1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Peng Y, Yang J, Ao J, Li Y, Shen J, He X, Tang D, Chu C, Liu C, Weng L. Single-cell profiling reveals the intratumor heterogeneity and immunosuppressive microenvironment in cervical adenocarcinoma. eLife 2025; 13:RP97335. [PMID: 40066698 PMCID: PMC11896611 DOI: 10.7554/elife.97335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Background Cervical adenocarcinoma (ADC) is more aggressive compared to other types of cervical cancer (CC), such as squamous cell carcinoma (SCC). The tumor immune microenvironment (TIME) and tumor heterogeneity are recognized as pivotal factors in cancer progression and therapy. However, the disparities in TIME and heterogeneity between ADC and SCC are poorly understood. Methods We performed single-cell RNA sequencing on 11 samples of ADC tumor tissues, with other 4 SCC samples served as controls. The immunochemistry and multiplexed immunofluorescence were conducted to validate our findings. Results Compared to SCC, ADC exhibited unique enrichments in several sub-clusters of epithelial cells with elevated stemness and hyper-malignant features, including the Epi_10_CYSTM1 cluster. ADC displayed a highly immunosuppressive environment characterized by the enrichment of regulatory T cells (Tregs) and tumor-promoting neutrophils. The Epi_10_CYSTM1 cluster recruits Tregs via ALCAM-CD6 signaling, while Tregs reciprocally induce stemness in the Epi_10_CYSTM1 cluster through TGFβ signaling. Importantly, our study revealed that the Epi_10_CYSTM1 cluster could serve as a valuable predictor of lymph node metastasis for CC patients. Conclusions This study highlights the significance of ADC-specific cell clusters in establishing a highly immunosuppressive microenvironment, ultimately contributing to the heightened aggressiveness and poorer prognosis of ADC compared to SCC. Funding Funded by the National Natural Science Foundation of China (82002753; 82072882; 81500475) and the Natural Science Foundation of Hunan Province (2021JJ40324; 2022JJ70103).
Collapse
Affiliation(s)
- Yang Peng
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Jing Yang
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Jixing Ao
- Department of Gynecologic Oncology, Changsha Kexin Cancer HospitalChangshaChina
| | - Yilin Li
- Department of Pathology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Jia Shen
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| | - Xiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| | - Dihong Tang
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Chaonan Chu
- Fourth Department of Gynecologic Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Congrong Liu
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
| | - Liang Weng
- Department of Pathology, Third Hospital, School of Basic Medical Sciences, Peking University Health Science CenterBeijingChina
- Xiangya Cancer Center, Xiangya Hospital, Central South UniversityChangshaChina
- Hunan International Science and Technology Collaboration Base of Precision Medicine for CancerChangshaChina
- Key Laboratory of Molecular Radiation Oncology of Hunan ProvinceChangshaChina
| |
Collapse
|
3
|
O'Neill NS, Rizk M, Li AX, Martin TA, Jiang WG, Mokbel K. Correlation of GD2 Biosynthesis Enzymes With Cancer Stem Cell Markers in Human Breast Cancer. Cancer Genomics Proteomics 2025; 22:231-246. [PMID: 39993803 PMCID: PMC11880921 DOI: 10.21873/cgp.20498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND/AIM The disialoganglioside GD2 has been shown to promote cell proliferation, migration, tumor and metastasis through specific signaling pathways in tumor cells originating from the neuroectoderm, including melanomas, neuroblastomas, glioblastomas, and breast carcinomas. GD2 has therefore emerged as a potential diagnostic biomarker in early malignancy as evidenced by the high specificity of its expression in tumor cells. Furthermore, recent findings show that GD2 might also act as a novel cancer stem cell (CSC) marker. Our study aimed to investigate the relationship between GD2 and 34 recognized CSC markers in human breast cancer. MATERIALS AND METHODS We analyzed the relationship between the mRNA expression profiles of three key enzymes involved in the biosynthesis of GD2 - B4GalT5, B4GALNT1, and ST8SIA1 - and 34 CSC markers in 91 human breast cancer tissue samples. RESULTS All three enzymes had positive and statistically significant correlation between each other with p<0.0001. Furthermore, each enzyme was found to have highly significant correlations with 15 CSC markers associated with aggressive cancer behavior: BMI1, CX43, ALCAM (CD166), Podoplanin, CD29, CD24, CD49f, IL8RA, NGFR, hTERT, Nestin, OCT4, CTBP, PSCA and Myc. CONCLUSION These findings lend further support to the growing evidence that GD2 is a potential biomarker of CSCs and epithelial-mesenchymal transition (EMT) in human breast cancer that can be amenable to therapeutic targeting.
Collapse
Affiliation(s)
- Niamh S O'Neill
- CCMR, Cardiff University School of Medicine, Heath Park, Cardiff, U.K
| | - Mariam Rizk
- The London Breast Institute, Princess Grace Hospital, London, U.K
| | - Amber X Li
- CCMR, Cardiff University School of Medicine, Heath Park, Cardiff, U.K
| | - Tracey A Martin
- CCMR, Cardiff University School of Medicine, Heath Park, Cardiff, U.K
| | - Wen G Jiang
- CCMR, Cardiff University School of Medicine, Heath Park, Cardiff, U.K
| | - Kefah Mokbel
- The London Breast Institute, Princess Grace Hospital, London, U.K.
| |
Collapse
|
4
|
Wang Z, Gao Z, Yang YF, Liu B, Yu F, Ye HM, Lei M, Wu X. The functions and clinical implications of hsa_circ_0032462-miR-488-3p-SLC7A1 axis in human osteosarcoma. Bone 2025; 191:117333. [PMID: 39566705 DOI: 10.1016/j.bone.2024.117333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Osteosarcoma, as the most common primary malignant bone tumor, has become one of the main causes of cancer-related deaths in adolescents and children. This study thus proposes new biomarkers for OS based on whole-transcriptome re-analysis and experimental confirmation. METHODS We find two circRNA dataset related to OS, from tissue and cell perspectives respectively, from the GEO database. Analysis of the tumor group and control group data used GEO2R, to obtain the differentially expressed (DE) circRNAs and take the intersection. The downstream miRNAs were predicted and subsequently the targeted mRNAs for these miRNAs were collected. These targeted mRNAs intersected with prognostic mRNAs reported in previous literature. CircRNA/miRNA/mRNA and circRNA/miRNA/mRNA/key pathway networks were constructed and GO and KEGG analyses were done. The prognostic values of hsa_circ_0032462, miR-488-3p, and SLC7A were confirmed in OS using Kaplan-Meier analyses and univariate/multivariate analyses. And the cellular functions of these three factors in OS were further explored through cell experiments. RESULTS Five DEcircRNAs were obtained, targeting 42 miRNAs and linking 67 prognostic-related mRNA. GO analysis and KEGG analysis indicate that the mRNAs in the network were involved in various biological processes and signaling pathways related to OS. The luciferase report validated the targeting relationship of hsa_circ_0032462, miR-488-3p, and SLC7A. Cell survival, migration, and invasion experiments found that hsa_circ_0032462 and SLC7A promoted OS, while miR-488-3p inhibited OS. CONCLUSION Aberrantly expressed circRNAs in OS are involved in OS progression via the ceRNA network. Hsa_circ_0032462-miR-488-3p-SLC7A1 axis can be developed to be alternative therapeutic targets for OS.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthopedics, ShanXi Bethune Hospital, Taiyuan 030000, China
| | - Zhenyuan Gao
- Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Yi-Fei Yang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; National and Local Joint Engineering Research Center for Orthopedic Biomaterials, Shenzhen 518036, Guangdong, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, Guangdong, China
| | - Bi Liu
- Department of Orthopedics, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China; The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong, China; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; National and Local Joint Engineering Research Center for Orthopedic Biomaterials, Shenzhen 518036, Guangdong, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, Guangdong, China
| | - Hai-Ming Ye
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; National and Local Joint Engineering Research Center for Orthopedic Biomaterials, Shenzhen 518036, Guangdong, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, Guangdong, China
| | - Ming Lei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong, China; National and Local Joint Engineering Research Center for Orthopedic Biomaterials, Shenzhen 518036, Guangdong, China; Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, Guangdong, China.
| | - Xiaoming Wu
- Department of Orthopedics, Affiliated Hospital of Hebei University, Baoding 071000, China.
| |
Collapse
|
5
|
Hwang YS, Jo S, Lee SH, Park KW, Shin E, Park Y, Seo Y, Kwon K, Kim JS, Jeon SR, Lee J, Chung SJ. Identification of Novel Genetic Loci Affecting Age at Onset of Parkinson's Disease: A Genome-wide Association Study. Mov Disord 2025; 40:77-86. [PMID: 39503264 PMCID: PMC11752982 DOI: 10.1002/mds.30047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The age at onset (AAO) of Parkinson's disease (PD) varies widely among individuals and significantly influences disease progression and prognosis. However, few genome-wide association studies (GWASs) have investigated genetic variants determining AAO, particularly in East Asian populations. OBJECTIVES To identify single-nucleotide polymorphisms (SNPs) affecting AAO of PD in Korean patients. METHODS We conducted a GWAS on AAO of PD in 1048 Korean patients using sex-adjusted linear regression models. Additionally, we conducted downstream analyses of our primary GWAS results. RESULTS rs2134545 demonstrated genome-wide significance (β = -2.459; standard error [SE] = 0.851; P = 1.898 × 10-8) and is an intergenic SNP near the ALCAM gene associated with an average AAO reduction of 3.47 years. Additionally, rs4366309 (LYST; MIR1537) demonstrated suggestive significance (β = 2.949; SE = 1.072; P = 8.68 × 10-8) and was associated with an average delay of 3.05 years. The polygenic risk score based on known PD risk loci also affected the AAO for European and Korean PD risk loci, respectively (β = -0.149; P < 0.001 and β = -0.096; P = 0.002). However, the proportion of variance was small (r2 = 0.022 and 0.009, respectively). CONCLUSION We identified a novel SNP associated with the AAO of PD near the ALCAM gene, distinct from previously reported PD risk loci. These findings need further functional validation; however, they suggest unique genetic pathways influencing the AAO of PD and highlight the need for further research in diverse populations. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yun Su Hwang
- Department of NeurologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
- Research Institute of Clinical Medicine of Jeonbuk National University – Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung Hyun Lee
- Department of Neurology, Jeju National University HospitalJeju National University School of MedicineJejuSouth Korea
| | - Kye Won Park
- Department of Neurology, Gangneung Asan HospitalUniversity of Ulsan College of MedicineGangneungSouth Korea
| | | | | | | | - Kyum‐Yil Kwon
- Department of NeurologySoonchunhyang University Seoul HospitalSeoulSouth Korea
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sang Ryong Jeon
- Department of Neurosurgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Jae‐Hong Lee
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| |
Collapse
|
6
|
Xie Y, Mei H, Wang W, Li X, Hu P, Tian X, Zhou R, Liu J, Qu J. ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B. Nat Commun 2024; 15:10889. [PMID: 39738070 DOI: 10.1038/s41467-024-55261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated. Here, we perform a CRISPR genetic screen on HAdV-B using two generations of cell surface protein-focused CRISPR libraries and identify a series of host factors including the known receptor DSG-2 and an unknown factor, activated leukocyte cell adhesion molecule (ALCAM). Further investigation shows that ALCAM affects HAdV-B infection by participating in viral internalization. Transcriptomics data from human blood samples suggests that ALCAM expression is higher in SCAP patients with HAdV-B infection than in those with other infections. Chimeric and authentic virus experiments show that ALCAM is a widely used host factor across B1 and B2 genetic clusters of HAdV-B. The dissociation constant between the knob domain of HAdV-B fiber and ALCAM is 837 nM in average. In summary, our results suggest that ALCAM is an entry factor for SCAP-associated HAdV-B.
Collapse
Affiliation(s)
- Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengfei Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
7
|
Li Y, Zhang Y, Tang J. Rhaponticin suppresses the stemness phenotype of gastric cancer stem-like cells CD133+/CD166 + by inhibiting programmed death-ligand 1. BMC Gastroenterol 2024; 24:423. [PMID: 39573998 PMCID: PMC11583647 DOI: 10.1186/s12876-024-03512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Gastric cancer stem cells (GCSCs) are key contributors to tumorigenesis, recurrence and metastasis, complicating gastric cancer (GC) treatment. Rhaponticin (RA), a potential novel anticancer drug, has unexplored effects on GCSCs. METHODS GCSCs were isolated using CD133 and CD166 markers with magnetic bead separation method and then evaluated their response to the IC50 concentrations of RA (16.90 µg/mL for BGC-823 and 22.18 µg/mL for SGC-7901), and effects on cell proliferation, migration, invasion, and stemness were measured. We analyzed the GCSC-related microarray dataset GSE111556 and explored RA's role in restoring programmed cell death ligand 1 (PD-L1) function in CD133+/CD166 + cells post-PD-L1 knockdown. RA's impact on tumour growth and immune microenvironment was assessed in a xenograft mouse model. RESULTS The CD133+/CD166 + subpopulation exhibited stem-like characteristics, with the highest proportion in BGC-823 (38.85%) and SGC-7901 (43.81%) cells. These cells formed tumour spheres and had increased expression of stemness markers Sox2 and Oct-4 (compared to the parental cell line, P < 0.001). RA treatment showed no toxicity to normal GES-1 cells but reduced the viability of CD133+/CD166 + cells in a dose-dependent manner, with IC50 values of 16.90 µg/ml for BGC-823 and 22.18 µg/ml for SGC-7901. RA also decreased the proportion of CD133+/CD166 + cells and their stem-like properties (P < 0.001). Analysis of the GEO database identified PD-L1 as a key target gene of RA, with high expression in GC tissues. Knocking down PD-L1 in CD133+/CD166 + cells and introducing RA did not significantly change PD-L1 expression (P>0.05), suggesting RA's effect may be PD-L1 dependent. In a xenograft mouse model, the tumour size in the RA treatment group was approximately one-sixth that of the CD133+/CD166 + group (P < 0.001). Post-RA treatment, there was an elevation in the expression levels of CD4 and CD8, alongside a reduction in PD-L1 expression (P < 0.001). CONCLUSIONS RA suppresses GCSC stem - like phenotype by inhibiting PD - L1 and enhancing T cell tumour infiltration in the studied models. These findings suggest that RA may have potential for further exploration as a candidate for GC treatment, but extensive preclinical and clinical studies are required to determine its true therapeutic value.
Collapse
Affiliation(s)
- Yulong Li
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Beilin District, Xi'an, Shaanxi, 710068, China.
| | - Yu Zhang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Beilin District, Xi'an, Shaanxi, 710068, China
| | - Jialin Tang
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, No. 256 Friendship West Road, Beilin District, Xi'an, Shaanxi, 710068, China
| |
Collapse
|
8
|
Zhou H, Xu H, Pang S, An L, Shi G, Wang C, Zhang P, Fan X, Yang J, Tang S, Lu Y, Yu L, Chen F, Ma R. Comparison of functional characterization of cancer stem cells in different tumor tissues of pseudomyxoma peritonei. J Transl Med 2024; 22:1022. [PMID: 39543711 PMCID: PMC11566827 DOI: 10.1186/s12967-024-05730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Pseudomyxoma peritonei (PMP) is a rare malignant peritoneal tumor that readily recurs and metastasizes. Studies have shown that cancer stem cells (CSCs) play an important role in tumor recurrence, metastasis, and prognosis. OBJECTIVE In this study, our aim was to isolate CSCs from various tissues of PMP patients and compare their proliferation, migration, and anti-inflammatory abilities. METHODS We identified CSCs subsets with markers CD133+, CD166+, and CD133+/CD166+ at the gene level using single-cell mRNA sequencing (scRNA-seq). Appendiceal CSCs (AC), peritoneal CSCs (PC), and mucous CSCs (MC) were obtained using MACSQuant Tyto sorting technology and FlowSight imaging flow cytometry. The cells were cultured and markers were identified. Finally, the functional phenotypes of the three cell types were compared. RESULTS CSCs content was highest in the appendiceal tumor tissue and lowest in the mucous tissue. The cell viability rate of the sorted CSCs was above 98%, and the positive rate of CD133+ and CD166+ was 70-80%, and CD133+/CD166+ was about 30%. Among the three types of CSCs, MC had the highest proliferation ability, and TNF-α has the greatest inhibitory effect on AC migration. CONCLUSION AC in patients was more inert and anti-inflammatory, whereas abdominal cavity MC and PC were more active. This study revealed the biological characteristics of CSCs in different tumor tissues of patients with PMP, providing a reference for future targeted CSCs therapy.
Collapse
Affiliation(s)
- Haipeng Zhou
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Hongbin Xu
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Shaojun Pang
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Lubiao An
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Guanjun Shi
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Chong Wang
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Pu Zhang
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Xiwen Fan
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Jing Yang
- Space Medical Center, Aerospace Center Hospital, Beijing, 100049, China
| | - Shiyi Tang
- Space Medical Center, Aerospace Center Hospital, Beijing, 100049, China
| | - Yiyan Lu
- Department of Pathology, Aerospace Center Hospital, Beijing, 100049, China
| | - Lifei Yu
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Feng Chen
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China
| | - Ruiqing Ma
- Department of Myxoma, Aerospace Center Hospital, Beijing, 100049, China.
| |
Collapse
|
9
|
Khadela A, Megha K, Shah VB, Soni S, Shah AC, Mistry H, Bhatt S, Merja M. Exploring the Potential of Antibody-Drug Conjugates in Targeting Non-small Cell Lung Cancer Biomarkers. Clin Med Insights Oncol 2024; 18:11795549241260534. [PMID: 38911453 PMCID: PMC11193349 DOI: 10.1177/11795549241260534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
Antibody-drug conjugates (ADCs), combining the cytotoxicity of the drug payload with the specificity of monoclonal antibodies, are one of the rapidly evolving classes of anti-cancer agents. These agents have been successfully incorporated into the treatment paradigm of many malignancies, including non-small cell lung cancer (NSCLC). The NSCLC is the most prevalent subtype of lung cancer, having a considerable burden on the cancer-related mortality and morbidity rates globally. Several ADC molecules are currently approved by the Food and Drug Administration (FDA) to be used in patients with NSCLC. However, the successful management of NSCLC patients using these agents was met with several challenges, including the development of resistance and toxicities. These shortcomings resulted in the exploration of novel therapeutic targets that can be targeted by the ADCs. This review aims to explore the recently identified ADC targets along with their oncologic mechanisms. The ADC molecules targeting these biomarkers are further discussed along with the evidence from clinical trials.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kaivalya Megha
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Vraj B Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shruti Soni
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Aayushi C Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Hetvi Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Manthan Merja
- Department of Clinical Oncology, Starlit Cancer Centre, Kothiya Hospital, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Maldonado VV, Pokharel S, Powell JG, Samsonraj RM. Phenotypic and Functional Characterization of Bovine Adipose-Derived Mesenchymal Stromal Cells. Animals (Basel) 2024; 14:1292. [PMID: 38731296 PMCID: PMC11083126 DOI: 10.3390/ani14091292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are increasingly trialed in cellular therapy applications in humans. They can also be applied to treat a range of diseases in animals, particularly in cattle to combat inflammatory conditions and aging-associated degenerative disorders. We sought to demonstrate the feasibility of obtaining MSCs from adipose tissue and characterizing them using established assays. METHODS Bovine adipose MSCs (BvAdMSCs) were isolated using in-house optimized tissue digestion protocols and characterized by performing a colony formation assay, cell growth assessments, cell surface marker analysis by immunocytochemistry and flow cytometry, osteogenic and adipogenic differentiation, and secretion of indoleamine 2,3-dioxygenease (IDO). RESULTS Our results demonstrate the feasibility of successful MSC isolation and culture expansion from bovine adipose tissues with characteristic features of colony formation, in vitro multilineage differentiation into osteogenic and adipogenic lineages, and cell surface marker expression of CD105, CD73, CD90, CD44, and CD166 with negative expression of CD45. BvAdMSCs secreted significant amounts of IDO with or without interferon-gamma stimulation, indicating ability for immunomodulation. CONCLUSIONS We report a viable approach to obtaining autologous adipose-derived MSCs that can be applied as potential adjuvant cell therapy for tissue repair and regeneration in cattle. Our methodology can be utilized by veterinary cell therapy labs for preparing MSCs for disease management in cattle.
Collapse
Affiliation(s)
- Vitali V. Maldonado
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Sriya Pokharel
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
| | - Jeremy G. Powell
- Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Rebekah M. Samsonraj
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (V.V.M.); (S.P.)
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Baek SM, Kim MN, Kim EG, Lee YJ, Park CH, Kim MJ, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Regulates the Expression of Interleukin-33 in RSV Induced Airway Inflammation by Regulating MAPK Signaling Pathways. Lung 2024; 202:127-137. [PMID: 38502305 DOI: 10.1007/s00408-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.
Collapse
Affiliation(s)
- Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Yu Jin Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Chang Hyun Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Min Jung Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
12
|
Xu NY, Li J, Wang ML, Chen XY, Tang R, Liu XQ. Fabrication of a Coculture Organoid Model in the Biomimetic Matrix of Alginate to Investigate Breast Cancer Progression in a TAMs-Leading Immune Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11275-11288. [PMID: 38383056 DOI: 10.1021/acsami.3c17863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The current research models of breast cancer are usually limited in their capacity to recapitulate the tumor microenvironment in vitro. The lack of an extracellular matrix (ECM) oversimplifies cell-cell or cell-ECM cross-talks. Moreover, the lack of tumor-associated macrophages (TAMs), that can comprise up to 50% of some solid neoplasms, poses a major problem for recognizing various hallmarks of cancer. To address these concerns, a type of direct breast cancer cells (BCCs)-TAMs coculture organoid model was well developed by a sequential culture method in this study. Alginate cryogels were fabricated with appropriate physical and mechanical properties to serve as an alternative ECM. Then, our previous experience was leveraged to polarize TAMs inside of the cryogels for creating an in vitro immune microenvironment. The direct coculture significantly enhanced BCCs organoid growth and cancer aggressive phenotypes, including the stemness, migration, ECM remodeling, and cytokine secretion. Furthermore, transcriptomic analysis and protein-protein interaction networks implied certain pathways (PI3K-Akt pathway, MAPK signaling pathway, etc.) and targets (TNF, PPARG, TLR2, etc.) during breast cancer progression in a TAM-leading immune microenvironment. Future studies to advance treatment strategies for BCC patients may benefit from using this facile model to reveal and target the interactions between cancer signaling and the immune microenvironment.
Collapse
Affiliation(s)
- Nian-Yuan Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jun Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Mei-Ling Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xue-Yu Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ruizhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, P. R. China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
13
|
Moradi L, Tajik F, Saeednejad Zanjani L, Panahi M, Gheytanchi E, Biabanaki ZS, Kazemi-Sefat GE, Hashemi F, Dehghan Manshadi M, Madjd Z. Clinical significance of CD166 and HER-2 in different types of gastric cancer. Clin Transl Oncol 2024; 26:664-681. [PMID: 37537510 DOI: 10.1007/s12094-023-03297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Cluster of differentiation 166 (CD166), a cancer stem cell (CSC) marker, and human epidermal growth factor receptor 2 (HER-2) are expressed in a diversity of malignancies and is associated with tumor progression. Although studies regarding the importance of CSC markers and HER-2 in gastric cancer (GC) have rapidly developed, their clinicopathological, prognosis, and diagnosis value still remain unsatisfying in GC. Therefore, the present study aims to investigate the clinical, prognostic, and diagnostic significance of CD166 and HER-2 in different histological types of GC. MATERIALS AND METHODS Bioinformatic analysis was applied to determine the clinical importance of CD166 and HER-2 expression based on their tissue localization in primary GC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of CD166 and HER-2 proteins in tissue microarrays (TMAs) of 206 GC samples, including Signet Ring Cell (SRC) and intestinal types and also 28 adjacent normal tissues were evaluated using immunohistochemistry (IHC). RESULTS The results indicated that the expression of CD166 (membranous and cytoplasmic) and HER-2 were significantly up-regulated in tumor cells compared to adjacent normal tissues (P = 0.010, P < 0.001, and P = 0.011, respectively). A statistically significant association was detected between a high level of membranous expression of CD166 and lymphovascular invasion (P = 0.006); We also observed a statistically significant association between high cytoplasmic expression of CD166 protein and more invasion of the subserosa (P = 0.040) in the SRC type. In contrast, there was no correlation between the expression of HER-2 and clinicopathologic characteristics. Both CD166 and HER-2 showed reasonable accuracy and high specificity as diagnostic markers. CONCLUSION Our results confirmed that increased membranous and cytoplasmic expression of CD166 showed clinical significance in the SRC type and is associated with the progression of the disease and more aggressive tumor behaviors. These findings can be used to assist in designating subgroups of patients that require different follow-up strategies, and also, they might be utilized as the prognostic or diagnostic biomarkers in these types of GC for prospective clinical application.
Collapse
Affiliation(s)
- Leila Moradi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahshid Panahi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Biabanaki
- Faculty of Biological Sciences, Department of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Golnaz Ensieh Kazemi-Sefat
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Faculty of Advanced Technologies in Medicine, Department of Molecular Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Serritella AV, Saenz-Lopez Larrocha P, Dhar P, Liu S, Medd MM, Jia S, Cao Q, Wu JD. The Human Soluble NKG2D Ligand Differentially Impacts Tumorigenicity and Progression in Temporal and Model-Dependent Modes. Biomedicines 2024; 12:196. [PMID: 38255301 PMCID: PMC10812945 DOI: 10.3390/biomedicines12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
NKG2D is an activating receptor expressed by all human NK cells and CD8 T cells. Harnessing the NKG2D/NKG2D ligand axis has emerged as a viable avenue for cancer immunotherapy. However, there is a long-standing controversy over whether soluble NKG2D ligands are immunosuppressive or immunostimulatory, originating from conflicting data generated from different scopes of pre-clinical investigations. Using multiple pre-clinical tumor models, we demonstrated that the impact of the most characterized human solid tumor-associated soluble NKG2D ligand, the soluble MHC I chain-related molecule (sMIC), on tumorigenesis depended on the tumor model being studied and whether the tumor cells possessed stemness-like properties. We demonstrated that the potential of tumor formation or establishment depended upon tumor cell stem-like properties irrespective of tumor cells secreting the soluble NKG2D ligand sMIC. Specifically, tumor formation was delayed or failed if sMIC-expressing tumor cells expressed low stem-cell markers; tumor formation was rapid if sMIC-expressing tumor cells expressed high stem-like cell markers. However, once tumors were formed, overexpression of sMIC unequivocally suppressed tumoral NK and CD8 T cell immunity and facilitated tumor growth. Our study distinguished the differential impacts of soluble NKG2D ligands in tumor formation and tumor progression, cleared the outstanding controversy over soluble NKG2D ligands in modulating tumor immunity, and re-enforced the viability of targeting soluble NKG2D ligands for cancer immunotherapy for established tumors.
Collapse
Affiliation(s)
- Anthony V. Serritella
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Pablo Saenz-Lopez Larrocha
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Shengxian Jia
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (P.S.-L.L.); (P.D.); (S.L.); (M.M.M.); (S.J.); (Q.C.)
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Jiang W, Jia Q, Ma H, Han S, Bi S, Zhu K, Chen L, Liang G. MicroRNA-124 conducts neuroprotective effect via inhibiting AK4/ATF3 after subarachnoid hemorrhage. Exp Brain Res 2024; 242:33-45. [PMID: 37932484 DOI: 10.1007/s00221-023-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 11/08/2023]
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for approximately 5% of all cases of stroke. SAH is correlated with elevated rates of mortality and disability. Despite significant advancements in comprehending the pathogenesis and surgical management, efficacious clinical interventions remain restricted, and the prognosis is yet to be enhanced. MicroRNAs play a crucial role in various pathological processes in organisms. Revealing these regulatory processes is conducive to the development of new treatment methods. MicroRNA-124 is highly expressed in the nervous system and has significant research value for SAH. This study aims to explore the role of miR-124 in the early post-SAH period on neural function and verify whether it is involved in the pathological and physiological processes of SAH. In this study, we used methods such as comparing the expression levels of miR-124 in cerebrospinal fluid, establishing a rat SAH model, and a mouse embryonic primary neuron hemoglobin stimulation model to verify the downstream proteins of miR-124 in SAH. Through transfection techniques, we adjusted the expression of this small RNA in Vitro and in Vivo models using miR-124 inhibitor and mimic in the primary neuron hemoglobin stimulation model and rat SAH model, and observed the phenotype. Finally, by consulting the literature and verifying in Vivo and in Vitro methods, AK4 and downstream molecule ATF3 were identified as downstream targets of miR-124.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongxin Ma
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
16
|
Almási S, Nagy Á, Krenács T, Lantos T, Zombori T, Cserni G. The prognostic value of stem cell markers in triple-negative breast cancer. Pathol Oncol Res 2023; 29:1611365. [PMID: 38188613 PMCID: PMC10766821 DOI: 10.3389/pore.2023.1611365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Among the many consecutive theories of cancer, the stem cell theory is currently the most accepted one. Cancer stem cells are located in small niches with specific environment, renew themselves and are believed to be responsible for many recurrences. They can be highlighted with stem cell markers, but often these markers also label tumor cells, and this may represent a phenotypical change associated with prognosis. In this study, we attempted to match tumor outcomes with the expression of the following stem cell markers: ALDH1, AnnexinA1, CD44, CD117, CD166, Nanog and oct-4. Tissue microarray blocks from triple-negative breast cancers were immunostained for the listed markers, and their expression by the majority of tumor cells (diffuse positivity) was correlated with prognosis. Of the 106 tumors investigated, diffuse positivity was seen in 7 (ALDH1), 33 (AnnexinA1), 53 (CD44), 44 (CD117 membranous only), 49 (CD117), 72 (CD166), 19 (Nanog), and 11 (oct-4) cases. With a median follow-up of 83 months, ALDH1 and CD117 expression was associated with DFS, whereas CD44, CD117 and CD166 were associated with OS estimates, based on Kaplan-Meier analyses. In the multivariate Cox proportional hazard models (including the examined markers and clinicopathological data which had a statistical impact in the univariate analysis), the pN category and the lack of ALDH1 expression were independent prognosticators for DFS, and the pN category and diffuse CD44 staining were independent prognosticators for OS. In the multivariate analysis including all of the examined clinicopathological data and markers, only CD117 showed a statistical impact on OS. We failed to demonstrate a prognostic impact for most stem cell markers tested in triple-negative breast cancer, but lack of ALDH1 staining and CD44 expression appears as of prognostic value, requiring further examination in independent studies.
Collapse
Affiliation(s)
- Szintia Almási
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Ágnes Nagy
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Krenács
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Lantos
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Zombori
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical Centre, University of Szeged, Szeged, Hungary
- Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
| |
Collapse
|
17
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Aragón-Serrano L, Carrillo-Serradell L, Planells-Romeo V, Isamat M, Velasco-de Andrés M, Lozano F. CD6 and Its Interacting Partners: Newcomers to the Block of Cancer Immunotherapies. Int J Mol Sci 2023; 24:17510. [PMID: 38139340 PMCID: PMC10743954 DOI: 10.3390/ijms242417510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer management still requires more potent and safer treatments, of which immunomodulatory receptors on the lymphocyte surface have started to show promise in new cancer immunotherapies (e.g., CTLA-4 and PD-1). CD6 is a signal-transducing transmembrane receptor, mainly expressed by all T cells and some B and NK cell subsets, whose endogenous ligands (CD166/ALCAM, CD318/CDCP-1, Galectins 1 and 3) are overexpressed by malignant cells of different lineages. This places CD6 as a potential target for novel therapies against haematological and non-haematological malignancies. Recent experimental evidence for the role of CD6 in cancer immunotherapies is summarised in this review, dealing with diverse and innovative strategies from the classical use of monoclonal antibodies to soluble recombinant decoys or the adoptive transfer of immune cells engineered with chimeric antigen receptors.
Collapse
Affiliation(s)
- Lucía Aragón-Serrano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Laura Carrillo-Serradell
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Violeta Planells-Romeo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Marcos Isamat
- Sepsia Therapeutics S.L., 08908 L’Hospitalet de Llobregat, Spain;
| | - María Velasco-de Andrés
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Francisco Lozano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
19
|
Rusu A, Caruntu ID, Lozneanu L, Ciobanu DG, Amalinei C, Giusca SE. Galectin-8 Immunohistochemical Profile in Pancreatic Ductal Adenocarcinoma: Emerging Evidence for Its Prognostic Role. Diagnostics (Basel) 2023; 13:3215. [PMID: 37892036 PMCID: PMC10606265 DOI: 10.3390/diagnostics13203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most frequent pancreatic malignancy, with stromal and epithelial heterogeneity reflected in outcome variability. Therefore, a molecular classification is promoted based on the validation of new diagnostic and prognostic markers. Galectin-8 (Gal8) has been pointed out as a prognostic factor for survival in several types of tumors. Due to limited existing data on PDAC, our study aimed to evaluate the Gal8 profile in PDAC alongside its prognostic status. A total of 87 cases of PDAC were immunohistochemically investigated, and Gal8 immunoexpression was qualitatively and semi-quantitatively assessed and correlated with classical clinicopathological parameters and survival. Gal8 immunoexpression was identified to be mostly nuclear and cytoplasmic, followed by exclusively cytoplasmic and exclusively nuclear. A statistical analysis between Gal8 profiles defined by negative, low, or high scores and clinicopathological characteristics showed significant differences in tumor size, pN stage, and lympho-vascular invasion. Although a Cox regression analysis did not support the prognostic status of Gal8, and we did not confirm its relationship with OS, our results show that exclusively nuclear labeling was associated with an increased mean OS compared with cytoplasmic and nuclear labeling (29.37 vs. 17.93 months). To the best of our knowledge, this is the first study to report a detailed pattern of Gal8 immunostaining in PDAC and to correlate this pattern with clinicopathological characteristics and survival. Our results show that Gal8 immunoexpression is associated with a more aggressive phenotype, thus opening perspectives for larger studies to validate Gal8 as a prognostic factor.
Collapse
Affiliation(s)
- Andreea Rusu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Irina-Draga Caruntu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
| | - Ludmila Lozneanu
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
| | - Delia Gabriela Ciobanu
- Department of Pathology, “Sf. Spiridon” Clinical Emergency County Hospital, 700111 Iasi, Romania;
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Cornelia Amalinei
- Department of Morpho-Functional Sciences I—Histology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (A.R.); (L.L.); (C.A.)
| | - Simona-Eliza Giusca
- Department of Pathology, “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania
- Department of Morpho-Functional Sciences I—Morphopathology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
20
|
Zhang P, Wu Y, Piao C, Song Y, Zhao Y, Lyu Y, Sun Q, Liu J. DNA methylome profiling in occupational radon exposure miners using an Illumina Infinium Methylation EPIC BeadChip. Toxicol Res (Camb) 2023; 12:943-953. [PMID: 37915496 PMCID: PMC10615836 DOI: 10.1093/toxres/tfad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 11/03/2023] Open
Abstract
Background A causal relationship between occupational radon exposure in underground miners and lung cancer risk has been demonstrated through large cohort epidemiological studies. However, the mechanisms by which radon exposure causes adverse effects on lung tissue remain unclear. Epigenetic alterations such as DNA methylation may provide new insights into interactions at molecular levels induced by prolonged radon exposure. Methods We used the Illumina Infinium Human Methylation 850 K BeadChip to detect and compare genome-wide DNA methylation profiles in peripheral blood samples from underground miners (n = 14) and aboveground workers (n = 9). Results The average concentration of radon in underground workplaces was significantly higher than that of aboveground places (1,198 Bq·m-3 vs 58 Bq·m-3, p < 0.001). A total of 191 differentially methylated positions (DMPs) corresponding to 104 hub genes were identified when |Δβ| ≥ 0.1 and p < 0.05, with 107 hypermethylated sites and 84 hypomethylated sites. GO and KEGG analysis revealed that differentially methylated genes between underground miners and aboveground workers were prominently enriched in pathways/networks involved in neurotransmitter regulation, immunomodulatory effects and cell adhesion ability. Furthermore, methylation changes of selected genes FERMT1, ALCAM, HLA-DPA1, PON1 and OR2L13 were validated by pyrosequencing, which may play vital roles in these biological processes induced by radon. Conclusion In summary, the DNA methylation pattern of the underground miners exposed to radon was distinct from that of the aboveground workers. Such abnormalities in the genomic DNA methylation profile associated with prolonged radon exposure are worth studying in terms of neuro- and immune-system regulation, as well as cell adhesion ability in the future.
Collapse
Affiliation(s)
- Pinhua Zhang
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yunyun Wu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Chunnan Piao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yanchao Song
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Yanfang Zhao
- The Third People’s Hospital of Henan Province, Henan Hospital for Occupational Diseases, 3 Kangfu Middle Street, Erqi District, Zhengzhou 450052, China
| | - Yumin Lyu
- The Third People’s Hospital of Henan Province, Henan Hospital for Occupational Diseases, 3 Kangfu Middle Street, Erqi District, Zhengzhou 450052, China
| | - Quanfu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| | - Jianxiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Deshengmenwai, Xicheng District, Beijing 100088, China
| |
Collapse
|
21
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
23
|
Sulic AM, Das Roy R, Papagno V, Lan Q, Saikkonen R, Jernvall J, Thesleff I, Mikkola ML. Transcriptomic landscape of early hair follicle and epidermal development. Cell Rep 2023; 42:112643. [PMID: 37318953 DOI: 10.1016/j.celrep.2023.112643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/04/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Morphogenesis of ectodermal organs, such as hair, tooth, and mammary gland, starts with the formation of local epithelial thickenings, or placodes, but it remains to be determined how distinct cell types and differentiation programs are established during ontogeny. Here, we use bulk and single-cell transcriptomics and pseudotime modeling to address these questions in developing hair follicles and epidermis and produce a comprehensive transcriptomic profile of cellular populations in the hair placode and interplacodal epithelium. We report previously unknown cell populations and marker genes, including early suprabasal and genuine interfollicular basal markers, and propose the identity of suprabasal progenitors. By uncovering four different hair placode cell populations organized in three spatially distinct areas, with fine gene expression gradients between them, we posit early biases in cell fate establishment. This work is accompanied by a readily accessible online tool to stimulate further research on skin appendages and their progenitors.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Verdiana Papagno
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Riikka Saikkonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
24
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
25
|
Cho WJ, Mittal SK, Chauhan SK. Mesenchymal Stromal Cells Suppress T-Cell-Mediated Delayed-Type Hypersensitivity via ALCAM-CD6 Interaction. Stem Cells Transl Med 2023; 12:221-233. [PMID: 36972356 PMCID: PMC10108723 DOI: 10.1093/stcltm/szad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Mounting evidence suggests mesenchymal stromal cells (MSCs) suppress CD4+ T-cell activation, but whether MSCs directly regulate activation and expansion of allogeneic T cells has not been fully deciphered. Here, we identified that both human and murine MSCs constitutively express ALCAM, a cognate ligand for CD6 receptors on T cells, and investigated its immunomodulatory function using in vivo and in vitro experiments. Our controlled coculture assays demonstrated that ALCAM-CD6 pathway is critical for MSCs to exert its suppressive function on early CD4+CD25- T-cell activation. Moreover, neutralizing ALCAM or CD6 results in the abrogation of MSC-mediated suppression of T-cell expansion. Using a murine model of delayed-type hypersensitivity response to alloantigen, we show that ALCAM-silenced MSCs lose the capacity to suppress the generation of alloreactive IFNγ-secreting T cells. Consequently, MSCs, following ALCAM knockdown, failed to prevent allosensitization and alloreactive T-cell-mediated tissue damage.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Bangarh R, Khatana C, Kaur S, Sharma A, Kaushal A, Siwal SS, Tuli HS, Dhama K, Thakur VK, Saini RV, Saini AK. Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnol Adv 2023; 66:108149. [PMID: 37030554 DOI: 10.1016/j.biotechadv.2023.108149] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Glycosylation-mediated post-translational modification is critical for regulating many fundamental processes like cell division, differentiation, immune response, and cell-to-cell interaction. Alterations in the N-linked or O-linked glycosylation pattern of regulatory proteins like transcription factors or cellular receptors lead to many diseases, including cancer. These alterations give rise to micro- and macro-heterogeneity in tumor cells. Here, we review the role of O- and N-linked glycosylation and its regulatory function in autoimmunity and aberrant glycosylation in cancer. The change in cellular glycome could result from a change in the expression of glycosidases or glycosyltransferases like N-acetyl-glucosaminyl transferase V, FUT8, ST6Gal-I, DPAGT1, etc., impact the glycosylation of target proteins leading to transformation. Moreover, the mutations in glycogenes affect glycosylation patterns on immune cells leading to other related manifestations like pro- or anti-inflammatory effects. In recent years, understanding the glycome to cancer indicates that it can be utilized for both diagnosis/prognosis as well as immunotherapy. Studies involving mass spectrometry of proteome, site- and structure-specific glycoproteomics, or transcriptomics/genomics of patient samples and cancer models revealed the importance of glycosylation homeostasis in cancer biology. The development of emerging technologies, such as the lectin microarray, has facilitated research on the structure and function of glycans and glycosylation. Newly developed devices allow for high-throughput, high-speed, and precise research on aberrant glycosylation. This paper also discusses emerging technologies and clinical applications of glycosylation.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Chainika Khatana
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Simranjeet Kaur
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Anchita Sharma
- Division of Biology, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517641, India
| | - Ankur Kaushal
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| |
Collapse
|
27
|
Lemaigre C, Ceuppens A, Valades-Cruz CA, Ledoux B, Vanbeneden B, Hassan M, Zetterberg FR, Nilsson UJ, Johannes L, Wunder C, Renard HF, Morsomme P. N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. Traffic 2023; 24:190-212. [PMID: 36843549 DOI: 10.1111/tra.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Collapse
Affiliation(s)
- Camille Lemaigre
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Apolline Ceuppens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Cesar Augusto Valades-Cruz
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France.,SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France.,SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Campus Universitaire de Beaulieu, Rennes, France
| | - Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Bastien Vanbeneden
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| |
Collapse
|
28
|
Murayama E, Vivier C, Schmidt A, Herbomel P. Alcam-a and Pdgfr-α are essential for the development of sclerotome-derived stromal cells that support hematopoiesis. Nat Commun 2023; 14:1171. [PMID: 36859431 PMCID: PMC9977867 DOI: 10.1038/s41467-023-36612-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Mesenchymal stromal cells are essential components of hematopoietic stem and progenitor cell (HSPC) niches, regulating HSPC proliferation and fates. Their developmental origins are largely unknown. In zebrafish, we previously found that the stromal cells of the caudal hematopoietic tissue (CHT), a niche functionally homologous to the mammalian fetal liver, arise from the ventral part of caudal somites. We have now found that this ventral domain is the sclerotome, and that two markers of mammalian mesenchymal stem/stromal cells, Alcam and Pdgfr-α, are distinctively expressed there and instrumental for the emergence and migration of stromal cell progenitors, which in turn conditions the proper assembly of the vascular component of the CHT niche. Furthermore, we find that trunk somites are similarly dependent on Alcam and Pdgfr-α to produce mesenchymal cells that foster HSPC emergence from the aorta. Thus the sclerotome contributes essential stromal cells for each of the key steps of developmental hematopoiesis.
Collapse
Affiliation(s)
- Emi Murayama
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France. .,INSERM, Paris, 75013, France. .,CNRS, UMR3738, Paris, 75015, France.
| | - Catherine Vivier
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Anne Schmidt
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, 75015, France.,CNRS, UMR3738, Paris, 75015, France
| |
Collapse
|
29
|
Tímár J, Honn KV, Hendrix MJC, Marko-Varga G, Jalkanen S. Newly identified form of phenotypic plasticity of cancer: immunogenic mimicry. Cancer Metastasis Rev 2023; 42:323-334. [PMID: 36754910 PMCID: PMC10014767 DOI: 10.1007/s10555-023-10087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Cancer plasticity is now a recognized new hallmark of cancer which is due to disturbances of cell differentiation programs. It is manifested not only in various forms like the best-known epithelial-mesenchymal transition (EMT) but also in vasculogenic and megakaryocytic mimicries regulated by EMT-specific or less-specific transcription factors such as HIF1a or STAT1/2. Studies in the past decades provided ample data that cancer plasticity can be manifested also in the expression of a vast array of immune cell genes; best-known examples are PDL1/CD274, CD47, or IDO, and we termed it immunogenic mimicry (IGM). However, unlike other types of plasticities which are epigenetically regulated, expression of IGM genes are frequently due to gene amplifications. It is important that the majority of the IGM genes are regulated by interferons (IFNs) suggesting that their protein expressions are regulated by the immune microenvironment. Most of the IGM genes have been shown to be involved in immune escape of cancers broadening the repertoire of these mechanisms and offering novel targets for immunotherapeutics.
Collapse
Affiliation(s)
- József Tímár
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - Kenneth V Honn
- Departments of Pathology, Oncology and Chemistry, Wayne State University, Detroit, MI, USA.,Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mary J C Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA
| | - György Marko-Varga
- Clinical Protein Science and Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Sirpa Jalkanen
- Medicity Research Laboratories, Turku, Finland.,InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
31
|
Wan S, Cao J, Chen S, Yang J, Wang H, Wang C, Li K, Yang L. Construction of noninvasive prognostic model of bladder cancer patients based on urine proteomics and screening of natural compounds. J Cancer Res Clin Oncol 2023; 149:281-296. [PMID: 36562811 DOI: 10.1007/s00432-022-04524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) has a high incidence and recurrence rate worldwide. So far, there is no noninvasive detection of BCa therapy and prognosis based on urine multi-omics. Therefore, it is necessary to explore noninvasive predictive models and novel treatment modalities for BCa. METHODS First, we performed protein analysis of urine from five BCa patients and five healthy individuals using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining multi-omics data to mine particular and sensitive molecules to predict BCa prognosis. Second, urine proteomics data were combined with TCGA transcriptome data to select differential genes that were specifically highly expressed in urine and tissues. Further, the Lasso equation was used to screen specific molecules to construct a noninvasive prediction model of BCa. Finally, natural compounds of specific molecules were selected by combined network pharmacology and molecular docking to complete molecular structure docking. RESULTS A noninvasive predictive model was constructed using PSMB5, P4HB, S100A16, GET3, CNP, TFRC, DCXR, and MPZL1, specific molecules screened by multi-omics, and clinical features, which had good predictive value at 1, 3, and 5 years of prediction. High expression of these target genes suggests a poor prognosis in patients with BCa, and they were mainly involved in cell adhesion molecules and the IGF pathway. In addition, the corresponding drugs and natural compounds were selected by network pharmacology, and the molecular structure 7NHT of PSMB5 was found to be well docked to Ellagic acid, a natural compound in Hetaoren that we found. The 3D structure 6I7S of P4HB was able to bind to Stigmasterol in Shanzha stably, and the structure 6WRV of TFRC as an iron transport carrier was also able to bind to Stigmasterol in Shanzha stably. The structures 1WOJ, 3D3W, and 6IGW of CNP, DCXR, and MPZL1 can also play an important role in combination with the natural compounds (S)-Stylopine, Kryptoxanthin, and Sitosterol in Maqianzi, Yumixu, and Laoguancao. CONCLUSION The noninvasive prediction model based on urinomics had excellent potential in predicting the prognosis of patients with BCa. The multi-omics screening of specific molecules combined with pharmacology and compound molecular docking can promote the research and development of novel drugs.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jianwei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Huabin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Chenyang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Kunpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
32
|
Sun R, Gao Y, Shen F. Identification of subtypes of hepatocellular carcinoma and screening of prognostic molecular diagnostic markers based on cell adhesion molecule related genes. Front Genet 2022; 13:1042540. [PMID: 36482887 PMCID: PMC9723242 DOI: 10.3389/fgene.2022.1042540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 10/03/2023] Open
Abstract
Cell adhesion molecules can predict liver hepatocellular carcinoma (LIHC) metastasis and determine prognosis, while the mechanism of the role of cell adhesion molecules in LIHC needs to be further explored. LIHC-related expression data were sourced from The Cancer Genome Atlas (TCGA) and the gene expression omnibus (GEO) databases, and genes related to cell adhesion were sourced from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. First, the TCGA-LIHC dataset was clustered by the nonnegative matrix factorization (NMF) algorithm to find different subtypes of LIHC. Then the difference of prognosis and immune microenvironment between patients of different subtypes was evaluated. In addition, a prognostic risk model was obtained by least shrinkage and selection operator (LASSO) and Cox analysis, while a nomogram was drawn. Furthermore, functional enrichment analysis between high and low risk groups was conducted. Finally, the expressions of model genes were explored by quantitative real-time polymerase chain reaction (qRT-PCR). The 371 LIHC patients were classified into four subtypes by NMF clustering, and survival analysis revealed that disease-free survival (DFS) of these four subtypes were clearly different. Cancer-related pathways and immune microenvironment among these four subtypes were dysregulated. Moreover, 58 common differentially expressed genes (DEGs) between four subtypes were identified and were mainly associated with PPAR signaling pathway and amino acid metabolism. Furthermore, a prognostic model consisting of IGSF11, CD8A, ALCAM, CLDN6, JAM2, ITGB7, SDC3, CNTNAP1, and MPZ was built. A nomogram consisting of pathologic T and riskScore was built, and the calibration curve illustrated that the nomogram could better forecast LIHC prognosis. Gene Set Enrichment Analysis (GSEA) demonstrated that DEGs between high and low risk groups were mainly involved in cell cycle. Finally, the qRT-PCR illustrated the expressions of nine model genes between normal and LIHC tissue. A prognostic model consisting of IGSF11, CD8A, ALCAM, CLDN6, JAM2, ITGB7, SDC3, CNTNAP1, and MPZ was obtained, which provides an important reference for the molecular diagnosis of patient prognosis.
Collapse
Affiliation(s)
- Ruge Sun
- College of Medicine, Shanxi Medical University, Taiyuan, China
- Department of Gastroenterology and Hepatoloy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanchao Gao
- Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Fengjun Shen
- Department of Gastroenterology and Hepatoloy, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
33
|
Català C, Velasco-de Andrés M, Leyton-Pereira A, Casadó-Llombart S, Sáez Moya M, Gutiérrez-Cózar R, García-Luna J, Consuegra-Fernández M, Isamat M, Aranda F, Martínez-Florensa M, Engel P, Mourglia-Ettlin G, Lozano F. CD6 deficiency impairs early immune response to bacterial sepsis. iScience 2022; 25:105078. [PMID: 36157587 PMCID: PMC9490029 DOI: 10.1016/j.isci.2022.105078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
CD6 is a lymphocyte-specific scavenger receptor expressed on adaptive (T) and innate (B1a, NK) immune cells, which is involved in both fine-tuning of lymphocyte activation/differentiation and recognition of bacterial-associated molecular patterns (i.e., lipopolysaccharide). However, evidence on CD6’s role in the physiological response to bacterial infection was missing. Our results show that induction of monobacterial and polymicrobial sepsis in Cd6−/− mice results in lower survival rates and increased bacterial loads and pro-inflammatory cytokine levels. Steady state analyses of Cd6−/− mice show decreased levels of natural polyreactive antibodies, concomitant with decreased cell counts of spleen B1a and marginal zone B cells. Adoptive transfer of wild-type B cells and mouse serum, as well as a polyreactive monoclonal antibody improve Cd6−/− mouse survival rates post-sepsis. These findings support a nonredundant role for CD6 in the early response against bacterial infection, through homeostatic expansion and functionality of innate-related immune cells. CD6 is a nonredundant receptor in early immune response to sepsis Cd6−/− mice show higher susceptibility to bacterial sepsis Cd6−/− mice show lower B1a and MZB cell and natural polyreactive antibody levels B cell and serum transfer restore susceptibility of Cd6−/− mice to bacterial sepsis
Collapse
Affiliation(s)
- Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - María Velasco-de Andrés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - Alejandra Leyton-Pereira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - Manuel Sáez Moya
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Joaquín García-Luna
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marta Consuegra-Fernández
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., 08908 L'Hospitalet de Llobregat, Spain
| | - Fernando Aranda
- Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Mario Martínez-Florensa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain
| | - Pablo Engel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, 11800 Montevideo, Uruguay
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain.,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.,Servei d'Immunologia, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
34
|
Casadó‐Llombart S, Ajami T, Consuegra‐Fernández M, Carreras E, Aranda F, Armiger N, Alcaraz A, Mengual L, Lozano F. Gene variation impact on prostate cancer progression: Lymphocyte modulator, activation, and cell adhesion gene variant contribution. Prostate 2022; 82:1331-1337. [PMID: 35767366 PMCID: PMC9542726 DOI: 10.1002/pros.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The view of prostate cancer (PCa) progression as a result of the interaction of epithelial cancer cells with the host's immune system is supported by the presence of tumor infiltrating lymphocytes (TILs). TILs fate and interaction with the tumor microenvironment is mediated by accessory molecules such as CD5 and CD6, two signal-transducing coreceptors involved in fine-tuning of T cell responses. While the nature of the CD5 ligand is still controversial, CD6 binds CD166/ALCAM, a cell adhesion molecule involved in progression and dissemination of epithelial cancers, including PCa. The purpose of the present study was to determine the role of CD5, CD6, and CD166/ALCAM gene variants in PCa. METHODS Functionally relevant CD5 (rs2241002 and rs2229177), CD6 (rs17824933, rs11230563, and rs12360861) and CD166/ALCAM (rs6437585, rs579565, rs1044243, and rs35271455) single nucleotide polymorphisms (SNPs) were genotyped in germline DNA samples from 376 PCa patients. Their association with PCa prognostic factors, namely biochemical recurrence (BCR) and International Society of Urological Pathology (ISUP) grade was analyzed by generalized linear models and survival analyses. RESULT Proportional hazards regression showed that the minor CD6 rs12360861AA and CD166/ALCAM rs579565AA genotypes were associated with earlier BCR, with hazard ratios of 2.65 (95% CI: 1.39-5.05, p = 0.003) and 1.86, (95% CI: 1.02-3.39, p = 0.043), respectively. Individually, none of the analyzed SNPs was significantly associated with ISUP grade, but haplotype analyses revealed association of the CD5 rs2241002C -rs2229177T haplotype with ISUP grade ≥2, with odds ratio of 1.52 (95% CI: 1.05-2.21, p = 0.026). CONCLUSION The results show the impact on PCa aggressiveness and recurrence brought about by gene variants involved in modulation of lymphocyte activation (CD5, CD6) and immune-epithelial cell adhesion (CD166/ALCAM) in PCa aggressiveness and recurrence, thus supporting a role for host immune response in PCa pathophysiology.
Collapse
Affiliation(s)
- Sergi Casadó‐Llombart
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Tarek Ajami
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
| | - Marta Consuegra‐Fernández
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Antonio Alcaraz
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
| | - Lourdes Mengual
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
- Servei d'Immunologia, Centre de Diagnòstic BiomèdicHospital Clínic de BarcelonaBarcelonaSpain
| |
Collapse
|
35
|
Rossi SH, Newsham I, Pita S, Brennan K, Park G, Smith CG, Lach RP, Mitchell T, Huang J, Babbage A, Warren AY, Leppert JT, Stewart GD, Gevaert O, Massie CE, Samarajiwa SA. Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker-driven learning framework. SCIENCE ADVANCES 2022; 8:eabn9828. [PMID: 36170366 PMCID: PMC9519038 DOI: 10.1126/sciadv.abn9828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/10/2022] [Indexed: 06/01/2023]
Abstract
Current gold standard diagnostic strategies are unable to accurately differentiate malignant from benign small renal masses preoperatively; consequently, 20% of patients undergo unnecessary surgery. Devising a more confident presurgical diagnosis is key to improving treatment decision-making. We therefore developed MethylBoostER, a machine learning model leveraging DNA methylation data from 1228 tissue samples, to classify pathological subtypes of renal tumors (benign oncocytoma, clear cell, papillary, and chromophobe RCC) and normal kidney. The prediction accuracy in the testing set was 0.960, with class-wise ROC AUCs >0.988 for all classes. External validation was performed on >500 samples from four independent datasets, achieving AUCs >0.89 for all classes and average accuracies of 0.824, 0.703, 0.875, and 0.894 for the four datasets. Furthermore, consistent classification of multiregion samples (N = 185) from the same patient demonstrates that methylation heterogeneity does not limit model applicability. Following further clinical studies, MethylBoostER could facilitate a more confident presurgical diagnosis to guide treatment decision-making in the future.
Collapse
Affiliation(s)
- Sabrina H. Rossi
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Izzy Newsham
- MRC Cancer Unit, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Sara Pita
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kevin Brennan
- Stanford Centre for Biomedical Informatics Research, Department of Medicine and Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Gahee Park
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Christopher G. Smith
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Major Centre, Cambridge, UK
| | - Radoslaw P. Lach
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas Mitchell
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Junfan Huang
- MRC Cancer Unit, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Babbage
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Anne Y. Warren
- Department of Histopathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - John T. Leppert
- Department of Urology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Urology Surgical Service, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Olivier Gevaert
- Stanford Centre for Biomedical Informatics Research, Department of Medicine and Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Charles E. Massie
- Department of Oncology, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
- Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Shamith A. Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison–MRC Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
36
|
Dai R, Tao R, Li X, Shang T, Zhao S, Ren Q. Expression profiling of mRNA and functional network analyses of genes regulated by human papilloma virus E6 and E7 proteins in HaCaT cells. Front Microbiol 2022; 13:979087. [PMID: 36188003 PMCID: PMC9515614 DOI: 10.3389/fmicb.2022.979087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomavirus (HPV) oncogenes E6 and E7 are essential for HPV-related cancer development. Here, we developed a cell line model using lentiviruses for transfection of the HPV16 oncogenes E6 and E7 and investigated the differences in mRNA expression during cell adhesion and chemokine secretion. Subsequently, RNA sequencing (RNA-seq) analysis was performed to explore the differences in mRNA expression. Compared to levels in the control group, 2,905 differentially expressed mRNAs (1,261 downregulated and 1,644 upregulated) were identified in the HaCaT-HPV16E6E7 cell line. To predict the functions of these differentially expressed genes (DEGs) the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used. Protein–protein interactions were established, and the hub gene was identified based on this network. Real-time quantitative-PCR (RT-qPCR) was conducted to confirm the levels of 14 hub genes, which were consistent with the RNA-seq data. According to this, we found that these DEGs participate in the extracellular matrix (ECM), cell adhesion, immune control, and cancer-related signaling pathways. Currently, an increasing number of clinicians depend on E6/E7mRNA results to make a comprehensive judgment of cervical precancerous lesions. In this study, 14 hub genes closely related to the expression of cell adhesion ability and chemokines were analyzed in HPV16E6E7-stably expressing cell lines, which will open up new research ideas for targeting E6E7 in the treatment of HPV-related cancers.
Collapse
Affiliation(s)
- Renjinming Dai
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Tao
- Laboratory of Clinical Applied Anatomy, Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiu Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Shang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shixian Zhao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Qingling Ren,
| |
Collapse
|
37
|
Qian Q, Cui N, Huang B, Zhao Y, Liu Q, Hu M, Li B, Wang Q, Miao Q, You Z, Ma X, Tang R. Intrahepatic activated leukocyte cell adhesion molecule induces CD6highCD4+ T cell infiltration in autoimmune hepatitis. Front Immunol 2022; 13:967944. [PMID: 36159854 PMCID: PMC9500242 DOI: 10.3389/fimmu.2022.967944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background and objectives Autoimmune hepatitis (AIH) is characterized by the expansion and accumulation of pathogenic T cells in liver. Although CD6 and its ligand activated leukocyte cell adhesion molecule (ALCAM) are involved in the evolution of multiple inflammatory diseases, their roles in the pathogenesis of AIH remain unknown. Herein, we aimed to investigate ALCAM-CD6 axis in AIH development. Methods Immunohistochemistry was performed to examine hepatic expression of CD6 and ALCAM. The concentration of serum ALCAM was evaluated by ELISA. The phenotypes of liver infiltrating T cells were determined by flow cytometry. Primary human CD4+ T cells were used for functional studies. Results Our data showed that patients with AIH exhibited significantly higher expression of CD6 in the liver as compared to primary biliary cholangitis (PBC), chronic hepatitis B (CHB), non-alcoholic liver disease (NAFLD), and healthy controls (HC). In addition, hepatic CD6 expression was strongly correlated with disease severity of AIH. CD6 was mainly expressed on CD4+ T cells in the liver and intrahepatic CD6highCD4+ T cells demonstrated stronger proinflammatory response and proliferation features than CD6low counterparts in both AIH and HC. ALCAM, the ligand of CD6, was highly expressed in the hepatocytes of AIH and serum ALCAM was strongly associated with clinical indices of AIH. Interestingly, close spatial location between CD6+CD4+ T cells and ALCAM+ hepatocytes was observed. Finally, we found that CD6highCD4+ T cells showed enhanced capacity of trans-endothelial migration in vitro, which could be promoted by recombinant ALCAM. Conclusions Our study found that ALCAM-CD6 axis was upregulated in the AIH liver, suggesting a potential target for alleviating AIH.
Collapse
Affiliation(s)
- Qiwei Qian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Nana Cui
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyan Liu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Mingli Hu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qixia Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Qi Miao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
- *Correspondence: Ruqi Tang, ; Xiong Ma, ; Zhengrui You,
| |
Collapse
|
38
|
Soliman SA, Stanley S, Vanarsa K, Ismail F, Mok CC, Mohan C. Exploring urine:serum fractional excretion ratios as potential biomarkers for lupus nephritis. Front Immunol 2022; 13:910993. [PMID: 36091001 PMCID: PMC9449537 DOI: 10.3389/fimmu.2022.910993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives The goal of this exploratory study is to determine if urine:serum fractional excretion ratios can outperform the corresponding urinary biomarker proteins in identifying active renal disease in systemic lupus erythematosus (SLE). Methods Thirty-six adult SLE patients and twelve healthy controls were examined for serum and urine levels of 8 protein markers, namely ALCAM, calpastatin, hemopexin, peroxiredoxin 6 (PRDX6), platelet factor 4 (PF4), properdin, TFPI and VCAM-1, by ELISA. Fractional excretion of analyzed biomarkers was calculated after normalizing both the urine and serum biomarker levels against creatinine. A further validation cohort of fifty SLE patients was included to validate the initial findings. Results The FE ratios of all 8 proteins interrogated outperformed conventional disease activity markers such as anti-dsDNA, C3 and C4 in identifying renal disease activity. All but VCAM-1FE were superior to the corresponding urine biomarkers levels in differentiating LN activity, exhibiting positive correlation with renal SLEDAI. ALCAMFE, PF4FE and properdinFE ratios exhibited the highest accuracy (AUC>0.9) in distinguishing active LN from inactive SLE. Four of the FE ratios exhibited perfect sensitivity (calpastatin, PRDX6, PF4 and properdin), while ALCAMFE, PF4FE and properdinFE exhibited the highest specificity values for active LN. In addition, several of these novel biomarkers were associated with higher renal pathology activity indices. In the validation cohort ALCAMFE, PF4FE and properdinFE once again exhibited higher accuracy metrics, surpassing corresponding urine and serum biomarkers levels, with ALCAMFE exhibiting 95% accuracy in distinguishing active LN from inactive SLE. Conclusions With most of the tested proteins, urine:serum fractional excretion ratios outperformed corresponding urine and serum protein measurements in identifying active renal involvement in SLE. Hence, this novel class of biomarkers in SLE ought to be systemically evaluated in larger independent cohorts for their diagnostic utility in LN assessment.
Collapse
Affiliation(s)
- Samar A. Soliman
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Samantha Stanley
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Faten Ismail
- Department of Rheumatology & Rehabilitation, Faculty of Medicine, Minia University, Minia, Egypt
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- *Correspondence: Chandra Mohan,
| |
Collapse
|
39
|
Soliman SA, Haque A, Vanarsa K, Zhang T, Ismail F, Lee KH, Pedroza C, Greenbaum LA, Mason S, Hicks MJ, Wenderfer SE, Mohan C. Urine ALCAM, PF4 and VCAM-1 Surpass Conventional Metrics in Identifying Nephritis Disease Activity in Childhood-Onset Systemic Lupus Erythematosus. Front Immunol 2022; 13:885307. [PMID: 35720325 PMCID: PMC9204340 DOI: 10.3389/fimmu.2022.885307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Objectives Serial kidney biopsy for repeat evaluation and monitoring of lupus nephritis (LN) in childhood-onset Systemic Lupus Erythematosus (cSLE) remains challenging, thus non-invasive biomarkers are needed. Here, we evaluate the performance of ten urine protein markers of diverse nature including cytokines, chemokines, and adhesion molecules in distinguishing disease activity in cSLE. Methods Eighty-four pediatric patients meeting ≥4 ACR criteria for SLE were prospectively enrolled for urine assay of 10 protein markers normalized to urine creatinine, namely ALCAM, cystatin-C, hemopexin, KIM-1, MCP-1, NGAL, PF-4, Timp-1, TWEAK, and VCAM-1 by ELISA. Samples from active renal (LN) and active non-renal SLE patients were obtained prior to onset/escalation of immunosuppression. SLE disease activity was evaluated using SLEDAI-2000. 59 patients had clinically-active SLE (SLEDAI score ≥4 or having a flare), of whom 29 patients (34.5%) were classified as active renal, and 30 patients (35.7%) were active non-renal. Twenty-five healthy subjects were recruited as controls. Results Urine concentrations of ALCAM, KIM-1, PF4 and VCAM-1 were significantly increased in active LN patients versus active non-renal SLE, inactive SLE and healthy controls. Five urine proteins differed significantly between 2 (hemopexin, NGAL, MCP1) or 3 (Cystatin-C, TWEAK) groups only, with the highest levels detected in active LN patients. Urine ALCAM, VCAM-1, PF4 and hemopexin correlated best with total SLEDAI as well as renal-SLEDAI scores (p < 0.05). Urine ALCAM, VCAM-1 and hemopexin outperformed conventional laboratory measures (anti-dsDNA, complement C3 and C4) in identifying concurrent SLE disease activity among patients (AUCs 0.75, 0.81, 0.81 respectively), while urine ALCAM, VCAM-1 and PF4 were the best discriminators of renal disease activity in cSLE (AUCs 0.83, 0.88, 0.78 respectively), surpassing conventional biomarkers, including proteinuria. Unsupervised Bayesian network analysis based on conditional probabilities re-affirmed urine ALCAM as being most predictive of active LN in cSLE patients. Conclusion Urinary ALCAM, PF4, and VCAM-1 are potential biomarkers for predicting kidney disease activity in cSLE and hold potential as surrogate markers of nephritis flares in these patients.
Collapse
Affiliation(s)
- Samar A Soliman
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Minia University, Minia, Egypt.,Department of Biomedical Engineering, University of Houston, Houston TX, United States
| | - Anam Haque
- Department of Biomedical Engineering, University of Houston, Houston TX, United States
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston TX, United States
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston TX, United States
| | - Faten Ismail
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Sherene Mason
- Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, CT, United States
| | - M John Hicks
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Scott E Wenderfer
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston TX, United States
| |
Collapse
|
40
|
Tyckaert F, Zanin N, Morsomme P, Renard HF. Rac1, actin cytoskeleton and microtubules are key players in clathrin-independent endophilin-A3-mediated endocytosis. J Cell Sci 2022; 135:276016. [PMID: 35703091 DOI: 10.1242/jcs.259623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022] Open
Abstract
Endocytic mechanisms actively regulate plasma membrane composition and sustain fundamental cellular functions. Recently, we identified a clathrin-independent endocytic (CIE) modality mediated by the BAR domain protein endophilin-A3 (endoA3), which controls the cell surface homeostasis of the tumor marker CD166/ALCAM. Deciphering the molecular machinery of endoA3-dependent CIE should therefore contribute to a better understanding of its pathophysiological role, which remains so far unknown. Here, we investigate the role in this mechanism of actin, Rho GTPases and microtubules, which are major actors of CIE processes. We show that the actin cytoskeleton is dynamically associated with endoA3- and CD166-positive endocytic carriers and that its perturbation strongly inhibits the uptake process of CD166. We also reveal that the Rho GTPase Rac1, but not Cdc42, is a master regulator of this endocytic route. Finally, we provide evidence that microtubules and kinesin molecular motors are required to potentiate endoA3-dependent endocytosis. Of note, our study also highlights potential compensation phenomena between endoA3-dependent CIE and macropinocytosis. Altogether, our data deepen our understanding of this CIE modality and further differentiate it from other unconventional endocytic mechanisms.
Collapse
Affiliation(s)
- François Tyckaert
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium.,UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Natacha Zanin
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
41
|
ALCAM/CD166 Is Involved in the Binding and Uptake of Cancer-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23105753. [PMID: 35628559 PMCID: PMC9143639 DOI: 10.3390/ijms23105753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) and ovarian cancer (OvC) patients frequently develop peritoneal metastasis, a condition associated with a very poor prognosis. In these cancers, tumor-derived extracellular vesicles (EVs) cause immunosuppression, facilitate the direct attachment and invasion of cancer cells through the mesothelium, induce the conversion of peritoneal mesothelial cells (PMCs) into cancer-associated fibroblasts (CAFs) and transfer a more aggressive phenotype amongst cancer cells. Although the promoting role of EVs in CRC and OvC peritoneal metastasis is well established, the specific molecules that mediate the interactions between tumor-derived EVs and immune and non-immune target cells remain elusive. Here, we employed the SKOV-3 (ovarian adenocarcinoma) and Colo-320 (colorectal adenocarcinoma) human cell lines as model systems to study the interactions and uptake of EVs produced by ovarian carcinoma and colorectal carcinoma cells, respectively. We established that the adhesion molecule ALCAM/CD166 is involved in the interaction of cancer-derived EVs with recipient cancer cells (a process termed “EV binding” or “EV docking”) and in their subsequent uptake by these cells. The identification of ALCAM/CD166 as a molecule mediating the docking and uptake of CRC and OvC-derived EVs may be potentially exploited to block the peritoneal metastasis cascade promoted by EVs in CRC and OvC patients.
Collapse
|
42
|
Abstract
Leukocyte immunoglobulin-like receptor B4 (LILRB4) is an inhibitory receptor in the LILR family mainly expressed on normal and malignant human cells of myeloid origin. By binding to ligands, LILRB4 is activated and subsequently recruits adaptors to cytoplasmic immunoreceptor tyrosine inhibitory motifs to initiate different signaling cascades, thus playing an important role in physiological and pathological conditions, including autoimmune diseases, microbial infections, and cancers. In normal myeloid cells, LILRB4 regulates intrinsic cell activation and differentiation. In disease-associated or malignant myeloid cells, LILRB4 is significantly correlated with disease severity or patient survival and suppresses T cells, thereby participating in the pathogenesis of various diseases. In summary, LILRB4 functions as an immune checkpoint on myeloid cells and may be a promising therapeutic target for various human immune diseases, especially for cancer immunotherapy.
Collapse
|
43
|
Casadó-Llombart S, Gheitasi H, Ariño S, Consuegra-Fernández M, Armiger-Borràs N, Kostov B, Ramos-Casals M, Brito-Zerón P, Lozano F. Gene Variation at Immunomodulatory and Cell Adhesion Molecules Loci Impacts Primary Sjögren's Syndrome. Front Med (Lausanne) 2022; 9:822290. [PMID: 35372412 PMCID: PMC8971656 DOI: 10.3389/fmed.2022.822290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease triggered by a combination of environmental and host genetic factors, which results in the focal lymphocytic infiltration of exocrine glands causing eye and mouth dryness. Glandular infiltrates include T and B cell subsets positive for CD5 and/or CD6, two surface scavenger receptors involved in the fine-tuning of intracellular signals mediated by the antigen-specific receptor complex of T (TCR) and B (BCR) cells. Moreover, the epithelial cells of inflamed glands overexpress CD166/ALCAM, a CD6 ligand involved in homo and heterotypic cell adhesion interactions. All this, together with the reported association of functionally relevant single nucleotide polymorphisms (SNPs) of CD5, CD6, and CD166/ALCAM with the risk or prognosis of some immune-mediated inflammatory disorders, led us to investigate similar associations in a local cohort of patients with pSS. The logistic regression analyses of individual SNPs showed the association of CD5 rs2241002T with anti-Ro/La positivity, CD6 rs17824933C with neutropenia, and CD6 rs11230563T with increased leukopenia and neutropenia but decreased peripheral nervous system EULAR Sjögren's syndrome disease activity index (ESSDAI). Further analyses showed the association of haplotypes from CD5 (rs2241002T-rs2229177C) with anemia and thrombocytopenia, CD6 (rs17824933G-rs11230563C-rs12360861G) with cutaneous ESSDAI, and CD166/ALCAM (rs6437585C-rs579565A-rs1044243C and rs6437585C-rs579565G-rs1044243T) with disease susceptibility and several analytical parameters (anti-nuclear antibodies, neurological ESSDAI, and hematologic cytopenias). These results support the relevance of gene variation at loci coding for cell surface receptors involved in the modulation of T and B lymphocyte activation (CD5, CD6) and epithelial-immune cell adhesion (CD166/ALCAM) in modulating the clinical and analytical outcomes in patients with pSS.
Collapse
Affiliation(s)
- Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hoda Gheitasi
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Silvia Ariño
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Belchin Kostov
- Primary Care Centre Les Corts, Consorci d'Atenció Primària de Salut Barcelona Esquerra (CAPSBE), Barcelona, Spain
- Primary Healthcare Transversal Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Brito-Zerón
- Research and Innovation Group in Autoimmune Diseases, RGAD-Sanitas Digital Hospital, Barcelona, Spain
- Systemic Autoimmune Diseases Unit, Internal Medicine, Millenium Clinic, Sanitas, Barcelona, Spain
- *Correspondence: Pilar Brito-Zerón
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Francisco Lozano
| |
Collapse
|
44
|
Zhang H, Xie S, Fan R, Wang F, Xie Z, Jiang W. Elevated ALCAM Expression Associated with Endotypes and Postoperative Recurrence in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2022; 15:1063-1077. [PMID: 35210812 PMCID: PMC8858028 DOI: 10.2147/jir.s350609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Chronic rhinosinusitis with polyps (CRSwNP) is characterized by high heterogeneity and postoperative recurrence rate. This study aimed to explore the clinical significance of activated leukocyte cell adhesion molecule (ALCAM) in endotyping CRSwNP and predicting its recurrence. Methods We recruited 120 CRSwNP patients including 70 non-eosinophilic CRSwNP (neCRSwNP) and 50 eosinophilic CRSwNP (eCRSwNP) patients, and 40 healthy controls (HCs). Serum and tissue samples were collected. Serum ALCAM levels were detected by enzyme-linked immunosorbent assay (ELISA), and tissue ALCAM expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting (WB) and immunohistochemistry (IHC). The predictive values of ALCAM expression for CRSwNP endotypes and postoperative recurrence were assessed. Results The serum levels of ALCAM were significantly increased in CRSwNP patients in comparison with HCs and were correlated with the peripheral eosinophil count, tissue eosinophil counts, and percentage. Multivariate analysis and receiver operating characteristic (ROC) curve highlighted that serum ALCAM levels were associated with CRSwNP endotypes. Tissue ALCAM expression was significantly enhanced in CRSwNP patients, especially in eCRSwNP patients. At the end of the study, 110 patients completed the follow-up schedule, 78 patients were categorized into the non-recurrent group, and the other 32 patients were included in the recurrent group. The serum ALCAM levels were elevated in the recurrent group compared with the non-recurrent group, and ALCAM expression in the tissue was significantly elevated. The ROC curve exhibited a high predictive ability of serum ALCAM in predicting postoperative recurrence. Logistic regression and Kaplan–Meier curves demonstrated that serum ALCAM was an independent risk factor for postoperative recurrence. Conclusion This is the first report suggesting that ALCAM expression was upregulated and associated with mucosal eosinophil infiltration and CRSwNP recurrence. Serum ALCAM could be a promising biomarker for distinguishing endotypes and predicting postoperative recurrence in CRwNP patients.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Shaobing Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Ruohao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Fengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Hunan Province Key Laboratory of Otolaryngology Critical Diseases, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Weihong Jiang, Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People’s Republic of China, Email
| |
Collapse
|
45
|
Ceci C, Lacal PM, Graziani G. Antibody-drug conjugates: Resurgent anticancer agents with multi-targeted therapeutic potential. Pharmacol Ther 2022; 236:108106. [PMID: 34990642 DOI: 10.1016/j.pharmthera.2021.108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute a relatively new group of anticancer agents, whose first appearance took place about two decades ago, but a renewed interest occurred in recent years, following the success of anti-cancer immunotherapy with monoclonal antibodies. Indeed, an ADC combines the selectivity of a monoclonal antibody with the cell killing properties of a chemotherapeutic agent (payload), joined together through an appropriate linker. The antibody moiety targets a specific cell surface antigen expressed by tumor cells and/or cells of the tumor microenvironment and acts as a carrier that delivers the cytotoxic payload within the tumor mass. Despite advantages in terms of selectivity and potency, the development of ADCs is not devoid of challenges, due to: i) low tumor selectivity when the target antigens are not exclusively expressed by cancer cells; ii) premature release of the cytotoxic drug into the bloodstream as a consequence of linker instability; iii) development of tumor resistance mechanisms to the payload. All these factors may result in lack of efficacy and/or in no safety improvement compared to unconjugated cytotoxic agents. Nevertheless, the development of antibodies engineered to remain inert until activated in the tumor (e.g., antibodies activated proteolytically after internalization or by the acidic conditions of the tumor microenvironment) together with the discovery of innovative targets and cytotoxic or immunomodulatory payloads, have allowed the design of next-generation ADCs that are expected to possess improved therapeutic properties. This review provides an overview of approved ADCs, with related advantages and limitations, and of novel targets exploited by ADCs that are presently under clinical investigation.
Collapse
Affiliation(s)
- Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; IDI-IRCCS, Via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
46
|
Chen Y, Yu F, Wang Y, Liu W, Ye J, Xiao J, Liu X, Jiang H, Wang X. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. J Biomed Nanotechnol 2022; 18:1-23. [PMID: 35180897 DOI: 10.1166/jbn.2022.3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, noble metal nanomaterials have been extensively studied in the fields of biosensing, environmental catalysis, and cancer diagnosis and treatment, due to their excellent electrical conductivity, high surface area, and individual physical and optical properties. Early research on the surface-enhanced Raman scattering (SERS) effect was focused on the cognition of the SERS phenomenon and enhancing its sensitivity for single-molecule detection. With the development of nanomaterials and nanotechnology, the advances and applications based on SERS substrates have been accelerated. Among them, noble metal nanomaterials are mainly used as SERS-active substrates to enhance SERS signals owing to their compelling surface plasmon resonance (SPR) properties. This review provides recent advances, perspectives, and challenges in SERS assays based on engineered noble metal nanomaterials for early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
47
|
Guo X, Piao H. Research Progress of circRNAs in Glioblastoma. Front Cell Dev Biol 2021; 9:791892. [PMID: 34881248 PMCID: PMC8645988 DOI: 10.3389/fcell.2021.791892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded covalently closed non-coding RNAs without a 5' cap structure or 3' terminal poly (A) tail, which are expressed in a variety of tissues and cells with conserved, stable and specific characteristics. Glioblastoma (GBM) is the most aggressive and lethal tumor in the central nervous system, characterized by high recurrence and mortality rates. The specific expression of circRNAs in GBM has demonstrated their potential to become new biomarkers for the development of GBM. The specific expression of circRNAs in GBM has shown their potential as new biomarkers for GBM cell proliferation, apoptosis, migration and invasion, which provides new ideas for GBM treatment. In this paper, we will review the biological properties and functions of circRNAs and their biological roles and clinical applications in GBM.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Martín-Sabroso C, Lozza I, Torres-Suárez AI, Fraguas-Sánchez AI. Antibody-Antineoplastic Conjugates in Gynecological Malignancies: Current Status and Future Perspectives. Pharmaceutics 2021; 13:1705. [PMID: 34683998 PMCID: PMC8541375 DOI: 10.3390/pharmaceutics13101705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
In the last decade, antibody-drug conjugates (ADCs), normally formed by a humanized antibody and a small drug via a chemical cleavable or non-cleavable linker, have emerged as a potential treatment strategy in cancer disease. They allow to get a selective delivery of the chemotherapeutic agents at the tumor level, and, consequently, to improve the antitumor efficacy and, especially to decrease chemotherapy-related toxicity. Currently, nine antibody-drug conjugate-based formulations have been already approved and more than 80 are under clinical trials for the treatment of several tumors, especially breast cancer, lymphomas, and multiple myeloma. To date, no ADCs have been approved for the treatment of gynecological formulations, but many formulations have been developed and have reached the clinical stage, especially for the treatment of ovarian cancer, an aggressive disease with a low five-year survival rate. This manuscript analyzes the ADCs formulations that are under clinical research in the treatment of gynecological carcinomas, specifically ovarian, endometrial, and cervical tumors.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Irene Lozza
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (I.L.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|