-interferon can lead to recovery in some patients with hepatitis B liver fibrosis, However, some patients with liver fibrosis do not show improvement, even after achieving a complete serologic and virologic response. A similar situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with its unique anatomical and immunological structure, is the largest immune organ and produces a large number of cytokines in response to external stimuli, which are crucial for the progression of liver fibrosis. cytokines can act either by directly affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target cells. Among these, the interleukin family activates a complex cascade of responses, including cytokines, chemokines, adhesion molecules, and lipid mediators, playing a key role in the initiation and regulation of inflammation, as well as innate and adaptive immunity. In this paper, we systematically summarize recent literature to elucidate the pathogenesis of interleukin-mediated liver fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zixin Zhang
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Tao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijian Dong
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Shi S, Ye L, Jin K, Yu X, Guo D, Wu W. The complement C3a/C3aR pathway is associated with treatment resistance to gemcitabine-based neoadjuvant therapy in pancreatic cancer. Comput Struct Biotechnol J 2024; 23:3634-3650. [PMID: 39469671 PMCID: PMC11513484 DOI: 10.1016/j.csbj.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Gemcitabine is a standard first-line drug for pancreatic cancer chemotherapy. Nevertheless, gemcitabine resistance is common and significantly limits its therapeutic efficacy, impeding advancements in pancreatic cancer treatment. In this study, through a comprehensive analysis of gemcitabine-resistant cell lines and patient samples, 39 gemcitabine resistance-associated risk genes were identified, and two distinct gemcitabine response-related phenotypes were delineated. Through a combination of bioinformatics analysis and in vivo and in vitro experiments, we identified the C3a/C3aR signaling pathway as a pivotal player in the development of gemcitabine resistance in pancreatic cancer. We found that activation of the C3a/C3aR signaling pathway promoted the proliferation, migration and gemcitabine resistance of pancreatic cancer cells, while the C3aR antagonist SB290157 effectively counteracted these effects by impeding the activation of the C3a/C3aR pathway. Our study reveals the fundamental role of complement C3a in the progression of pancreatic cancer, suggesting that complement C3a may serve as a promising biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Yan H, Wang P, Zhou Q, Dong X, Wang Q, Yuan Z, Zhai B, Zhou Y. Eupafolin hinders cross-talk between gastric cancer cells and cancer-associated fibroblasts by abrogating the IL18/IL18RAP signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155984. [PMID: 39265444 DOI: 10.1016/j.phymed.2024.155984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 08/25/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are involved in the progression of gastric cancer (GC) as a critical component of the tumor microenvironment (TME), yet specific interventions remain limited. Natural products hold a promising application prospect in the field of anti-tumor in view of their high activity and ease of binding with biological macromolecules. However, the role of natural products in modulating the cross-talk between CAFs and GC cells has not been fully investigated. PURPOSE The aim of this study was to identify a potential therapeutic target in CAFs and then screen for natural small molecule drugs with anti-tumor activity against this target. METHODS Integrating bioinformatics analysis of public databases and experimental validation of human samples and cell lines to identify a candidate target in CAFs. Molecular docking and biolayer interferometry technique were utilized for screening potential natural small molecule drugs. The efficacy and underlying mechanisms of the candidates were explored in vitro and in vivo through techniques such as lentiviral infection, cell spheroids culture, immunoprecipitation and cells-derived xenografts. RESULTS IL18 receptor accessory protein (IL18RAP) was found to be overexpressed in CAFs derived from GC tissues and facilitated the protumor function of CAFs on GC. Based on virtual screening and experimental validation, we identified a natural product, eupafolin, that interfered with IL18 signaling. Phenotyping studies confirmed that the proliferation, spheroids formation and tumorigenesis of GC cells facilitated by CAFs were greatly attenuated by eupafolin both in vitro and in vivo. Mechanistically, eupafolin impeded the formation of IL18 receptor (IL18R) complex by directly binding to IL18RAP, thus blocking IL18-mediated nuclear factor kappa B (NF-κB) activation and reduced the synthesis and secretion of IL6 in CAFs. As a consequence, it inactivated signal transducer and activator of transcription 3 (STAT3) in GC cells. CONCLUSION This study provides new evidence that IL18 signaling regulates the cross-talk between GC cells and CAFs. And it highlights a novel pharmacological role of eupafolin in inhibiting IL18 signaling, thereby curbing the development of GC via modulating CAFs.
Collapse
Affiliation(s)
- Hui Yan
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Penggao Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiangyang Dong
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qionglin Wang
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Bo Zhai
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Yang Zhou
- Henan Provincial Clinical Research Center for Pediatric Diseases, Henan Key Laboratory of Pediatric Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China; Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Ji H, Lan Y, Xing P, Wang Z, Zhong X, Tang W, Wei Q, Chen H, Liu B, Guo H. IL-18, a therapeutic target for immunotherapy boosting, promotes temozolomide chemoresistance via the PI3K/AKT pathway in glioma. J Transl Med 2024; 22:951. [PMID: 39434175 PMCID: PMC11492732 DOI: 10.1186/s12967-024-05755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Interleukin-18, a member of the interleukin - 1 family of cytokines, is upregulated in glioma. However, its effects on glioma remain unclear. This study aimed to explore the role and underlying mechanisms of interleukin-18 expression in glioma. Here, we demonstrated that interleukin-18 enhanced resistance to temozolomide by increasing proliferation and inhibiting apoptosis in cultured glioma cells. Further in vivo studies revealed that interleukin-18 promoted temozolomide resistance in BALB/c nude mice bearing tumor. Mechanical exploration indicated that interleukin-18 stimulation could activate the PI3K/AKT signaling pathway in glioma cells, and PI3K inhibition could reduce the temozolomide resistance promoted by interleukin-18. We found that interleukin-18 upregulated CD274 expression in glioma, revealing its potential effects on the microenvironment. Furthermore, we established a tumor xenograft model and explored the therapeutic efficacy of anti-interleukin-18 monoclonal antibody. Targeting interleukin-18 prolonged survival and attenuated CD274 expression in the mice bearing tumor. Combined treatment with anti-interleukin-18 and anti-PD-1 monoclonal antibody showed better efficacy in suppressing tumor growth than either treatment alone in mice bearing tumor. Collectively, these data present that interleukin-18 promotes temozolomide chemoresistance in glioma cells via PI3K/Akt activation and establishes an immunosuppressive milieu by modulating CD274. This study highlights the therapeutic value of interleukin-18 in glioma.
Collapse
Affiliation(s)
- Huangyi Ji
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Pengpeng Xing
- ZhiXin High School, No. 152, ZhiXin South Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenhui Tang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hongbin Chen
- The Second Clinical School, Southern Medical University, Guangzhou, 510515, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-Oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
6
|
Yang Y, Chen Q, Zhong W. The role of cytokines in the pathogenesis of SAPHO syndrome. Front Immunol 2024; 15:1427784. [PMID: 39286247 PMCID: PMC11402674 DOI: 10.3389/fimmu.2024.1427784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/09/2024] [Indexed: 09/19/2024] Open
Abstract
SAPHO syndrome is a complex inflammatory disorder affecting the skin and bones, characterized by osteomyelitis, acne, and pustulosis. Cytokines play a pivotal role in the pathogenesis of SAPHO syndrome, especially in inflammatory responses and immune regulation. This article reviews the cytokines involved in the pathogenesis of SAPHO syndrome, such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-6, IL-10, and transforming growth factor-β (TGF-β), and discusses their potential as intervention points for treatment. These findings elucidate the intricate immune regulatory network of SAPHO syndrome and provide a theoretical foundation for the development of new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qianzhu Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Weiyang Zhong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Zhang Z, Wang J, Teng M, Yan X, Liu Q. The role of serum interleukins in Cancer: A Multi-center Mendelian Randomization study. Int Immunopharmacol 2024; 137:112520. [PMID: 38901247 DOI: 10.1016/j.intimp.2024.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The occurrence of cancer is often accompanied by immune evasion and tumor-promoting inflammation, with interleukins (IL) playing a pivotal role in the immune-inflammatory mechanism. However, the precise contribution of serum interleukins in cancer remains elusive. We obtained GWAS summary data for 35 interleukins from eight independent large-scale serum proteome studies of European ancestry populations and for 23 common cancers from the FinnGen Consortium. We then conducted a multicenter Mendelian Randomization (MR) study to explore the relationship between systemic inflammatory status and cancers. 24 causal associations between interleukins and cancers were supported by multicenter data, 18 of which were reported for the first time. Our results indicated that IL-1α (Hodgkin lymphoma), IL-5 (bladder cancer), IL-7 (prostate cancer), IL-11 (bone malignant tumor), IL-16 (lung cancer), IL-17A (pancreatic cancer), IL-20 (bladder cancer), IL-22 (lymphocytic leukemia), IL-34 (breast cancer), IL-36β (prostate cancer), and IL-36γ (liver cancer) were risk factors for related cancers. Conversely, IL-9 (malignant neoplasms of the corpus uteri), IL-17C (liver cancer), and IL-31 (colorectal cancer, bladder cancer, pancreatic cancer, and cutaneous melanoma) exhibited protective effects against related cancers. Notably, the dual effects of serum interleukins were also observed. IL-18 acted as a risk factor for prostate cancer, however, was a protective factor against laryngeal cancer. Similarly, IL-19 promoted the development of lung cancer and myeloid leukemia, while conferring protection against Breast, cervical, and thyroid cancers. Our study confirmed the genetic association between multiple serum interleukins and cancers. Immune and anti-inflammatory strategies targeting these associations provide opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Menghao Teng
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xinyang Yan
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
8
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Mo S, Wu W, Luo K, Huang C, Wang Y, Qin H, Cai H. Identification and analysis of chemokine-related and NETosis-related genes in acute pancreatitis to develop a predictive model. Front Genet 2024; 15:1389936. [PMID: 38784040 PMCID: PMC11112067 DOI: 10.3389/fgene.2024.1389936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Background: Chemokines and NETosis are significant contributors to the inflammatory response, yet there still needs to be a more comprehensive understanding regarding the specific molecular characteristics and interactions of NETosis and chemokines in the context of acute pancreatitis (AP) and severe AP (SAP). Methods: To address this gap, the mRNA expression profile dataset GSE194331 was utilized for analysis, comprising 87 AP samples (77 non-SAP and 10 SAP) and 32 healthy control samples. Enrichment analyses were conducted for differentially expressed chemokine-related genes (DECRGs) and NETosis-related genes (DENRGs). Three machine-learning algorithms were used for the identification of signature genes, which were subsequently utilized in the development and validation of nomogram diagnostic models for the prediction of AP and SAP. Furthermore, single-gene Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) were performed. Lastly, an interaction network for the identified signature genes was constructed. Results: We identified 12 DECRGs and 7 DENRGs, and enrichment analyses indicated they were primarily enriched in cytokine-cytokine receptor interaction, chemokine signaling pathway, TNF signaling pathway, and T cell receptor signaling pathway. Moreover, these machine learning algorithms finally recognized three signature genes (S100A8, AIF1, and IL18). Utilizing the identified signature genes, we developed nomogram models with high predictive accuracy for AP and differentiation of SAP from non-SAP, as demonstrated by area under the curve (AUC) values of 0.968 (95% CI 0.937-0.990) and 0.862 (95% CI 0.742-0.955), respectively, in receiver operating characteristic (ROC) curve analysis. Subsequent single-gene GESA and GSVA indicated a significant positive correlation between these signature genes and the proteasome complex. At the same time, a negative association was observed with the Th1 and Th2 cell differentiation signaling pathways. Conclusion: We have identified three genes (S100A8, AIF1, and IL18) related to chemokines and NETosis, and have developed accurate diagnostic models that might provide a novel method for diagnosing AP and differentiating between severe and non-severe cases.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Kai Luo
- Department of Critical Care Medicine, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Cheng Huang
- Oncology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Heping Qin
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaiyang Cai
- Gastroenterology Department, Liuzhou People’s Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| |
Collapse
|
10
|
Ortega MA, Jiménez-Álvarez L, Fraile-Martinez O, Garcia-Montero C, Guijarro LG, Pekarek L, Barrena-Blázquez S, Asúnsolo Á, López-González L, Toledo-Lobo MDV, Álvarez-Mon M, Saez MA, Gutiérrez-Calvo A, Díaz-Pedrero R. Prognostic Value of Histone Acetyl Transferase 1 (HAT-1) and Inflammatory Signatures in Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:3839-3865. [PMID: 38785507 PMCID: PMC11119917 DOI: 10.3390/cimb46050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan-Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC's pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, University of New York, New York, NY 10012, USA
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Cell Biology, Department of Biomedicine and Biotechnology, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Madrid, Spain
| | - Alberto Gutiérrez-Calvo
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| |
Collapse
|
11
|
Yang Q, Yang G, Wu Y, Zhang L, Song Z, Yang D. Bioinformatics analysis and validation of genes related to paclitaxel's anti-breast cancer effect through immunogenic cell death. Heliyon 2024; 10:e28409. [PMID: 38560098 PMCID: PMC10979210 DOI: 10.1016/j.heliyon.2024.e28409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Research indicated that Paclitaxel (PTX) can induce immunogenic cell death (ICD) through immunogenic modulation. However, the combination of PTX and ICD has not been extensively studied in breast cancer (BRCA). The TCGA-BRCA and GSE20685 datasets were enrolled in this study. Samples from the TCGA-BRCA dataset were consistently clustered based on selected immunogenic cell death-related genes (ICD-RGs). Next, candidate genes were obtained by overlapping differentially expressed genes (DEGs) between BRCA and normal groups, intersecting genes common to DEGs between cluster1 and cluster2 and hub module genes, and target genes of PTX from five databases. The univariate Cox algorithm and the least absolute shrinkage and selection operator (LASSO) were performed to obtain biomarkers and build a risk model. Following observing the immune microenvironment in differential risk subgroups, single-gene gene set enrichment analysis (GSEA) was carried out in all biomarkers. Finally, the expression of biomarkers was analyzed. Enrichment analysis showed that 626 intersecting genes were linked with inflammatory response. Further five biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified and a risk model was built. The model's performance was validated using GSE20685 dataset. Furthermore, the biomarkers were enriched with adaptive immune response. Lastly, the experimental results indicated that the alterations in IL18, SH2D2A, and CHI3L1 expression after treatment matched those in the public database. In this study, Five PTX-ICD-related biomarkers (CHI3L1, IL18, PAPLN, SH2D2A, and UBE2L6) were identified to aid in predicting BRCA treatment outcomes.
Collapse
Affiliation(s)
- Qianmei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Guimei Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
- Yunnan College of Modern Biomedical Industry, Kunming, Yunnan, 650500, PR China
| | - Yi Wu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Lun Zhang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Zhuoyang Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, PR China
| | - Dan Yang
- School of Pharmaceutical Science & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| |
Collapse
|
12
|
Poulsen VV, Hadi A, Werge MP, Karstensen JG, Novovic S. Circulating Biomarkers Involved in the Development of and Progression to Chronic Pancreatitis-A Literature Review. Biomolecules 2024; 14:239. [PMID: 38397476 PMCID: PMC10887223 DOI: 10.3390/biom14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic pancreatitis (CP) is the end-stage of continuous inflammation and fibrosis in the pancreas evolving from acute- to recurrent acute-, early, and, finally, end-stage CP. Currently, prevention is the only way to reduce disease burden. In this setting, early detection is of great importance. Due to the anatomy and risks associated with direct sampling from pancreatic tissue, most of our information on the human pancreas arises from circulating biomarkers thought to be involved in pancreatic pathophysiology or injury. The present review provides the status of circulating biomarkers involved in the development of and progression to CP.
Collapse
Affiliation(s)
- Valborg Vang Poulsen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Amer Hadi
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - Mikkel Parsberg Werge
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
| | - John Gásdal Karstensen
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| | - Srdan Novovic
- Pancreatitis Center East, Gastrounit, Copenhagen University Hospital—Amager and Hvidovre, 2000 Copenhagen, Denmark; (V.V.P.); (A.H.); (M.P.W.); (J.G.K.)
- Department of Clinical Medicine, University of Copenhagen, 2000 Copenhagen, Denmark
| |
Collapse
|
13
|
Yu C, Xu J, Xu S, Tang L, Han Q, Zeng X, Huang Y, Yu T, Sun Z. Exploring genetic associations of Crohn's disease and ulcerative colitis with extraintestinal cancers in European and East Asian populations. Front Immunol 2024; 15:1339207. [PMID: 38404590 PMCID: PMC10885353 DOI: 10.3389/fimmu.2024.1339207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Background Previous studies have reported associations of Crohn's disease (CD) and ulcerative colitis (UC) with the risks of extraintestinal cancers, but the causality remains unclear. Methods Using genetic variations robustly associated with CD and UC extracted from genome-wide association studies (GWAS) as instrumental variables. Nine types of extraintestinal cancers of European and Asian populations were selected as outcomes. We used the inverse variance weighted method as the primary approach for two-sample Mendelian randomization analysis. Sensitivity analyses were carried out to evaluate the reliability of our findings. Results In the European population, we found that CD showed a potential causal relationship with pancreatic cancer (OR: 1.1042; 95% CI: 1.0087-1.2088; P=0.0318). Meanwhile, both CD (outliers excluded: OR: 1.0208; 95% CI: 1.0079-1.0339; P=0.0015) and UC (outliers excluded: OR: 1.0220; 95% CI: 1.0051-1.0393; P=0.0108) were associated with a slight increase in breast cancer risk. Additionally, UC exhibited a potential causal effect on cervical cancer (outliers excluded: OR: 1.1091; 95% CI: 1.0286-1.1960; P=0.0071). In the East Asian population, CD had significant causal effects on pancreatic cancer (OR: 1.1876; 95% CI: 1.0741-1.3132; P=0.0008) and breast cancer (outliers excluded: OR: 0.9452; 95% CI: 0.9096-0.9822; P=0.0040). For UC, it exhibited significant causal associations with gastric cancer (OR: 1.1240; 95% CI: 1.0624-1.1891; P=4.7359×10-5), bile duct cancer (OR: 1.3107; 95% CI: 1.0983-1.5641; P=0.0027), hepatocellular carcinoma (OR: 1.2365; 95% CI: 1.1235-1.3608; P=1.4007×10-5) and cervical cancer (OR: 1.3941; 95% CI: 1.1708-1.6599; P=0.0002), as well as a potential causal effect on lung cancer (outliers excluded: OR: 1.1313; 95% CI: 1.0280-1.2449; P=0.0116). Conclusions Our study provided evidence that genetically predicted CD may be a risk factor for pancreatic and breast cancers in the European population, and for pancreatic cancer in the East Asian population. Regarding UC, it may be a risk factor for cervical and breast cancers in Europeans, and for gastric, bile duct, hepatocellular, lung, and cervical cancers in East Asians. Therefore, patients with CD and UC need to emphasize screening and prevention of site-specific extraintestinal cancers.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Siyi Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lei Tang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinyuan Han
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tenghua Yu
- Department of breast surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Zhengkui Sun
- Department of breast surgery, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
14
|
Wu ZZ, Wei YJ, Li T, Zheng J, Liu YF, Han M. Identification and validation of a new prognostic signature based on cancer-associated fibroblast-driven genes in breast cancer. World J Clin Cases 2024; 12:700-720. [PMID: 38322675 PMCID: PMC10841133 DOI: 10.12998/wjcc.v12.i4.700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Breast cancer (BC), a leading malignant disease, affects women all over the world. Cancer associated fibroblasts (CAFs) stimulate epithelial-mesenchymal transition, and induce chemoresistance and immunosuppression. AIM To establish a CAFs-associated prognostic signature to improve BC patient outcome estimation. METHODS We retrieved the transcript profile and clinical data of 1072 BC samples from The Cancer Genome Atlas (TCGA) databases, and 3661 BC samples from the The Gene Expression Omnibus. CAFs and immune cell infiltrations were quantified using CIBERSORT algorithm. CAF-associated gene identification was done by weighted gene co-expression network analysis. A CAF risk signature was established via univariate, least absolute shrinkage and selection operator regression, and multivariate Cox regression analyses. The receiver operating characteristic (ROC) and Kaplan-Meier curves were employed to evaluate the predictability of the model. Subsequently, a nomogram was developed with the risk score and patient clinical signature. Using Spearman's correlations analysis, the relationship between CAF risk score and gene set enrichment scores were examined. Patient samples were collected to validate gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Employing an 8-gene (IL18, MYD88, GLIPR1, TNN, BHLHE41, DNAJB5, FKBP14, and XG) signature, we attempted to estimate BC patient prognosis. Based on our analysis, high-risk patients exhibited worse outcomes than low-risk patients. Multivariate analysis revealed the risk score as an independent indicator of BC patient prognosis. ROC analysis exhibited satisfactory nomogram predictability. The area under the curve showed 0.805 at 3 years, and 0.801 at 5 years in the TCGA cohort. We also demonstrated that a reduced CAF risk score was strongly associated with enhanced chemotherapeutic outcomes. CAF risk score was significantly correlated with most hallmark gene sets. Finally, the prognostic signature were further validated by qRT-PCR. CONCLUSION We introduced a newly-discovered CAFs-associated gene signature, which can be employed to estimate BC patient outcomes conveniently and accurately.
Collapse
Affiliation(s)
- Zi-Zheng Wu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
| | - Yuan-Jun Wei
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
- Department of General Surgery, Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao 066000, Hebei Province, China
| | - Tong Li
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
- Breast Disease Diagnosis and Treatment Center, Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Jie Zheng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
| | - Yin-Feng Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao 066000, Hebei Province, China
- Department of General Surgery, Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao 066000, Hebei Province, China
| |
Collapse
|
15
|
Idiz UO, Aru B, Kaya C, Peker KD, Tatar C, Guler M, Tunay A, Demirel GY, Gurol AO. Could we use PD-1 and PD-L1 expression on lymphocytes and monocytes as predictive markers for prognosis of acute biliary pancreatitis? Immunol Lett 2024; 265:37-43. [PMID: 38199503 DOI: 10.1016/j.imlet.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE This study aimed to assess the significance of immunophenotyping and serum cytokines in predicting the clinical progression of acute biliary pancreatitis (ABP). MATERIALS AND METHODS Cytokine levels, T-helper, cytotoxic T, natural killer (NK) cells, monocytes, HLA-DR, and PD-1, as well as PDL-1 immune checkpoints, were measured in ABP patients at the time of diagnosis and compared with results from healthy volunteers. The study also compared leukocyte counts, hematocrit, immunophenotyping results, cytokine statuses, and PD-1, PDL-1 expression between healthy volunteers and ABP subgroups categorized by pancreatitis severity. RESULTS The study included 65 ABP patients and 20 healthy volunteers. Significant differences were observed between groups in hematocrit, leukocyte counts, total monocytes, lymphocytes, CD3+ total T cells, CD4+ Th cells, PD-1 expression on CD4+ and CD8+T lymphocytes, HLA-DR expression on CD14+ monocytes, NK cells, PD-L1 expression on CD14+ monocytes, classical and intermediate monocytes, as well as levels of IL-6, IL-8, IL-10, IL-18, and IL-33 cytokines. Moderate correlations were found with lymphocyte counts, PD-1+CD4+ cells, PD-L1+CD14+ cells, and strong correlations with HLA-DR+CD14+ cells. Hematocrit, CD3+ total T cells, NK cells, CD4+PD-1 + T cells, and CD8+PD-1 + T cells showed independent associations with the severity of ABP. Lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, CD4+PD-1 + T cells, classical, and intermediate monocytes exhibited the highest Area Under the Curve rates in determining organ failure. CONCLUSIONS Hematocrit, lymphocyte counts, CD14+HLA-DR+ cells, CD14+PD-L1+ cells, and intermediate monocytes emerged as parameters most closely associated with the severity and these parameters could be useful in predicting the severity of ABP.
Collapse
Affiliation(s)
- Ufuk Oguz Idiz
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey; Institute of Health Sciences, Istanbul University, Istanbul, Turkey; Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey.
| | - Basak Aru
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Cemal Kaya
- Department of General Surgery, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kivanc Derya Peker
- Department of General Surgery, Hisar Hospital Intercontinental, Istanbul, Turkey
| | - Cihad Tatar
- Department of General Surgery, Acibadem University, Istanbul, Turkey
| | - Mert Guler
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Abdurrahman Tunay
- Department of Anesthesia and Reanimation, Istanbul Training and Research Hospital, Istanbul, Turkey
| | | | - Ali Osman Gurol
- Department of Immunology, Istanbul University, DETAE, Istanbul, Turkey
| |
Collapse
|
16
|
Madela F, Ferndale L, Aldous C. Diagnostic Differentiation between Pancreatitis and Pancreatic Cancer: A Scoping Review. Diagnostics (Basel) 2024; 14:290. [PMID: 38337806 PMCID: PMC10855106 DOI: 10.3390/diagnostics14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatitis, encompassing acute and chronic forms, and pancreatic cancer pose significant challenges to the exocrine tissue of the pancreas. Recurrence rates and complications following acute pancreatitis episodes can lead to long-term risks, including diabetes mellitus. Chronic pancreatitis can develop in approximately 15% of cases, regardless of the initial episode's severity. Alcohol-induced pancreatitis, idiopathic causes, cigarette smoking, and hereditary pancreatitis contribute to the progression to chronic pancreatitis. Chronic pancreatitis is associated with an increased risk of pancreatic cancer, with older age at onset and smoking identified as risk factors. This scoping review aims to synthesise recent publications (2017-2022) on the diagnostic differentiation between pancreatitis and pancreatic cancer while identifying knowledge gaps in the field. The review focuses on biomarkers and imaging techniques in individuals with pancreatitis and pancreatic cancer. Promising biomarkers such as faecal elastase-1 and specific chemokines offer non-invasive ways to assess pancreatic insufficiency and detect early biomarkers for chronic pancreatitis. Imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), and positron emission tomography (PET), aid in differentiating between chronic pancreatitis and pancreatic cancer. However, accurately distinguishing between the two conditions remains a challenge, particularly when a mass is present in the head of the pancreas. Several knowledge gaps persist despite advancements in understanding the association between pancreatitis and pancreatic cancer, including the correlation between histopathological grading systems, non-invasive imaging techniques, and biomarkers in chronic pancreatitis to determine the risk of progression to pancreatic cancer, as well as differentiating between the two conditions. Further research is necessary to enhance our understanding of these aspects, which can ultimately improve the diagnosis and management of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Fusi Madela
- Department of Surgery, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (L.F.)
| | | | | |
Collapse
|
17
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
18
|
Yang Y, Yang J, Zhu N, Qiu H, Feng W, Chen Y, Chen X, Chen Y, Zheng W, Liang M, Lin T, Yu J, Guo Z. Tumor-targeting hydroxyapatite nanoparticles for remodeling tumor immune microenvironment (TIME) by activating mitoDNA-pyroptosis pathway in cancer. J Nanobiotechnology 2023; 21:470. [PMID: 38062467 PMCID: PMC10704647 DOI: 10.1186/s12951-023-02231-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising strategy for treating solid tumors, although its efficacy remains limited to a subset of patients. Transforming non-responsive "cold" tumor types into immuno-responsive "hot" ones is critical to enhance the efficacy of immune-based cancer treatments. Pyroptosis, a programmed cell death mechanism, not only effectively eliminates tumor cells but also triggers a potent inflammatory response to initiate anti-tumor immune activities. This sheds light on the potential of pyroptosis to sensitize tumors to immune therapy. Hence, it is urgent to explore and develop novel treatments (e.g., nanomedicines) which are capable of inducing pyroptosis. In this study, we constructed tumor-targeting nanoparticles (CS-HAP@ATO NPs) by loading atorvastatin (ATO) onto chondroitin sulfate (CS) modified hydroxyapatite (HAP) nanoparticles (CS-HAP). CS was strategically employed to target tumor cells, while HAP exhibited the capacity to release calcium ions (Ca2+) in response to the tumor microenvironment. Moreover, ATO disrupted the mitochondrial function, leading to intracellular energy depletion and consequential changes in mitochondrial membrane permeability, followed by the influx of Ca2+ into the cytoplasm and mitochondria. CS and HAP synergetically augmented mitochondrial calcium overload, inciting the production of substantial amount of reactive oxygen species (ROS) and the subsequent liberation of oxidized mitochondrial DNA (OX-mitoDNA). This intricate activation process promoted the assembly of inflammasomes, most notably the NLRP3 inflammasome, followed by triggering caspase-1 activation. The activated caspase-1 was able to induce gasderminD (GSDMD) protein cleavage and present the GSDM-N domain, which interacted with phospholipids in the cell membrane. Then, the cell membrane permeability was raised, cellular swelling was observed, and abundant cell contents and inflammatory mediators were released. Ultimately, this orchestrated sequence of events served to enhance the anti-tumor immunoresponse within the organism.
Collapse
Affiliation(s)
- Yuxuan Yang
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Jia Yang
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Nan Zhu
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Haosen Qiu
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Wenxiang Feng
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Ying Chen
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Xinhua Chen
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Yuehong Chen
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Wenbo Zheng
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China
| | - Min Liang
- Department of Oncology, Innovation Centre for Advanced Interdisciplinary Medicine, Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510700, China.
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China.
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern medical University, Guangzhou, 510515, China.
| | - Zhaoze Guo
- Breast Division, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
19
|
Guan X, Leng W, Hu Q, Xiu M, Zhang X. Association between cognitive function and IL-18 levels in schizophrenia: Dependent on IL18 - 607 A/C polymorphism. Psychoneuroendocrinology 2023; 158:106386. [PMID: 37741261 DOI: 10.1016/j.psyneuen.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Accumulating evidence suggests that immune system dysregulation is associated with debilitating neurodevelopment in schizophrenia (SZ). Cognitive impairment is a persistent feature that occurs during the onset of SZ and persists throughout the course of the disease. Early studies have found that elevated interleukin (IL)- 18 interacts with IL18 polymorphism and is correlated with psychotic symptoms in SZ. This study aimed to investigate whether elevated IL-18 levels interacted with the -607 A/C polymorphism to determine cognitive decline in patients with chronic SZ. We recruited 693 inpatients and 422 healthy controls to measure IL-18 levels and genotype the - 607 A/C polymorphism. Further, cognitive function was measured by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). We found that IL-18 serum levels were higher in patients than those in healthy controls, and were not associated with IL18 - 607 A/C in combined subjects or either patients or healthy controls, respectively. Moreover, - 607 A/C was correlated with the visuospatial/constructional index only in the patients. In addition, our research found that IL-18 levels were positively correlated to immediate memory only in patients with the C/C genotype, but not in patients with C/A or A/A genotype. This study suggests that the relationship of IL-18 with cognitive function depends on the IL18 - 607 A/C polymorphism of SZ patients.
Collapse
Affiliation(s)
- Xiaoni Guan
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | | | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | - Meihong Xiu
- Peking University, Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Zhao W. Immune-Related Genes can Serve as Potential Biomarkers for Predicting Severe Acute Pancreatitis. Horm Metab Res 2023; 55:711-721. [PMID: 37391177 DOI: 10.1055/a-2105-6152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
We aimed to investigate immune-related candidate genes for predicting the severity of acute pancreatitis (AP). RNA sequencing profile GSE194331 was downloaded, and differentially expressed genes (DEGs) were investigated. Meanwhile, the infiltration of immune cells in AP were assessed using CIBERSORT. Genes related with the infiltration of immune cells were investigated using weighted gene co-expression network analysis (WGCNA). Furthermore, immune subtypes, micro-environment, and DEGs between immune subtypes were explored. Immune-related genes, protein-protein interaction (PPI) network, and functional enrichment analysis were further performed. Overall, 2533 DEGs between AP and healthy controls were obtained. After trend cluster analysis, 411 upregulated and 604 downregulated genes were identified. Genes involved in two modules were significantly positively related to neutrophils and negatively associated with T cells CD4 memory resting, with correlation coefficient more than 0.7. Then, 39 common immune-related genes were obtained, and 56 GO BP were enriched these genes, including inflammatory response, immune response, and innate immune response; 10 KEGG pathways were enriched, including cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, and IL-17 signaling pathway. Genes, including S100A12, MMP9, IL18, S100A8, HCK, S100A9, RETN, OSM, FGR, CAMP, were selected as genes with top 10 degree in PPI, and the expression levels of these genes increased gradually in subjects of healthy, mild, moderately severe, and severe AP. Our findings indicate a central role of immune-related genes in predicting the severity of AP, and the hub genes involved in PPI represent logical candidates for further study.
Collapse
Affiliation(s)
- Weijuan Zhao
- Emergency, Affiliated Wuxi Fifth Hospital of Jiangnan University (Infectious Diseases Hospital of Wuxi), Wuxi, China
| |
Collapse
|
21
|
Chen W, Song T, Zou F, Xia Y, Xing J, Yu W, Rao T, Zhou X, Li C, Ning J, Zhao S, Ruan Y, Cheng F. Prognostic and immunological roles of IL18RAP in human cancers. Aging (Albany NY) 2023; 15:9059-9085. [PMID: 37698530 PMCID: PMC10522399 DOI: 10.18632/aging.205017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Across several cancers, IL18 receptor accessory protein (IL18RAP) is abnormally expressed, and this abnormality is related to tumor immunity and heterogeneous clinical outcomes. In this study, based on bioinformatics analysis, we discovered that IL18RAP is related to the human tumor microenvironment and promotes various immune cells infiltration. Additionally, the multiple immunofluorescence staining revealed that with the increased expression of IL18RAP, the number of infiltrated M1 macrophages increased. This finding was confirmed by coculture migration analysis using three human cancer cell lines (MDA-MB-231, U251, and HepG2) with IL18RAP knockdown. We discovered a positive link between IL18RAP and the majority of immunostimulators, immunoinhibitors, major histocompatibility complex (MHC) molecules, chemokines, and chemokine receptor genes using Spearman correlation analysis. Additionally, functional IL18RAP's gene set enrichment analysis (GSEA) revealed that it is related to a variety of immunological processes, such as positive regulation of interferon gamma production and positive regulation of NK cell-mediated immunity. Moreover, we used single-cell RNA sequencing analysis to detect that IL18RAP was mainly expressed in immune cells, and HALLMARK analysis confirmed that the INF-γ gene set expression was upregulated in CD8Tex cells. In addition, in human and mouse cancer cohorts, we found that the level of IL18RAP can predict the immunotherapy response. In short, our study showed that IL18RAP is a new tumor biomarker and may become a potential immunotherapeutic target in cancer.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Tianbao Song
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Zou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuqi Xia
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ji Xing
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Weimin Yu
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Ting Rao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Xiangjun Zhou
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Chenglong Li
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Jinzhuo Ning
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Sheng Zhao
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Yuan Ruan
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| | - Fan Cheng
- Department of Urology, Hubei International Scientific and Technological Cooperation Base of Immunotherapy, Renmin Hospital of Wuhan University, Wuhan 430000, Hubei, P.R. China
| |
Collapse
|
22
|
Sahni S, Nahm C, Ahadi MS, Sioson L, Byeon S, Chou A, Maloney S, Moon E, Pavlakis N, Gill AJ, Samra J, Mittal A. Gene expression profiling of pancreatic ductal adenocarcinomas in response to neoadjuvant chemotherapy. Cancer Med 2023; 12:18050-18061. [PMID: 37533202 PMCID: PMC10523964 DOI: 10.1002/cam4.6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Chemotherapy is the mainstay systemic therapy for PDAC, and chemoresistance is a major clinical problem leading to therapeutic failure. This study aimed to identify key differences in gene expression profile in tumors from chemoresponsive and chemoresistant patients. METHODS Archived formalin-fixed paraffin-embedded tumor tissue samples from patients treated with neoadjuvant chemotherapy were obtained during surgical resection. Specimens were macrodissected and gene expression analysis was performed. Multi- and univariate statistical analysis was performed to identify differential gene expression profile of tumors from good (0%-30% residual viable tumor [RVT]) and poor (>30% RVT) chemotherapy-responders. RESULTS Initially, unsupervised multivariate modeling was performed by principal component analysis, which demonstrated a distinct gene expression profile between good- and poor-chemotherapy responders. There were 396 genes that were significantly (p < 0.05) downregulated (200 genes) or upregulated (196 genes) in tumors from good responders compared to poor responders. Further supervised multivariate analysis of significant genes by partial least square (PLS) demonstrated a highly distinct gene expression profile between good- and poor responders. A gene biomarker of panel (IL18, SPA17, CD58, PTTG1, MTBP, ABL1, SFRP1, CHRDL1, IGF1, and CFD) was selected based on PLS model, and univariate regression analysis of individual genes was performed. The identified biomarker panel demonstrated a very high ability to diagnose good-responding PDAC patients (AUROC: 0.977, sensitivity: 82.4%; specificity: 87.0%). CONCLUSION A distinct tumor biological profile between PDAC patients who either respond or not respond to chemotherapy was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
| | - Christopher Nahm
- Western Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Mahsa S. Ahadi
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sooin Byeon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Sydney Cancer Center, Royal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Cancer InstituteSt LeonardsNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- The University of Notre Dame AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
23
|
Huang L, Zeng Y, Duan L, Zhuang Q, Zhou Y, Wang L, Chen L, Liu X, Xiong Y. Optimal timing of free total rhubarb anthraquinones on immune regulation in rats with severe acute pancreatitis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116266. [PMID: 36806482 DOI: 10.1016/j.jep.2023.116266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhubarb is the peeled and dried root of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf. or Rheum officinale Baill. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of anti-inflammation and immunological modulation. The timing of immune regulation is a major problem in the immunotherapy for severe acute pancreatitis (SAP). several studies reported that FTRAs could reduce systemic inflammatory responses by inhibiting early immune overactivity in the gut in rats with SAP. But, the optimal timing of rhubarb and FTRAs administration is not clear in clinical practice. Therefore, the time window for the best efficacy of rhubarb and FTRAs in the treatment of SAP patients should be further elucidated. AIM OF THE STUDY The main purpose of the present study was to evaluate the efficacy and optimal timing of immune modulation with FTRAs in the treatment of SAP in rats. MATERIALS AND METHODS FTRAs (22.5, 45 and 90 mg/kg), Rhubarb (RHU) (900 mg/kg, positive control) or normal saline (vehicle control) were initiated at 0 (immediately), 48 and 72 h every 12 h for three times in total. The therapeutic effects of FTRAs and RHU on pancreas and intestinal tissues injury, secondary infection with pseudomonas aeruginosa (PA), amylase, lipase, D-lactic acid (DLA), endotoxin (ET), proinflammatory and anti-inflammatory cytokines, macrophages, dendritic cells and regulatory T cells (Tregs) in the blood, small intestine and/or mesenteric lymph node (MLN) were determined in rats with SAP after treatment. RESULTS The results showed that administration of FTRAs at 0 h was superior to 48 h and 72 h, which significantly protected the injury of pancreas and intestinal tissues, reduced the mortality induced by secondary infection with PA, decreased the levels of amylase, lipase, DLA, ET, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), IL-6, IL-8, IL-18 and Tregs, and increased the levels of IL-4, sTNF-αR, macrophages and dendritic cells, secretary immunoglobulin A (SIgA) in the blood and/or small intestinal tissues in rats with SAP. CONCLUSIONS In conclusion, our studies indicate that the treatment window of FTRAs for SAP is within 48 h of development, administration of FTRAs at the early stage (0 h, immune overreaction period) was the optimal time and superior to that of 48 h and 72 h for its therapeutic efficacy. The earlier the administration of FTRAs, the better the therapeutic efficacy. Therefore, our data may provide a scientific rationale for the clinical application and optimal timing of FTRAs in the treatment of SAP.
Collapse
Affiliation(s)
- Liqiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Pharmacy, Second People's Hospital of Yibin, Yibin, 644000, China
| | - Yue Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lingjing Duan
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Zhuang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Li Chen
- Department of Pharmacy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xingyu Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
24
|
Huang J, Li X, Hong J, Huang L, Jiang Q, Guo S, Rong Y, Guo G. Inflammatory bowel disease increases the risk of hepatobiliary pancreatic cancer: A two-sample Mendelian randomization analysis of European and East Asian populations. Cancer Med 2023. [PMID: 37184160 DOI: 10.1002/cam4.6057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Both inflammatory bowel disease (IBD) and hepato-pancreato-biliary cancers (HPBC) have been established to cause a huge socioeconomic burden. Epidemiological studies have revealed a close association between IBD and HPBC. METHODS Herein, we utilized inverse-variance weighting to conduct a two-sample Mendelian randomization analysis. We sought to investigate the link between various subtypes of IBD and HPBC. To ensure the accuracy and consistency of our findings, we conducted heterogeneity tests, gene pleiotropy tests, and sensitivity analyses. RESULTS Compared to the general population, IBD patients in Europe exhibited a 1.22-fold increased incidence of pancreatic cancer (PC) with a 95% confidence interval (CI) of 1.0022-1.4888 (p = 0.0475). We also found a 1.14-fold increased incidence of PC in Crohn's disease (CD) patients with (95% CI: 1.0017-1.3073, p = 0.0472). In the East Asian population, the incidence of hepatocellular carcinoma (HCC) was 1.28-fold higher (95% CI = 1.0709-1.5244, p = 0.0065) in IBD patients than in the general population. Additionally, ulcerative colitis (UC) patients displayed 1.12-fold (95% CI: 1.1466-1.3334, p < 0.0001) and 1.31-fold (95% CI: 1.0983-1.5641, p = 0.0027) increased incidences of HCC and cholangiocarcinoma (CCA), respectively. Finally, the incidence of PC was 1.19-fold higher in CD patients than in the general population (95% CI = 1.0741-1.3132, p = 0.0008). CONCLUSION Our study validated that IBD is a risk factor for HPBC. This causal relationship exhibited significant heterogeneity in different European and East Asian populations.
Collapse
Affiliation(s)
- Jinsheng Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xujia Li
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jicheng Hong
- Department of Emergency, Shantou Central Hospital, Shantou, China
| | - Lingli Huang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Jiang
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shunqi Guo
- Department of Emergency, Shantou Central Hospital, Shantou, China
| | - Yuming Rong
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guifang Guo
- VIP Department, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
25
|
Wang D, Zhang Y, Wang X, Zhang L, Xu S. Construction and validation of an aging-related gene signature predicting the prognosis of pancreatic cancer. Front Genet 2023; 14:1022265. [PMID: 36741321 PMCID: PMC9889561 DOI: 10.3389/fgene.2023.1022265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Pancreatic cancer is a malignancy with a high mortality rate and worse prognosis. Recently, public databases and bioinformatics tools make it easy to develop the prognostic risk model of pancreatic cancer, but the aging-related risk signature has not been reported. The present study aimed to identify an aging-related risk signature with potential prognostic value for pancreatic cancer patients. Method: Gene expression profiling and human clinical information of pancreatic cancer were derived from The Cancer Genome Atlas database (TCGA). Aging-related gene sets were downloaded from The Molecular Signatures Database and aging-related genes were obtained from the Human Ageing Genomic Resources database. Firstly, Gene set enrichment analysis was carried out to investigate the role of aging process in pancreatic cancer. Secondly, differentially expressed genes and aging-related prognostic genes were screened on the basis of the overall survival information. Then, univariate COX and LASSO analysis were performed to establish an aging-related risk signature of pancreatic cancer patients. To facilitate clinical application, a nomogram was established to predict the survival rates of PCa patients. The correlations of risk score with clinical features and immune status were evaluated. Finally, potential therapeutic drugs were screened based on the connectivity map (Cmap) database and verified by molecular docking. For further validation, the protein levels of aging-related genes in normal and tumor tissues were detected in the Human Protein Atlas (HPA) database. Result: The genes of pancreatic cancer were markedly enriched in several aging-associated signaling pathways. We identified 14 key aging-related genes related to prognosis from 9,020 differentially expressed genes and establish an aging-related risk signature. This risk model indicated a strong prognostic capability both in the training set of TCGA cohort and the validation set of PACA-CA cohort and GSE62452 cohort. A nomogram combining risk score and clinical variables was built, and calibration curve and Decision curve analysis (DCA) have proved that it has a good predictive value. Additionally, the risk score was tightly linked with tumor immune microenvironment, immune checkpoints and proinflammatory factors. Moreover, a candidate drug, BRD-A47144777, was screened and verified by molecular docking, indicating this drug has the potential to treat PCa. The protein expression levels of GSK3B, SERPINE1, TOP2A, FEN1 and HIC1 were consistent with our predicted results. Conclusion: In conclusion, we identified an aging-related signature and nomogram with high prediction performance of survival and immune cell infiltration for pancreatic cancer. This signature might potentially help in providing personalized immunotherapy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Limei Zhang
- Department of Oncology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
27
|
Li Z, Jin L, Xia L, Li X, Guan Y, He H. Body mass index, C-reactive protein, and pancreatic cancer: A Mendelian randomization analysis to investigate causal pathways. Front Oncol 2023; 13:1042567. [PMID: 36816931 PMCID: PMC9932924 DOI: 10.3389/fonc.2023.1042567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Aim To explore whether C-reactive protein (CRP) mediates the risk of body mass index (BMI) in pancreatic cancer (PC) and calculate the mediate proportion of CRP in this possible mechanism. Methods Based on two-sample Mendelian randomization (TSMR), a two-step Mendelian randomization (TM) model was conducted to determine whether CRP was a mediator of the causal relationship between BMI and PC. The multivariable Mendelian randomization (MVMR) study was designed for mediating analysis and to calculate the mediating proportion mediated by CRP. Results BMI has a positive causal relationship with PC (n = 393 SNPs, OR = 1.484, 95% CI: 1.021-2.157, p< 0.05). BMI has a positive causal relationship with CRP (n = 179 SNPs, OR = 1.393, 95% CI: 1.320-1.469, p< 0.05). CRP has a positive causal relationship with PC (n = 54 SNPs, OR = 1.348, 95% CI: 1.004-1.809, p< 0.05). After adjusting CRP, BMI has no causal relationship with PC (n = 334 SNPs, OR = 1.341, 95% CI: 0.884-2.037, p< 0.05). After adjusting BMI, there was still a positive causal relationship between CRP and PC (n = 334 SNPs, OR = 1.441, 95% CI: 1.064-1.950, p< 0.05). The mediating effect of CRP was 29%. Conclusions In clinical practice, while actively advocating for weight loss among obese patients, we should focus on chronic inflammation levels in obese patients as well. In addition, anti-inflammatory dietary patterns and appropriate physical activity are important in preventing PC.
Collapse
Affiliation(s)
- Zhenqi Li
- School of Clinical Medicine, Dali University, Dali, China
| | - Liquan Jin
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
- *Correspondence: Liquan Jin,
| | - Lu Xia
- School of Clinical Medicine, Dali University, Dali, China
| | - Xiangzhi Li
- College of Life Science, Shaanxi Normal University, Xi’an, China
| | - Yunfei Guan
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Hongyang He
- Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
28
|
Ahmed A, Klotz R, Köhler S, Giese N, Hackert T, Springfeld C, Jäger D, Halama N. Immune features of the peritumoral stroma in pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:947407. [PMID: 36131941 PMCID: PMC9483939 DOI: 10.3389/fimmu.2022.947407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The peritumoral stroma is a hallmark of pancreatic ductal adenocarcinoma (PDA) with implications for disease development, progression and therapy resistance. We systematically investigated immune features of the stroma in PDA patients to identify markers of clinical importance and potential therapeutic targets. Methods Tissue and blood samples of 51 PDA patients with clinical and follow-up information were included. Laser Capture Microdissection allowed us to analyze the stromal compartment in particular. Systematic immunohistochemistry, followed by software-based image analysis were conducted. Also, multiplex cytokine analyses (including 50 immune-related molecules) were performed. Functional analyses were performed using patient-derived 3D bioprints. Clinical information was used for survival analyses. Intercompartmental IL9 and IL18 gradients were assessed in matched samples of tumor epithelium, stroma, and serum of patients. Serum levels were compared to an age-matched healthy control group. Results Stromal IL9 and IL18 are significantly associated with patient survival. While IL9 is a prognostic favorable marker (p=0.041), IL18 associates with poor patient outcomes (p=0.030). IL9 correlates with an anti-tumoral cytokine network which connects regulation of T helper (Th) 9, Th1 and Th17 cells (all: p<0.05 and r>0.5). IL18 correlates with a Th1-type cytokine phenotype and stromal CXCL12 expression (all: p<0.05 and r>0.5). Further, IL18 associates with a higher level of exhausted T cells. Inhibition of IL18 results in diminished Th1- and Th2-type cytokines. Patients with high stromal IL9 expression have a tumor-to-stroma IL9 gradient directed towards the stroma (p=0.019). Low IL18 expression associates with a tumor-to-stroma IL18 gradient away from the stroma (p=0.007). PDA patients showed higher serum levels of IL9 than healthy controls while serum IL18 levels were significantly lower than in healthy individuals. The stromal immune cell composition is distinct from the tumor epithelium. Stromal density of FoxP3+ regulatory T cells showed a tendency towards improved patient survival (p=0.071). Conclusion An unexpected high expression of the cytokines IL9 and IL18 at different ends is of significance in the stroma of PDA and relates to opposing patient outcomes. Sub-compartmental cytokine analyses highlight the importance of a differentiated gradient assessment. The findings suggest stromal IL9 and/or IL18 as markers for patient stratification and as potential therapeutic targets. Future steps include investigating e. g. the role of local microbiota as both cytokines are also regulated by microbial compositions.
Collapse
Affiliation(s)
- Azaz Ahmed
- Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- BioQuant, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Rosa Klotz
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophia Köhler
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia Giese
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Applied Tumor Immunity Clinical Cooperation Unit (D120), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Halama
- Translational Immunotherapy (D240), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Oncology and Internal Medicine VI, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- BioQuant, Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON), Mainz, Germany
- *Correspondence: Niels Halama,
| |
Collapse
|
29
|
Duan X, Xu X, Zhang Y, Gao Y, Zhou J, Li J. DDR1 functions as an immune negative factor in colorectal cancer by regulating tumor-infiltrating T cell through IL-18. Cancer Sci 2022; 113:3672-3685. [PMID: 35969377 PMCID: PMC9633303 DOI: 10.1111/cas.15533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/01/2022] Open
Abstract
Immunotherapies represented by programmed cell death protein 1/programmed cell death ligand 1 (PD‐1/PD‐L1) immune checkpoint inhibitors have made great progress in the field of anticancer treatment, but most colorectal cancer patients do not benefit from immunotherapy. Discoidin domain receptor 1 (DDR1), a tyrosine kinase receptor, is activated by collagen binding and overexpressed in various malignancies. However, the role of DDR1 in colorectal cancer and immunoregulation remains unclear. In this study, we found DDR1 is highly expressed in colorectal cancer tissues and negatively associated with patient survival. We demonstrated that DDR1 promotes colorectal tumor growth only in vivo. Mechanistically, DDR1 is a negative immunomodulator in colorectal cancer and is involved in low infiltration of CD4+ and CD8+ T cells by inhibiting IL‐18 synthesis. We also reported that DDR1 enhances the expression of PD‐L1 through activating the c‐Jun amino terminal kinase (JNK) signaling pathway. In conclusion, our findings elucidate the immunosuppressive role of DDR1 in colorectal cancer, which may represent a novel target to enhance the efficacy of immunotherapy in colorectal cancer.
Collapse
Affiliation(s)
- Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Kartsonaki C, Pang Y, Millwood I, Yang L, Guo Y, Walters R, Lv J, Hill M, Yu C, Chen Y, Chen X, O’Neill E, Chen J, Travis RC, Clarke R, Li L, Chen Z, Holmes MV. Circulating proteins and risk of pancreatic cancer: a case-subcohort study among Chinese adults. Int J Epidemiol 2022; 51:817-829. [PMID: 35064782 PMCID: PMC9189974 DOI: 10.1093/ije/dyab274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a very poor prognosis. Biomarkers that may help predict or diagnose pancreatic cancer may lead to earlier diagnosis and improved survival. METHODS The prospective China Kadoorie Biobank (CKB) recruited 512 891 adults aged 30-79 years during 2004-08, recording 702 incident cases of pancreatic cancer during 9 years of follow-up. We conducted a case-subcohort study measuring 92 proteins in 610 cases and a subcohort of 623 individuals, using the OLINK immuno-oncology panel in stored baseline plasma samples. Cox regression with the Prentice pseudo-partial likelihood was used to estimate adjusted hazard ratios (HRs) for risk of pancreatic cancer by protein levels. RESULTS Among 1233 individuals (including 610 cases), several chemokines, interleukins, growth factors and membrane proteins were associated with risk of pancreatic cancer, with adjusted HRs per 1 standard deviation (SD) of 0.86 to 1.86, including monocyte chemotactic protein 3 (MCP3/CCL7) {1.29 [95% CI (confidence interval) (1.10, 1.51)]}, angiopoietin-2 (ANGPT2) [1.27 (1.10, 1.48)], interleukin-18 (IL18) [1.24 (1.07, 1.43)] and interleukin-6 (IL6) [1.21 (1.06, 1.38)]. Associations between some proteins [e.g. matrix metalloproteinase-7 (MMP7), hepatocyte growth factor (HGF) and tumour necrosis factor receptor superfamily member 9 [TNFRSF9)] and risk of pancreatic cancer were time-varying, with higher levels associated with higher short-term risk. Within the first year, the discriminatory ability of a model with known risk factors (age, age squared, sex, region, smoking, alcohol, education, diabetes and family history of cancer) was increased when several proteins were incorporated (weighted C-statistic changed from 0.85 to 0.99; P for difference = 4.5 × 10-5), although only a small increase in discrimination (0.77 to 0.79, P = 0.04) was achieved for long-term risk. CONCLUSIONS Several plasma proteins were associated with subsequent diagnosis of pancreatic cancer. The potential clinical utility of these biomarkers warrants further investigation.
Collapse
Affiliation(s)
- Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Iona Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yu Guo
- CKB Project Department, Chinese Academy of Medical Sciences, Beijing, China
| | - Robin Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Xiaofang Chen
- NCDs Prevention and Control Department, Pengzhou CDC, Pengzhou City, Sichuan Province, China
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Junshi Chen
- NHD Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Ruth C Travis
- Cancer Epidemiology Unit (CEU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robert Clarke
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe University Hospital, Oxford, UK
| |
Collapse
|
31
|
Zhuang Q, Huang L, Zeng Y, Wu X, Qiao G, Liu M, Wang L, Zhou Y, Xiong Y. Dynamic Monitoring of Immunoinflammatory Response Identifies Immunoswitching Characteristics of Severe Acute Pancreatitis in Rats. Front Immunol 2022; 13:876168. [PMID: 35663952 PMCID: PMC9160235 DOI: 10.3389/fimmu.2022.876168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Immune dysfunction is the main characteristic of severe acute pancreatitis (SAP), and the timing of immune regulation has become a major challenge for SAP treatment. Previous reports about the time point at which the immune status of SAP changed from excessive inflammatory response to immunosuppression (hypo-inflammatory response) are conflicting. Purposes The aims of this study are to explore the immunological dynamic changes in SAP rats from the perspective of intestinal mucosal immune function, and to determine the immunoswitching point from excessive inflammatory response to immunosuppression. Methods Retrograde injection of sodium taurocholate into the pancreaticobiliary duct was applied to establish a SAP model in rats. The survival rate and the activities of serum amylase and pancreatic lipase in SAP rats were measured at different time points after model construction. The pathological changes in the pancreas and small intestines were analyzed, and the levels of intestinal pro- and anti-inflammatory cytokines and the numbers of intestinal macrophages, dendritic cells, Th1, Th2, and T regulatory cells were assessed. Meanwhile, the SAP rats were challenged with Pseudomonas aeruginosa (PA) strains to simulate a second hit, and the levels of intestinal inflammatory cytokines and the numbers of immune cells were analyzed to confirm the immunoswitching point. Results The time periods of 12–24 h and 48–72 h were the two death peaks in SAP rats. The pancreas of SAP rats showed self-limiting pathological changes, and the switching period of intestinal cytokines, and innate and adaptive immunity indexes occurred at 24–48 h. It was further confirmed that 48 h after SAP model construction was the immunoswitching point from excessive inflammatory response to immunosuppression. Conclusion The SAP rats showed characteristics of intestinal mucosal immune dysfunction after model construction, and the 48th h was identified as the immunoswitching point from excessive inflammatory response to immunosuppression. The results are of great significance for optimizing the timing of SAP immune regulation.
Collapse
Affiliation(s)
- Qian Zhuang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute for Clinical Trials of Drugs, Second People's Hospital of Yibin, Yibin, China
| | - Yue Zeng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Chen P, Bao C, Zhu R, Wang J, Zhu J, Li Z, Li F, Gu J, Feng X, Li N, Lei L. IL-5 enhances the resistance of Actinobacillus pleuropneumoniae infection in mice through maintaining appropriate levels of lung M2, PMN-II and highly effective neutrophil extracellular traps. Vet Microbiol 2022; 269:109438. [PMID: 35468400 DOI: 10.1016/j.vetmic.2022.109438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023]
Abstract
Interleukin 5 (IL-5) regulates the maturation, activation, proliferation and function of immune cells, and plays an important role in the inflammatory response induced by an allergy. However, its anti-pathogen effect is poorly understood currently, especially on pneumonia. Here, this study was designed to elucidate the immunological role of IL-5 in the infection of mice with Actinobacillus pleuropneumoniae (APP). We established an acute lung infection model of APP in IL-5 knockout mice (IL-5-/-) and wild-type mice (WT) through nasal infusion or intraperitoneal injection, compared the survival rate, clinical symptoms, lung bacterial load, proportion of various immune cells, immune molecular expression, and neutrophil germicidal ability through flow cytometry, RT-qPCR, ELISA and immunofluorescence. Compared to WT mice, the IL-5-/- mice had a lower survival rate, more severe clinical symptoms, significantly increased bacterial load, and inflammatory cell infiltration in the lung after APP infection. In an uninfected state, IL-5 deficiency decreased the number of M1 interstitial macrophages and CD14- monocytes, while after infection, IL-5 deficiency significantly reduced the M2 alveolar macrophages, and increased PMN-II cells in the lung. Furthermore, the expression of IL-10, IL-4, IL-33, TNF-α, iNOS in the lung was lower in IL-5-/- mice under an uninfected condition, and the secretion of IL-18 was significantly increased after infection. In addition, IL-5 deficiency decreased bactericidal ability by inhibiting the formation of neutrophil extracellular traps (NETs). Collectively, these results provide evidence that IL-5 can enhance the resistance of APP infection, and its anti-infection mechanism, implying new targets and ideas for APP or similar respiratory agents' prevention and treatment.
Collapse
Affiliation(s)
- Peiru Chen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Chuntong Bao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Rining Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jun Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Junhui Zhu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Ziheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Fengyang Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Jingmin Gu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Xin Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China
| | - Na Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China.
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, PR China; College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, PR China.
| |
Collapse
|
33
|
Xie W, Li X, Yang C, Li J, Shen G, Chen H, Xiao SY, Li Y. The Pyroptosis-Related Gene Prognostic Index Associated with Tumor Immune Infiltration for Pancreatic Cancer. Int J Mol Sci 2022; 23:6178. [PMID: 35682857 PMCID: PMC9180955 DOI: 10.3390/ijms23116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies. Pyroptosis, a type of inflammatory cell death, likely plays a critical role in the development and progression of tumors. However, the relationship between pyroptosis-related genes (PRGs) and prognosis and immunity to PC is not entirely clear. This study, aimed at identifying the key PRGs in PC, highlights their prognostic value, immune characteristics, and candidate drugs for therapies. We screened 47 differentially expressed PRGs between PC and normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Afterwards, a pyroptosis-related gene prognostic index (PRGPI) was constructed based on eight PRGs (AIM2, GBP1, HMGB1, IL18, IRF6, NEK7, NLRP1 and PLCG1) selected by univariate and multivariate Cox regression analysis and LASSO regression analysis, and verified in two external datasets from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases. We found that the PC patients in the PRGPI-defined subgroups not only reflected significantly different levels of infiltration in a variety of immune cells, such as M1 macrophages, but also showed differential expression in genes of the human leukocyte antigen (HLA) family and immune checkpoints. Additionally, molecular characteristics and drug sensitivity also stayed close to the PRGPI risk scores. Therefore, PRGPI may serve as a valuable prognostic biomarker and may potentially provide guidance toward novel therapeutic options for PC patients.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Xiaoyi Li
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Chunxiu Yang
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Jiahao Li
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Guoyan Shen
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Hongshan Chen
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Yueying Li
- Department of Pathology, Wuhan University Zhongnan Hospital, Wuhan 430000, China; (W.X.); (X.L.); (C.Y.); (J.L.); (G.S.); (H.C.)
- Wuhan University Center for Pathology and Molecular Diagnostics, Wuhan 430000, China
| |
Collapse
|
34
|
Hufnagel S, Xu H, Colemam MF, Valdes SA, Liu KA, Hursting SD, Cui Z. 4-(N)-Docosahexaenoyl 2', 2'-difluorodeoxycytidine induces immunogenic cell death in colon and pancreatic carcinoma models as a single agent. Cancer Chemother Pharmacol 2022; 89:59-69. [PMID: 34698902 PMCID: PMC8741741 DOI: 10.1007/s00280-021-04367-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Docosahexaenoyl difluorodeoxycytidine (DHA-dFdC) is an amide with potent, broad-spectrum antitumor activity. In the present study, DHA-dFdC's ability to induce immunogenic cell death (ICD) was tested using CT26 mouse colorectal cancer cells, an established cell line commonly used for identifying ICD inducers, as well as Panc-02 mouse pancreatic cancer cells. METHODS The three primary surrogate markers of ICD (i.e., calreticulin (CRT) surface translocation, ATP release, and high mobility group box 1 protein (HMGB1) release) were measured in vitro. To confirm DHA-dFdC's ability to induce ICD in vivo, the gold standard mouse vaccination studies were conducted using both CT26 and Panc-02 models. Additionally, the effect of DHA-dFdC on tumor response to anti-programmed cell death protein 1 monoclonal antibody (anti-PD-1 mAb) were tested in mice with pre-established Panc-02 tumors. RNA sequencing experiments were conducted on PANC-1 human pancreatic cancer cells treated with DHA-dFdC, dFdC, or vehicle control in vitro. RESULTS DHA-dFdC elicited CRT surface translocation and ATP and HMGB1 release in both cell lines. Immunization of mice with CT26 or Panc-02 cells pretreated with DHA-dFdC prevented or delayed the development of corresponding secondary live challenge tumor. DHA-dFdC enabled Panc-02 tumors to respond to anti-PD-1 mAb. RNA sequencing experiments revealed that DHA-dFdC and dFdC differentially impacted genes related to the KRAS, TP53, and inflammatory pathways, and DHA-dFdC enriched for the unfolded protein response (UPR) compared to control, providing insight into DHA-dFdC's potential mechanism of inducing ICD. CONCLUSION DHA-dFdC is a bona fide ICD inducer and can render pancreatic tumors responsive to anti-PD-1 mAb therapy.
Collapse
Affiliation(s)
- Stephanie Hufnagel
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Michael F Colemam
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Solange A Valdes
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kristyn A Liu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Gao L, Chong E, Pendharkar S, Hong J, Windsor JA, Ke L, Li W, Phillips A. The Effects of NLRP3 Inflammasome Inhibition in Experimental Acute Pancreatitis: A Systematic Review and Meta-Analysis. Pancreas 2022; 51:13-24. [PMID: 35195590 DOI: 10.1097/mpa.0000000000001971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT Acute pancreatitis (AP) is an inflammatory disease, and NLRP3 inflammasome activation is involved in the pathogenesis of AP. Previous research showed that inhibition of NLRP3 inflammasome may exert protective effects on animal models of AP and reduces disease severity. The aim of this systematic review and meta-analysis is to evaluate the effects of drug treatment of NLRP3 inflammasome on the outcomes of experimental AP. PubMed, Embase, Medline, and Web of Science databases were searched for relevant articles without language restrictions. The main outcomes for this study included local pancreatic injury, the incidence of systemic inflammatory responses, and the incidence of organ failure. Twenty-eight animal studies including 556 animals with AP were included in the meta-analysis. Compared with controls, inhibition of NLRP3 inflammasome significantly reduced the pancreatic histopathological scores, serum amylase, and lipase levels. In addition, inhibition of NLRP3 inflammasome reduced the levels of circulating inflammatory cytokines, as well as mitigating severity of AP-associated acute lung injury and acute intestinal injury. To conclude, inhibition of NLRP3 inflammasome has protective effects on AP by mitigating organ injury and systemic inflammation in animal studies, indicating that NLRP3 inflammasome holds promise as a target for specific AP therapy.
Collapse
Affiliation(s)
| | - Eric Chong
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sayali Pendharkar
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, School of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | - Lu Ke
- From the Center of Severe Acute Pancreatitis, Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weiqin Li
- From the Center of Severe Acute Pancreatitis, Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | | |
Collapse
|
36
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
37
|
Wu P, Shi J, Sun W, Zhang H. Identification and validation of a pyroptosis-related prognostic signature for thyroid cancer. Cancer Cell Int 2021; 21:523. [PMID: 34627252 PMCID: PMC8502398 DOI: 10.1186/s12935-021-02231-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Pyroptosis is a form of programmed cell death triggered by inflammasomes. However, the roles of pyroptosis-related genes in thyroid cancer (THCA) remain still unclear. Objective This study aimed to construct a pyroptosis-related signature that could effectively predict THCA prognosis and survival. Methods A LASSO Cox regression analysis was performed to build a prognostic model based on the expression profile of each pyroptosis-related gene. The predictive value of the prognostic model was validated in the internal cohort. Results A pyroptosis-related signature consisting of four genes was constructed to predict THCA prognosis and all patients were classified into high- and low-risk groups. Patients with a high-risk score had a poorer overall survival (OS) than those in the low-risk group. The area under the curve (AUC) of the receiver operator characteristic (ROC) curves assessed and verified the predictive performance of this signature. Multivariate analysis showed the risk score was an independent prognostic factor. Tumor immune cell infiltration and immune status were significantly higher in low-risk groups, which indicated a better response to immune checkpoint inhibitors (ICIs). Of the four pyroptosis-related genes in the prognostic signature, qRT-PCR detected three of them with significantly differential expression in THCA tissues. Conclusion In summary, our pyroptosis-related risk signature may have an effective predictive and prognostic capability in THCA. Our results provide a potential foundation for future studies of the relationship between pyroptosis and the immunotherapy response. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02231-0.
Collapse
Affiliation(s)
- Pu Wu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jinyuan Shi
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Rahman A, Shashidhara LS. Analyzing the influence of IL18 in regulation of YAP1 in breast oncogenesis using cBioportal. Cancer Rep (Hoboken) 2021; 5:e1484. [PMID: 34196131 PMCID: PMC8955059 DOI: 10.1002/cnr2.1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Yes‐associated protein 1 (YAP1) is responsible for tumor growth, progression and metastasis. The mechanisms controlling the generation and relative ratio of the functional YAP1 and other co‐factors are not well‐understood. Various literature reported that co‐factors like cytokines significantly influence signaling pathways to introduce epithelial immunity and regeneration, which later helps increase cancer‐related phenotypes. Among various cytokines, IL‐18 has emerged as a major player in inflammation and progression of different types of cancers. Till now, much information has not been known about the role of YAP1 in tumor aggressiveness and immune evasion in breast cancer with respect to IL‐18. Aim We aimed to explore the effect of YAP1 in tumor aggressiveness and immune evasion in breast invasive carcinoma and metastatic breast cancer in the context of Interleukin‐18 (IL‐18) in silico. Methods and Results We used publicly available data generated by The Cancer Genome Atlas (TCGA) Research Network through cBioportal web platform. Kaplan–Meier method was used to determine the overall survival and comparison between curves were made using Log‐Rank test. The p values were determined by Fisher's exact test with the null hypothesis. Correlation plots were analyzed by comparison with gene copy numbers from the GISTIC2.0, available through cBioportal. Our analyses suggest that IL‐18 influences YAP1 expression in breast oncogenesis via Interferon‐gamma (IFN‐γ) production. Patients having a higher expression of IL‐18 possess a better prognosis and higher YAP1 expression with lower IL18 drives to poor clinical results in breast cancer. Conclusion This can provide new approaches to better understand the relation between YAP1 and IL‐18 in breast cancer progression by performing in vitro and in vivo studies. Also, IL‐18 can be considered as a potential target for tumor treatment in YAP1 overexpressed breast carcinoma.
Collapse
Affiliation(s)
- Ayesha Rahman
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Lingadahalli S Shashidhara
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.,Department of Biology, Ashoka University, Sonipat, India
| |
Collapse
|
39
|
Kandikattu HK, Manohar M, Verma AK, Kumar S, Yadavalli CS, Upparahalli Venkateshaiah S, Mishra A. Macrophages-induced IL-18-mediated eosinophilia promotes characteristics of pancreatic malignancy. Life Sci Alliance 2021; 4:4/8/e202000979. [PMID: 34183442 PMCID: PMC8321680 DOI: 10.26508/lsa.202000979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
The current study presents first CP murine model that show IL-18–induced eosinophil inflammation-mediated induction of oncogenic proteins and several pathological malignant characteristics. Reports indicate that accumulated macrophages in the pancreas are responsible for promoting the pathogenesis of chronic pancreatitis (CP). Recently, macrophage-secreted cytokines have been implicated in promoting pancreatic acinar-to-ductal metaplasia (ADM). This study aims to establish the role of accumulated macrophage-activated NLRP3-IL-18-eosinophil mechanistic pathway in promoting several characteristics of pancreatic malignancy in CP. We report that in a murine model of pancreatic cancer (PC), accumulated macrophages are the source of NLRP3-regulated IL-18, which promotes eosinophilic inflammation-mediated accumulation to periductal mucin and collagen, including the formation of ADM, pancreatic intraepithelial neoplasia (PanINs), and intraductal papillary mucinous neoplasm. Most importantly, we show improved malignant characteristics with reduced levels of oncogenes in an anti–IL-18 neutralized and IL-18 gene deficient murine model of CP. Last, human biopsies validated that NLRP3-IL-18–induced eosinophils accumulate near the ducts, showing PanINs formation in PC. Taken together, we present the evidence on the role of IL-18–induced eosinophilia in the development of PC phenotype like ADM, PanINs, and ductal cell differentiation in inflammation-induced CP.
Collapse
Affiliation(s)
- Hemanth Kumar Kandikattu
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Murli Manohar
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Alok Kumar Verma
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Sandeep Kumar
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Chandra Sekhar Yadavalli
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Sathisha Upparahalli Venkateshaiah
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Anil Mishra
- Department of Medicine, Tulane Eosinophilic Disorders Centre, Section of Pulmonary Diseases, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
40
|
Mei S, Ma H, Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 2021; 149:111997. [DOI: 10.1016/j.fct.2021.111997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|